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Abstract 
The key generation module is the most secret component of a cryptosystem. Keys are 
generated using random number generators (RNGs). In an implementation of a 
cryptosystem, we may consider developing the RNG component separately by in-house 
engineers instead of by the main contractor. This document describes an easy-to-follow 
procedure for the development of highly secure cryptographic RNGs. A checklist for 
auditing a secure cryptographic RNG is also included.    

 
1. Introduction 

The use of random number generators (RNGs) in generating cryptographic keys is 
common. The most important criteria for such application are: (i) that the keys are 
chosen from a very large set, and (ii) uncertainty. The first criterion requires that the 
RNG must have a very long period and the RNG passes all known tests of randomness. 
The second criterion requires that there is no feasible way to predict that certain 
numbers are more likely to be generated than others. There are two additional concerns 
in practice: (i) to ensure the correctness of software, and (ii) to maintain high 
unpredictability of keys even when a host computer has been seized or intruded. An 
overview of cryptographic RNGs can be found in [Menezes97]. Many practical 
problems in the design and analysis of cryptographic RNGs have been addressed in 
[Gutmann98].  
 
The key generation module is the most secret component of a cryptosystem. For security, 
an architect of a cryptosystem may want to develop his own RNGs instead of using 
other people’s programs or designs. This paper provides a practical guide for the design 
and testing of cryptographic RNGs. Section 2 describes various kinds of RNGs and their 
characteristics. We recommend combining outputs of at least four generators of 
different kinds, including an unpredictable one. Section 3 describes the most well 
known sets of statistical tests of randomness. These tests check whether the outputs of 
an RNG are uniformly distributed and independent. We suggest that at least two 
component RNGs in the combined generator shall pass all these tests. Section 4 
describes how to use the collision test to ensure that the seed space of an RNG is not 
trivially small. If the seed space of an RNG is too small, an attacker will be able to 
regenerate a key by initializing the RNG with all possible seeds one by one exhaustively. 
Section 5 suggests practical measures that protect the key generation module against 
system attacks. It also includes ways that minimize the leakage of secret when the 
computer that runs the module has been seized. Section 6 provides a checklist for 
auditing a secure RNG. Redundancy that safeguards the security has been built-in. 
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2. Random number Generation 
There are two main categories of RNGs in computers—deterministic RNGs and 
unpredictable RNGs. The former compute next random number from current states of 
the RNG whereas the latter collect uncertainties from special devices or computer 
hardware. Many deterministic RNGs are backed with strong theories and they produced 
statistically satisfactory random numbers. However, the numbers generated by some of 
them can be derived from preceding outputs [Plumstead82]. On the other hand, the 
output of an unpredictable RNG cannot be derived with certainty. These RNGs usually 
require special devices and are susceptible to hardware failures. Some of them are slow 
comparing with computers and their raw outputs may fail in some statistical tests.  
 
To obtain the advantages of both groups, we suggest combining outputs of RNGs of 
different categories. Two bit sequences can be combined using modulo addition, 
subtraction or bitwise exclusive-or. The combination makes the numbers more 
independent, have longer period and are harder to predict. Marsgalia has proved that the 
result of combining two independent sequences of random numbers are more evenly 
distributed than any one of the original [Marsaglia84]. Moreover, the period of the 
sequence combined from two independent sequences is the least common multiple of 
the two originals. A secure RNG for cryptographic key generation shall consist of at 
least one unpredictable RNG and three deterministic RNGs of different families. The 
period of the combined RNG shall be larger than 2n, where n is the number of bits in a 
cryptographic key.  Moreover, the amount of entropy gathered from an unpredictable 
RNG in the generation of one key shall exceed n bits.  
 
The following is a brief overview on some candidates for the component RNGs. Note 
that anyone of them will not be a secure RNG by itself. 

 
 2.1 Linear congruential generator (LCG) 

LCG is the most well studied and popular deterministic generator. It was proposed 
by Lehmer in 1949 [Lehmer49] and is among the fastest RNGs. The general formula 
for computing the next number from the current one is Xn+1 = a X n + c mod m . A 
thorough review of the underlying theory is found in [Knuth98]. If c is not equal to 
zero, and (a, m) are properly chosen as suggested in page 184 in Knuth’s book, the 
period of the generator is m, independent of what the initial value is. The finding of 
a good multiplier, a, requires conducting the spectral test. An implementation of this 
test is available at Center for Information Security and Cryptography, Department of 
Computer Science and Information Systems, The University of Hong Kong 
<http://www.csis.hku.hk/~cisc>. It is well-known that LCG fails in many statistical 
tests. 
 

 2.2 Lagged Fibonacci generators 
The Lagged Fibonacci generator was originally suggested by Mitchell and Moore in 
1958 [unpublished].  The formula is mXXX pnqpnn mod−+− += . In a 32-bit 
computer, m is usually set to 232 for efficiency. The indices p and q are chosen such 
that  is a primitive trinomial. The period of such a generator is 

. This generator is fast and easy-to-implement. The most prominent 
feature is that a very long period can be achieved by choosing a large p.  One 
derivative suggested by Marsaglia is to replace the addition in the formula with 

1++ qp xx
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multiplication, i.e., mXXX pnqpnn mod−+− ×=

nqpnn XXX −+−

 [Marsaglia84]. The period is 

. This new generator scrambles the bits more thoroughly. A drawback is 
that only 31 bits are generated in each round (the least significant bit is dropped) and 
special attention is needed in the initialization. Another common derivative is called 
generalized feedback shift register generator (GFSR) suggested by Lewis and Payne 
[Lewis73] . The formula is 

)12(230 −p

p⊕=  and the period is . This 
generator does not mix bits in different positions in a word. Special care is needed in 
the initialization of these generators. 
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2.3 Mersenne Twister 
Mersenne Twister (MT) is an extension of GFSR generator suggested by Makoto 
Matsumoto and Takuji Nishimura [Matsumoto98]. The general formula is 

, (( u
kx⊕ 1 . Let w be the number of bits in a word and  

0 ≤ r ≤ w-1.  is the upper w-r bits of  where  is the lower r bits of  .  
The operator, | , concatenates the two operands to form a word.   A is a w×w binary 
matrix. When a vector of bits multiplies with A, say xA, the effect is equivalent to 
(i) first shifting x to the right 1 bit position, (ii) if the rightmost bit of the original x is 
1, exclusive-or the shifting result with the last row of A.  

u
kx l

kx 1+ 1+kx

 
If the parameters (w, n, m, r) are chosen according to the guidelines set in 
[Matsumoto98], the period of this generator is 1−−rnw . Moreover, by returning 

, where T is a binary matrix that tampers the bits in , the resulting 
sequence has a very desirable theoretical feature—evenly distributed in high 
dimension with high accuracy. A version of MT where (w, n, m, r) = (32, 624, 397, 
31) has been implemented in C and posted in Mersenne Twister Home Page 
<

kx +

http://www.math.keio.ac.jp/~matumoto/emt.html>. It runs fast and has a period of 
. This generator passes all known statistical tests of randomness.  

 
2.4 Blum-Blum-Shub generators (BBS) 

The formula for the BBS generator is , where m=pq, | p | = | q | (i.e. 
both have equal lengths), p and q are distinct primes of the form 4x+3 [Blum86]. 
With the assumption that the quadratic residuacity problem is intractable, the BBS 
generator is practically unpredictable. Unlike other deterministic generators, the 
period of a BBS generator depends on the seed and can only be worked out using an 
algorithm. Moreover, the BBS generator is much slower than other deterministic 
generators.  

mmod

 
2.5 DSA generators 

Two deterministic generators are suggested in the standard for digital signature 
algorithm (DSA) [FIPS-186]. A DSA generator starts with a random seed and 
computes the next value using a hash function, either SHA-1 or DES. As they are 
well-studied and are approved by the standard institute, these generators are 
considered very secure and commonly used in cryptosystems. Comparing with other 
deterministic generators used in simulations, these generators are much slower. 

 
2.6 Unpredictable generators  

 3

http://www.math.keio.ac.jp/~matumoto/emt.html


An unpredictable generator gathers entropy (randomness) from physical phenomena 
such as  

• radioactive decay 
• thermal noise 
• transistor noise 
• clock 
• states of volatile memory/hardware 
• keyboard/mouse movement timings 

These generators do not require a seed. The numbers generated are unpredictable 
and irreproducible. Many are implemented in special devices attached to a host 
computer and are subject to hardware failure. In general, their speed is slower than 
the deterministic ones. Outputs of some unpredictable generators are found to be 
non-uniformly distributed. This problem can be rectified by combining their outputs 
with those of a good deterministic generator.  

  
2.6.1 Intel Random Number Generator [Jun99, Intel810] 

The Intel RNG resides in the 82802 Firmware Hub (FWH), which is a core 
component of the Intel 810 chipset. The generator uses thermal noise from 
resistors as the source of randomness. The noise is amplified and used to 
modulate a low frequency clock. This clock is then used as a reference to 
sample a high frequency clock. The drift between the two clocks induces 
randomness in the sample values. 
 

2.6.2 HAVEGE [www.irisa.fr/caps/projects/hipsor/HAVEGE.html] 
Hardware volatile entropy gathering and expansion (HAVEGE) is a software 
generator that gathers entropy from the timing differences in carrying out 
machine level instructions. The differences are caused by the states of 
instruction and data caches, branch predictions, translation lookaside buffer 
(TLB) and the unpredictable time delay affected by interrupts. The states of the 
cache and TLB determine whether there will be a page-missed delay and the 
duration of the delay. The entropy gathered is further mixed with output of a 
deterministic generator. The ultimate throughput is more than 100 Mbits per 
second. The program of this generator is machine dependent. The platforms 
currently supported include Sun workstations and PCs.  
 

2.6.3 Linux RNG [Linux RNG] 
The Linux RNG is implemented in the kernel module. It maintains an entropy 
pool that consists of timings of inter-key presses, mouse interrupts, block 
request interrupts, etc. Random numbers are generated by taking the SHA 
function on the pool contents. This generator is very slow.  
 

2.6.1 ComScire QNG Model J1000KU [www.comscire.com] 
The device gathers entropy from thermal noise and amplifier noise. The 
company that markets the device claims that the generator produces one Mbits 
per second that passes all tests of randomness.   
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3. Tests of Randomness 
Statistical tests are commonly used to reject poor RNGs. The underlying hypothesis is 
that the numbers being tested are uniformly distributed and independent. A test uses the 
numbers in an experiment and checks whether the statistics collected are within typical 
ranges. For example, the collision test simulates throwing balls randomly into urns 
[Christiansen75, Knuth98]. A collision occurs when a ball falls into an urn that is 
already occupied. The test rejects an RNG if too many or too few collisions occur.  

 
3.1 Diehard Battery [Marsaglia95] 

Diehard is the most widely distributed and used software package for checking 
RNGs.  It includes the following tests [Marsaglia02]. 

• Birthday Spacings 
• GCD 
• Gorilla 
• Overlapping Permutations 
• Binary Rank n×n  
• Binary Rank 6×8 
• Monkey Tests OPSO, OQSO, DNA 
• Count the 1’s 
• Count the 1’s specific 
• Parking Lot 
• Minimum Distance 
• Random Spheres 
• The Squeeze 
• Overlapping Sums 
• Runs Up and Down 
• The Craps 

The tests are designed for checking 32-bit RNGs. We have made minor 
modifications of the code so that they are also applicable to RNGs of 24-  and 31- 
bits. The tests are then applied to the 57 deterministic RNGs in the GSL-GNU 
Library <http://www.gnu.org/software/gsl/gsl.html>. If a test returns a p-value of 
greater than 0.01 and less than 0.99 for an RNG, we put a ‘P’ (means “Passed”) in 
the respective entry. Otherwise we put an ‘F’ (means “Failed”). The results are 
shown in Table 3.1. 
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 RNG 
ID 

RNG No. 
of 
Bits 

Birthday 
Spacing 

GCD Gorilla Over- 
lapping 

Binary 
Rank 
nxn 

Binary 
Rank 
6x8 

 OPSO  OQSO DNA Count 
the 1's

1 borosh13 32 F F F P F F F F F F 
2 Cmrg 31 P P P P P P P P P P 
3 Coveyou 32 F F F P F F F F F F 
4 fishman18 31 F F F P F F F F F F 
5 fishman20 31 F F F P F F F F F F 
6 fishman2x 31 P P P P P P P P P P 
7 gfsr4 32 P P P P P P P P P P 
8 Knuthran 30 F P P P P P P P P P 
9 knuthran2 31 F F F P P F F F F F 

10 lecuyer21 31 F F F P P P P P P P 
11 Minstd 31 F F F P P P P P P P 
12 Mrg 31 P P P P P P P P P P 
13 mt19937 32 P P P P P P P P P P 
14 R250 32 F F F P P F F F F F 
15 ran0 31 F F F P P P P P P P 
16 ran1 31 F P P P P P P P P P 
17 ran2 31 P P P P P P P P P P 
18 ran3  F F P P P P P P P P 
19 Rand 31 F F F P P F F F F F 
20 rand48 32 P P F P P P F F F P 
21 random128-bsd 31 F P P P P P P P P P 
22 random128-glibc2 31 F P P P P P P P P P 
23 random128-libc5 31 F P P P P P P P P P 
24 random256-bsd 31 F P P P P P P P F P 
25 random256-glibc2 31 F P P P P P P P P P 
26 random256-libc5 31 F P P P P P P P P P 
27 random32-bsd 31 F F F P P F F F F F 
28 random32-glibc2 31 F F F P P P F F F F 
29 random32-libc5 31 F F F P P P F F F F 
30 random64-bsd 31 F P F P P P P F F P 
31 random64-glibc2 31 F P F P P P P F F P 
32 random64-libc5 31 F P F P P P P F F P 
33 random8-bsd 31 F F F P P F F F F F 
34 random8-glibc2 31 F F F P P F F F F F 
35 random8-libc5 31 F F F P P F F F F F 
36 random-bsd 31 F P P P P P P P P P 
37 random-glibc2 31 F P P P P P P P P P 
38 random-libc5 31 F P P P P P P P P P 
39 Randu 31 F F F F F F F F F F 
40 Ranf 32 P P F P P P F F F P 
41 Ranlux 24 F P P P P P P P P P 
42 ranlux389 24 P P P P P P P P P P 
43 ranlxd1 32 P P P P P P P P P P 
44 ranlxd2 32 P P P P P P P P P P 
45 ranlxs0 24 F P P P P P P P P P 
46 ranlxs1 24 P P P P P P P P P P 
47 ranlxs2 24 P P P P P P P P P P 
48 Ranmar 24 P P P P P P P P P P 
49 Slatec 22 F F F F P F F F F F 
50 Taus 32 P P P P P P P P P P 
51 Transputer 32 F F F P F F F F F F 
52 Tt800 32 P P P P P P P P P P 
53 Uni 15 F P F P P P P P P P 
54 Uni32 31 F P F P P P P P P P 
55 Vax 32 F F F P P F F F F F 
56 waterman14 32 F F F P F F F F F F 
57 Zuf 24 F P P P P P P P P P 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 3.1a  Results of testing the GSL-GNU RNGs with the Diehard Battery.
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RNG 
# 

RNG No. 
of 
Bits 

Count 
the 1's 
Specific 

Parking 
Lot 

Minimu
m 
Distance

Random 
Spheres

Squeeze Over-
lapping 
Sums 

Runs Craps 

1 borosh13 32 F P P P P P P P 
2 Cmrg 31 P P P P P P P P 
3 Coveyou 32 F P P P P P P P 
4 fishman18 31 F P F P P P P P 
5 fishman20 31 F P F P P F P P 
6 fishman2x 31 P P P P P P P P 
7 gfsr4 32 P P P P P P P P 
8 Knuthran 30 P P P P P P P P 
9 knuthran2 31 F P P P P P P P 

10 lecuyer21 31 P P P P P P P P 
11 Minstd 31 P P P P P P P P 
12 Mrg 31 P P P P P P P P 
13 mt19937 32 P P P P P P P P 
14 R250 32 F P P P P P P P 
15 ran0 31 P P P P P F P P 
16 ran1 31 P P P P P P P P 
17 ran2 31 P P P P P P P P 
18 ran3  P P P P F P P P 
19 Rand 31 F P P P P P P P 
20 rand48 32 P P P P P P P P 
21 random128-bsd 31 P P P P F P P P 
22 random128-glibc2 31 P P P P F F P P 
23 random128-libc5 31 P P P P F P P P 
24 random256-bsd 31 P P P P P P P P 
25 random256-glibc2 31 P P P P P P P P 
26 random256-libc5 31 P P P P P P P P 
27 random32-bsd 31 F P P P F F P F 
28 random32-glibc2 31 F P P P F P P F 
29 random32-libc5 31 F P P P F P P P 
30 random64-bsd 31 P P P P F P P P 
31 random64-glibc2 31 P P P P F P P P 
32 random64-libc5 31 P P P P F P P P 
33 random8-bsd 31 F P P P P P P P 
34 random8-glibc2 31 F P P P P P P P 
35 random8-libc5 31 F P P P P P P P 
36 random-bsd 31 P P P P F P P P 
37 random-glibc2 31 P P P P F F P P 
38 random-libc5 31 P P P P F P P P 
39 Randu 31 F P F P P P P F 
40 Ranf 32 P P P P P P P P 
41 Ranlux 24 P P P P P P P P 
42 ranlux389 24 P P P P P P P P 
43 ranlxd1 32 P P P P P P P P 
44 ranlxd2 32 P P P P P P P P 
45 ranlxs0 24 P P P P P P P P 
46 ranlxs1 24 P P P P P P P P 
47 ranlxs2 24 P P P P P P P P 
48 Ranmar 24 P P P P P P P P 
49 Slatec 22 F P P P F F P P 
50 Taus 32 P P P P P P P P 
51 Transputer 32 F P P P P P P P 
52 Tt800 32 P P P P P P P P 
53 Uni 15 P P P P P P P P 
54 Uni32 31 P P P P F P P P 
55 Vax 32 F P P P P F P P 
56 waterman14 32 F P P P P P P P 
57 Zuf 24 P P P P P P P P 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3.1b  Results of testing the GSL-GNU RNGs with the Diehard Battery. 
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3.2 Knuth’s collection 
The most well-known collection of tests for random number generators is the one 
compiled by Knuth that comprises 11 tests [Knuth98]. The following briefly 
describes each test and includes the parameters used in our implementation. 

3.2.1 Frequency Test 
Sample n random number in [0, d], count the number of times that each value 
occurs and conducts a Chi-square goodness-of-fit test. In our implementation, 
d = 224 and n = 5d. 

3.2.2 Serial Test 
Sample n pairs of random numbers in [0, d], For each pair of possible value,    
(q, r), 0 ≤ q, r ≤ d, count the number of times that (q, r) occurs. Conduct a Chi-
square goodness-of-fit test. In our program, d = 212 and n = 5d2.   

3.2.3 Gap Test 
Let α and β be two real numbers with 0 ≤ α ≤ β ≤ 1. u's are uniform random 
number in [0,1). A gap of length r is a consecutive subsequence, uj, uj+1, …, 
uj+r in which uj+r lies between α and β but not the others. r follows a geometric 
distribution. Conducts a Chi-square goodness-of-fit test on the samples of r.  In 
our program, α = 0 and β = 1/220. 5×220 samples of r's are tested. 

3.2.4 Partition Test (Poker Test) 
The classical poker test considers five cards chosen randomly and observes 
which of the following seven patterns is matched: 

All different:   abcde 
One pair:   aabcd 
Two pairs:   aabbc 
Three of a kind:  aaabc 
Full house:   aaabb 
Four of a kind:   aaaab 
Five of a kind:   aaaaa 

A simpler version is implemented. The card value is a random number in [0, 
511]. A hand consists of 5 cards. Only five categories are considered: 

5 values = all different 
4 values = one pair; 
3 values = two pairs or three of a kind 
2 values = full house, or four of a kind 
1 value  = five of a kind 

A Chi-square test is conducted on approximately 45 million samples of hands. 

3.2.5 Coupon Collector’s Test       
Consider that an RNG produces random number in the range of [0, d). This 
test observes how many numbers are needed to obtain a complete set of 
integers from 0 to d – 1. In our program, d = 256 and 100,000 sets are sampled.    
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3.2.6 Permutation Test 
A group of t real numbers can have t! possible relative orderings. The 
probability that an ordering occurs is 1/t! . In our program, t = 10 and 5t! 
groups are sampled. 

3.2.7 Run Test 
There are many versions of run test. The exact version described in Knuth’s 
book is implemented. The length of a sequence, n, is chosen to be 10000. 

3.2.8 Maximum-of-t Test 
This test checks the distribution of the maximum of t uniform random numbers 
in [0,1). The distribution function is F(x) = xt, 0 ≤ x ≤ 1. In our program, t = 40 
and two million samples are taken. The Kolmogorov-Smirnov test is then used 
to check the goodness-of-fit. 

3.2.9 Collision Test 
This test simulates throwing balls randomly into urns. A collision occurs when 
a ball falls into an urn that is already occupied. The test counts the number of 
collisions. It rejects an RNG if too many or too few collisions occur. In our 
program, 220 balls are thrown to 220 urns.  

3.2.10 Birthday Spacings Test 
Consider choosing m birthdays randomly from a year of n days. Sort the 
birthdays. The spacings (intervals) between consecutive birthdays 
asymptotically follows the Poisson distribution with the parameter λ = m3 /(4n).   
In our program, n = 232 and m = 4096. 

3.2.11 Serial Correlation Test 
Consider n independent uniform random numbers, u0, u1, …, un-1. The serial 
correlation C is defined as 

2
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In our program, n = 65536. 1024 C's are generated and tested with the 
Kolmogorov-Smirnov test. 

 
We have applied these tests on the 57 RNGs in the GSL-GNU Library. The test 
results are shown in Table 3.2. 
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 RNG No
. of 
bit
s 

Freq 
uency 

Serial Gap Coupon Permu
tation

Run Maximum
-t 

Collision Birthday Serial 
Corr

1 borosh13 32 F F F F F P P F F P 
cmrg 31 P P P P P P P P P P 

3 32 F F F F F P P F F P 
4 fishman18 F F F F F F P F F P 
5 fishman20 31 F F F F F P P F P 
6 fishman2x 31 P P P P P P P P P 
7 gfsr4 32 P P P P P P P P P 
8 knuthran 30 P P P P P P P P F P 
9 knuthran2 31 F F F F P P P F F P 

lecuyer21 31 F F F P P P P F F P 
11 31 F F F P P F P F F P 
12 mrg P P P P P P P P P P 
13 mt19937 32 P P P P P P P P P 
14 R250 32 P P P P P P P P P 
15 ran0 31 F F P P F P P F F 
16 ran1 31 F P P P P P P P F P 
17 ran2 31 P P P P P P P P P P 

ran3 P P P P P P P P F P 
19 31 F F F F F F P F F P 
20 rand48 P F P P F P P F P P 
21 random128-bsd 31 P P P P P P F F P 
22 random128-glibc2 31 P P P P P P F P P 
23 random128-libc5 31 P P P P P P F P F 
24 random256-bsd 31 P P P P P P P P F P 
25 random256-glibc2 31 P P P P P P P P F P 

random256-libc5 31 P P P P P P P P F P 
27 31 F F P F F F F F F P 
28 random32-glibc2 

Partition

F 
2 P 

coveyou P 
31 P 

F F 
P P 

P P 
P 

F 
10 F 

minstd P 
31 P 

P P 
F F 

F P 
P 

P 
18 P 

rand P 
32 P 

P P 
P F 

P P 
P 

P 
26 P 

random32-bsd P 
31 F F P F F F P F F F P 

29 random32-libc5 31 F F P F F F P F F F P 
30 random64-bsd 31 F F P F F P P F F F P 
31 random64-glibc2 31 P F P F F P P F F F P 
32 random64-libc5 31 P F P F F P P F F F P 
33 random8-bsd 31 F F F F F F P P F F P 
34 random8-glibc2 31 F F F F F F P P F F P 
35 random8-libc5 31 F F F F F F P P F F P 
36 random-bsd 31 P P P P P P P F P F P 
37 random-glibc2 31 P P P P P P P F P F P 
38 random-libc5 31 P P P P P P P F P F P 
39 randu 31 F F F F F F P F F F P 
40 ranf 32 P F P F F P P P F P P 
41 ranlux 24 P P P P P P P P P F P 
42 ranlux389 24 P P P P P P P P P P P 
43 ranlxd1 32 P P P P P P P P P P P 
44 ranlxd2 32 P P P P P P P P P P P 
45 ranlxs0 24 P P P P P P P P P F P 
46 ranlxs1 24 P P P P P P P P P P P 
47 ranlxs2 24 P P P P P P P P P P P 
48 ranmar 24 P P P P P P P P P P P 
49 slatec 22 F F F F F F P P F F F 
50 taus 32 P P P P P P P P P P P 
51 transputer 32 F F F F F F P P F F P 
52 tt800 32 P P P P P P P P P P P 
53 uni 15 P P P P P P P F F F P 
54 uni32 31 P P P P P P P F F F P 
55 vax 32 F F P F F P P P F F P 
56 waterman14 32 F F P F F P P P F F P 
57 zuf 24 P P P P P P P P P F P 

 
Table 3.2  Results of testing the GSL-GNU RNGs with the tests in Knuth’s collection. 
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3.3 NIST Test Suite  
The National Institute of Standards and Technology (NIST) has suggested 16 
statistical tests for checking RNGs in [Rukhin01]. These tests are: 

• Frequency (Monobit) Test 
• Frequency Test within a Block 
• Runs Test 
• Tests for the longest Run of Ones in a Block 
• Binary Matrix Rank Test 
• Discrete Fourier Transform (Spectral) Test 
• Non-overlapping Template Matching Test 
• Overlapping Template Matching Test 
• Maurer’s “Universal Statistical” Test 
• Lampel-Ziv Compression Test 
• Linear Complexity Test 
• Serial Test 
• Approximate Entropy Test 
• Cumulative Sums (Cusum) Test 
• Random Excursions Test 
• Random Excursions Variant Test 

 
We have downloaded the software posted in the official Website: Random 
number generation and testing <http://csrc.nist.gov/rng/>.  We found that four 
of these tests, the Linear Complexity, Non-overlapping, Random Excursions and 
Random Excursions Variant tests, did not run properly. These four tests are re-
coded according to the specifications. Then we applied all the tests to the RNGs 
in the GSL-GNU Library. The results are shown in Table 3.3. 
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RNG 
# 

RNG No. 
of 
bits 

Freq-
uency 
(Monobit)

Block 
Freq-
uency

Cumu
-lative 
Sums

Runs Long 
Runs

Rank Fourier 
Trans-
form 

Over-lapping 
Template 

Maurer's 
Universal

1 borosh13 32 P F P F F F F F F 
2 Cmrg 31 P P P P P P P P P 
3 Coveyou 32 P F P F F F F F F 
4 fishman18 31 P F P F F P F F F 
5 fishman20 31 F F F F F P F F F 
6 fishman2x 31 P P P P P P P P P 
7 gfsr4 32 P P P P P P P P P 
8 Knuthran 30 P P P P P P P P P 
9 knuthran2 31 P F P F F P F F F 

10 lecuyer21 31 P P P P P P P P P 
11 minstd 31 P P P P P P P P P 
12 mrg 31 P P P P P P P P P 
13 mt19937 32 P P P P P P P P P 
14 r250 32 F F F F P P F F P 
15 ran0 31 P P P P P P P P P 
16 ran1 31 P P P P P P P P P 
17 ran2 31 P P P P P P P P P 
18 ran3  P P P P P P P P P 
19 rand 31 P F P P P P F P P 
20 rand48 32 P P P P P P P P P 
21 random128-bsd 31 P P P P P P P P P 
22 random128-glibc2 31 P P P P P P P P P 
23 random128-libc5 31 P P P P P P P P P 
24 random256-bsd 31 P P P P P P P P P 
25 random256-glibc2 31 P P P P P P P P P 
26 random256-libc5 31 P P P P P P P P P 
27 random32-bsd 31 F P F F P P P P P 
28 random32-glibc2 31 F P F F P P P P P 
29 random32-libc5 31 F P F F P P P P P 
30 random64-bsd 31 P P P P P P P P P 
31 random64-glibc2 31 P P P P P P P P P 
32 random64-libc5 31 P P P P P P P P P 
33 random8-bsd 31 P P P P P P F P P 
34 random8-glibc2 31 P P P P P P F P P 
35 random8-libc5 31 P P P P P P F P P 
36 random-bsd 31 P P P P P P P P P 
37 random-glibc2 31 P P P P P P P P P 
38 random-libc5 31 P P P P P P P P P 
39 randu 31 F F F F F P F F F 
40 ranf 32 P P P P P P P P P 
41 ranlux 24 P P P P P P P P P 
42 ranlux389 24 P P P P P P P P P 
43 ranlxd1 32 P P P P P P P P P 
44 ranlxd2 32 P P P P P P P P P 
45 ranlxs0 24 P P P P P P P P P 
46 ranlxs1 24 P P P P P P P P P 
47 ranlxs2 24 P P P P P P P P P 
48 ranmar 24 P P P P P P P P P 
49 slatec 22 P F P P P P F P F 
50 taus 32 P P P P P P P P P 
51 transputer 32 P F P F F F F F F 
52 tt800 32 P P P P P P P P P 
53 uni 15 P P P P P P P P P 
54 uni32 31 P P P P P P P P P 
55 vax 32 P P P P P P F P P 
56 waterman14 32 P P P F F F F F F 
57 zuf 24 P P P P P P P P P 

 
 

Table 3.3a  Results of testing the GSL-GNU RNGs with the NIST tests. 
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 RNG RNG 
# 

No. 
of 
bits 

Appro-
ximate 
Entropy

Serial Lempel-
Ziv 

Linear 
Comp-
lexity 

Non-
over-
lapping 

Random 
Excur-
sions 

Random 
Excur-
sions 
Variant 

1 borosh13 32 F P F P F F P 
2 Cmrg 31 P P P P P P P 
3 Coveyou 32 F P F P F F P 
4 fishman18 31 F F F P F F P 
5 fishman20 31 F F F P F F F 
6 fishman2x 31 P P P P P P P 
7 gfsr4 32 P P P P P P P 
8 Knuthran 30 P P P P P P P 
9 knuthran2 31 F F F P F P P 

10 lecuyer21 31 P P P P P P P 
11 minstd 31 P P P P P P P 
12 mrg 31 P P P P P P P 
13 mt19937 32 P P P P P P P 
14 r250 32 F P F P F P P 
15 ran0 31 P P P P P P P 
16 ran1 31 P P P P P P P 
17 ran2 31 P P P P P P P 
18 ran3  P P P P P P P 
19 rand 31 P P P P F P P 
20 rand48 32 P P P P P P P 
21 random128-bsd 31 P P P P P P P 
22 random128-glibc2 31 P P P P P P P 
23 random128-libc5 31 P P P P P P P 
24 random256-bsd 31 P P P P P P P 
25 random256-glibc2 31 P P P P P P P 
26 random256-libc5 31 P P P P P P P 
27 random32-bsd 31 F F P P P P P 
28 random32-glibc2 31 F F P P P P P 
29 random32-libc5 31 F F P P P P P 
30 random64-bsd 31 P P P P P P P 
31 random64-glibc2 31 P P P P P P P 
32 random64-libc5 31 P P P P P P P 
33 random8-bsd 31 P P P P F P P 
34 random8-glibc2 31 P P P P F P P 
35 random8-libc5 31 P P P P F P P 
36 random-bsd 31 P P P P P P P 
37 random-glibc2 31 P P P P P P P 
38 random-libc5 31 P P P P P P P 
39 randu 31 F F F P F F F 
40 ranf 32 P P P P P P P 
41 ranlux 24 P P P P P P P 
42 ranlux389 24 P P P P P P P 
43 ranlxd1 32 P P P P P P P 
44 ranlxd2 32 P P P P P P P 
45 ranlxs0 24 P P P P P P P 
46 ranlxs1 24 P P P P P P P 
47 ranlxs2 24 P P P P P P P 
48 ranmar 24 P P P P P P P 
49 slatec 22 F F P P F P P 
50 taus 32 P P P P P P P 
51 transputer 32 F F F P F F P 
52 tt800 32 P P P P P P P 
53 uni 15 P P P P P P P 
54 uni32 31 P P P P P P P 
55 vax 32 P P P P F P P 
56 waterman14 32 F F F P F F P 
57 zuf 24 P P P P P P P 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   
   Table 3.3b Results of testing the GSL-GNU RNGs with the NIST tests.
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4.  Initialization of RNGs 
A deterministic RNG requires an initial state to start operation. The initial state may be 
computed from a seed supplied by a human operator, or an ever-changing data source, 
e.g., time. It has been repeatedly reported that loopholes are created due to mishandling 
of seeds [Gutmann98, Marsaglia01]. The following are considerations and suggestions 
on initializing RNGs.   
(i) The amount of entropy in a seed for initializing all the RNGs in a cryptosystem 

must be larger than the bit length of a key. 
(ii) The format of a seed provided by a human operator must be checked. 
(iii) For each RNG, a value is computed from the seed. The computation is designed 

so that the change of any bit in the seed gives different results. This resulting 
value is then combined with the default state of the RNG to form an initial state.  

(iv) Certain RNGs have restrictions on the states, e.g., bits cannot be all zeros. Make 
sure that the restrictions are satisfied in the initial states. 

 
To assure that an RNG is properly initialized with a seed, we can conduct a modified 
collision test [Tsang00]. In the test, seeds are sampled. Each seed is used to initialize the 
RNG and one random number is generated. These random numbers are then examined 
with the collision test. If the seed space is too small or the seeds are distributed unevenly, 
the number of collisions record will be higher than expected. 
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5. Measures against system attacks 
Nowadays, computers that are connected to the Internet are constantly being scanned by 
intrusion software. From time to time, we heard news that computers are tampered by 
intruders. In this section, we suggest ways that reduce the chance of system attacks, 
either via the Internet or by insiders. We also describe measures that prevent the 
regeneration of the keys previously generated when a cryptosystem has been seized. 
 
5.1 Isolation of the key generation module 

The key generation module is the most secret component of a cryptosystem. The 
computer that runs the module shall be a standalone machine locked in a concealed 
room. This computer shall be dedicated entirely to run the module and has one and 
only one link that connects itself to the main computer running the other 
components. The protocol of this link shall be different from those commonly used 
in the Internet or a local area network. If the main computer is connected to the 
Internet, it must have vigilant firewall and intrusion-detection software installed, 
including the ones that detect the notorious buffer-overflow attacks, Immunix 
adaptive system survivability <http://www.cse.ogi.edu/DISC/projects/immunix>.  
 

 
 
Figure 5.1  Isolation of the computer that runs the key generation module 

 
5.2 Checking the integrity of the code and configuration files 

The highest prize to an intruder is being able to alter a system without being noticed 
and he can predict the keys generated in the future. To avoid such pitfall, the code 
and configuration files shall be checked regularly for any illegal alterations. This can 
be done using hash functions, e.g., MD5 or SHA. A thorough discussion on using 
hash functions for checking against contamination of critical information can be 
found in Check against Contamination of critical Information 
<http://www.csis.hku.hk/cisc/projects/va/contam_index.html> 

 
5.3 Power-up tests 

The power-up tests are efficient statistical tests that examine the outputs of RNGs 
when a cryptographic RNG model is initialized. It may detect illegal alteration of 
code, initializing RNGs with improper seeds, or other problems in the module that 
deteriorates the quality of the output, e.g., the failure of a hardware RNG. Four tests 

 15

http://www.cse.ogi.edu/DISC/projects/immunix
http://www.csis.hku.hk/cisc/projects/va/contam_index.html


are proposed in the Federal Information Processing Standards Publication (FIPS 
PUB140-2) in <http://csrc.ncsl.nist.gov/publications/fips/>. They are 

• Monobit Test, 
• Poker Test, 
• Run Test, 
• Long Runs Test. 

Our study shows that these tests are efficient but far from effective (See Table 5.3). 
There are many poor RNGs pass these tests but fail in either Diehard or Knuth’s 
collections. In the future, we will suggest replacing these tests with efficient versions 
of the gorilla test and the birthday spacing test [Marsaglia02]. These two tests are 
the most stringent that we have encountered in our pursuit in RNG research over 20 
years. 

 
5.4 Accumulating randomness regularly 

If only deterministic RNGs are used, we suggest changing the seeds regularly, in 
particular, before and after the generation of a key. A new seed may be formed by 
combining the old one with some random data obtained from volatile caches or 
clock readings. The new amount of entropy accumulated in the seeds during the 
generation of one key shall exceed the number of bits in the key. With such a 
preventive measure, an attacker will not be able to work out the old or the new keys 
from the current states of the memory.  

 
5.5 Hiding critical information 

An effective way to prevent an attacker to work out the states of an RNG module is 
to hind the critical data in the memory. A scheme that scrambles data in RAM has 
been developed by our team. Details can be found in Hide critical information in 
RAM <http://www.csis.hku.hk/cisc/projects/va/ram_index.html> 
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RNG 
# 

RNG Bits Frequency 
(Monobit) 

Poker Runs Long Runs 

1 borosh13 32 P F P P 
2 cmrg 31 P P P P 
3 coveyou 32 P F P P 
4 fishman18 31 P F F P 
5 fishman20 31 F F F P 
6 fishman2x 31 P P P P 
7 gfsr4 32 P P P P 
8 knuthran 30 P P P P 
9 knuthran2 31 P F F P 

10 lecuyer21 31 P P P P 
11 minstd 31 P P P P 
12 mrg 31 P P P P 
13 mt19937 32 P P P P 
14 r250 32 P F P P 
15 ran0 31 P P P P 
16 ran1 31 P P P P 
17 ran2 31 P P P P 
18 ran3  P P P P 
19 rand 31 P F P P 
20 rand48 32 P P P P 
21 random128-bsd 31 P P P P 
22 random128-glibc2 31 P P P P 
23 random128-libc5 31 P P P P 
24 random256-bsd 31 P P P P 
25 random256-glibc2 31 P P P P 
26 random256-libc5 31 P P P P 
27 random32-bsd 31 P P P P 
28 random32-glibc2 31 P P P P 
29 random32-libc5 31 P P P P 
30 random64-bsd 31 P P P P 
31 random64-glibc2 31 P P P P 
32 random64-libc5 31 P P P P 
33 random8-bsd 31 P F P P 
34 random8-glibc2 31 P F P P 
35 random8-libc5 31 P F P P 
36 random-bsd 31 P P P P 
37 random-glibc2 31 P P P P 
38 random-libc5 31 P P P P 
39 randu 31 F F F P 
40 ranf 32 P P P P 
41 ranlux 24 P P P P 
42 ranlux389 24 P P P P 
43 ranlxd1 32 P P P P 
44 ranlxd2 32 P P P P 
45 ranlxs0 24 P P P P 
46 ranlxs1 24 P P P P 
47 ranlxs2 24 P P P P 
48 ranmar 24 P P P P 
49 slatec 22 P F P P 
50 taus 32 P P P P 
51 transputer 32 P F F P 
52 tt800 32 P P P P 
53 uni 15 P P P P 
54 uni32 31 P P P P 
55 vax 32 P P P P 
56 waterman14 32 P F P P 
57 zuf 24 P P P P 

 
Table 5.3 Results of testing the GSL-GNU RNGs with the power-up tests in the Federal 
Information Processing Standards Publication (FIPS PUB140-2) 
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6. A check list for auditing a cryptographic random number generator (RNG) module 
a.   Check the documentations on the following 

i. computing platform: computer, external connection, OS and compiler, 
ii. references (brand, model, websites, papers) of unpredictable RNGs,  

iii. formulations, parameters, periods, and references of deterministic RNGs, 
iv. how outputs of component RNGs are combined, 
v. format of power-up seeds provided by human operators,  

vi. method that initializes deterministic RNGs using the power-up seed,  
vii. how unpredictable data are collected and accumulated during execution, 

viii. power-up tests of randomness, 
ix. integrity checking on the executable code and the configuration file. 

 
b. The RNG module shall be accommodated in a stand-alone computer that is 

connected to the host computer via a dedicated connection. Security measures that 
detect both physical intrusion and electronic intrusion shall be taken, including a 
mechanism that detects intrusions using the stack-overflow technique. 
 

c. The RNG module shall consist of at least one unpredictable RNG and three 
deterministic RNGs of different kinds. When the module is invoked, it calls each 
component RNG. The values returned are then combined to form a random number.  

 
d. With high probability, the method that combines values returned from component 

RNGs shall give different results when any bit in its input is flipped. Verify this 
condition by altering a typical input bit by bit. Repeat 10000 times. 

 
e. Let n be the number of bits in a cryptographic key generated using the RNG module. 

The least common multiple of the periods of the deterministic RNGs shall be larger 
than 2n.  

 
f. With high probability, the amount of entropy gathered from an unpredictable RNG 

in the generation of one cryptographic key shall exceed n bits.   
  
g. The size of the seed space shall be larger than 2n. 
 
h. Review the code of the programs according to the documents. 
 
i. Verify the correctness of the implementation of each deterministic RNG using a 

mathematical package, e.g., Maple. Starting from same initial state, the numbers 
generated by both programs shall be exactly the same after 1, 10, 100, 1000, …, 
1000000 rounds. 

 
j. Test the randomness of each component RNG using the following sets of tests. (The 

unpredictable RNG and at least two software RNGs shall pass all tests.)  
i. Diehard 

ii. Knuth’s collection 
iii. Statistical Test Suite for RNGs for Cryptographic applications, NIST Special 

Publication 800-22 
 
k. The random numbers returned from the RNG module shall pass all the above tests. 
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l. For each deterministic RNG, use the collision test to check the randomness of the 
states initialized by random seeds.  

 
m. Verify that a power-up seed provided by an operator is actually used to initialize 

each deterministic RNG. Check whether the RNG being tested produces different 
numbers when a bit of a typical seed is flipped. Repeat 10000 times.  

 
n. Verify that the program actually collects and accumulates unpredictable data during 

execution, e.g., from the system clock. The data collected shall be used to change 
the states of some deterministic RNGs. 

 
o. Check the effectiveness of the power-up tests using two defected deterministic 

RNGs that marginally fail in the tests. 
 
p. Verify that the power-up tests are actually applied to each individual RNG when the 

module is initialized. If a hardware RNG is not in place or not functioning, the 
power-up tests shall show failure results. 

 
q. The module shall regularly check, at least once per day, whether a hardware RNG is 

in place and functioning. 
 
r. Test the signature scheme that verifies the integrity of the executable code and the 

configuration file. 
 
s. Verify that the integrity checking is performed in the initialization of the module.   
 
t. Check that the execution time of the module is acceptable. 
 
 
 
 

 19



7. References 
 

Blum L., Blum, M, and Shub, M., 1986, A simple unpredictable pseudo-random 
number generator," SIAM J. Comput., 15(2). pp. 364-83. 
 
Center for Information Security and Cryptography, Department of Computer 
Science and Information Systems, The University of Hong Kong 
http://www.csis.hku.hk/~cisc  
 
Check against Contamination of critical Information, Vulnerability Analysis Tools 
for Cryptographic Keys, Center for Information Security and Cryptography, 
Department of Computer Science and Information Systems, The University of Hong 
Kong 
http://www.csis.hku.hk/cisc/projects/va/contam_index.html 
 
Comscire 
www.comscire.com 
 
Federal Information Processing Standards, Information Technology Laboratory, 
Computer Security Resource Center (CSRC), National Institute of Standards and 
Technology 
http://csrc.ncsl.nist.gov/publications/fips/ 
 
FIPS PUB 140-2, Security Requirements for Cryptographic Modules 
http://csrc.nist.gov/cryptval/140-2.htm 
 
FIPS-186, Digital signature standard (DSS) 
http://www.itl.nist.gov/fipspubs/fip186.htm 
 
Gutmann, P., 1998, Software generation of practically strong random numbers, 
Proceedings of the 7th USENIX Security symposium, San Antonio, Texas, January 
26-29 (an updated version of the paper is posted in 
http://www.cryptoapps.com/~peter/06_random.pdf ). 
 
GSL-GNU Library 
http://www.gnu.org/software/gsl/gsl.html 
 
HAVAGE 
www.irisa.fr/caps/projects/hipsor/HAVEGE.html 
 
Hide critical information in RAM, Vulnerability Analysis Tools for Cryptographic 
Keys, Center for Information Security and Cryptography, Department of Computer 
Science and Information Systems, The University of Hong Kong 
http://www.csis.hku.hk/cisc/projects/va/ram_index.html 
 
Immunix adaptive system survivability 
http://www.cse.ogi.edu/DISC/projects/immunix 
 
Intel 810 Chipset Design Guide, June 1999. 
 

 20

http://www.csis.hku.hk/~cisc
http://www.csis.hku.hk/cisc/projects/va/contam_index.html
http://www.comscire.com/
http://csrc.ncsl.nist.gov/publications/fips/
http://csrc.nist.gov/cryptval/140-2.htm
http://www.itl.nist.gov/fipspubs/fip186.htm
http://www.cryptoapps.com/~peter/06_random.pdf
http://www.gnu.org/software/gsl/gsl.html
http://www.irisa.fr/caps/projects/hipsor/HAVEGE.html
http://www.csis.hku.hk/cisc/projects/va/ram_index.html
http://www.cse.ogi.edu/DISC/projects/immunix


Jun, B.and Kocher, P, 1999, The Intel Random Number Generator, Crytography 
research, Inc. white paper prepared for intel corporation. 
 
Knuth, D. E., 1998, The Art of Computer Programming, Vol. 2, 3rd ed., Addison-
Wesley. 
 
Lehmer, D.H., 1949, Mathematical methods in large-scale computing units, Proc. 
2nd Sympos. on Large-Scale Digital Calculating Machinery, Cambridge, MA, pages 
141-146, Cambridge, MA, Harvard University Press. 
 
Lewis, T.G. and Payne, W.H., 1973, Generalized Feedback Shift Register 
Pseudorandom Number Algorithm, Journal of the ACM, v.20, p.456-468. 
 
Linux RNG, extensive comments in Linux source code 
‘/usr/src/linux/drivers/char/random.c’ 
 
Marsaglia, G., 1984, A current View of Random Number Generators, Keynote 
Address, Computer Science and Statistics: 16th Symposium on the Interface, Atlanta. 
 
Marsaglia, G., 1995, Diehard battery of tests of randomness, The Marsaglia random 
number CDROM, Department of Statistics, Florida State University. 
 
Marsaglia, G, 2001, Letter to the editor: Problems with the use of computers for 
selecting jury panels, Jurimetrics, Vol. 41, No. 4. 
 
Marsaglia, G. and Tsang W. W., 2002. Some difficult-to-pass tests of randomness, 
Journal of Statistical Software, (available at http://www.jstatsoft.org/ ), Vol. 7, Issue 
3, Pages 1-8, January. 
 
Matsumoto, M., and Nishimura, T., 1998, Mersenne twister: A 623-dimensionally 
equidistributed uniform pseudo-random number generator, ACM Trans. Model. 
Comput. Simul. 8, No. 1, 3-30. 
 
Menezes, A, van Oorschot P.C. and Vanstone, S.A. 1997, Handbook of Applied 
Cryptography, CRC Press. 
 
Mersenne Twister Home Page 
http://www.math.keio.ac.jp/~matumoto/emt.html 
 
Random number generation and testing, National Institute of Standards and 
Technology 
http://csrc.nist.gov/rng/  
 
Plumstead, J. 1982, Inferring a sequence generated by a linear congruence, 
Proceedings of the 23rd IEEE Symposium. on Foundations of Computer Science, 
Chicago. 
 
Rukhin, A., 2001, A statistical test suite for random and pseudorandom number 
generators for cryptographic applications, NIST Special Publication 800-22. 
 

 21

http://www.jstatsoft.org/
http://www.math.keio.ac.jp/~matumoto/emt.html
http://csrc.nist.gov/rng/


W.W. Tsang, L.C.K. Hui, K.P. Chow and C.F. Chong, 2000, Tuning the collision 
test for stringency, Technical Report: TR-2000-05, Department of Computer Science 
and Information Systems, The University of Hong Kong. 

 22




