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Abstract The shapes of many
natural or man-made objects have
curve features. The images of such
curves usually do not have sufficient
distinctive features to apply conven-
tional feature-based reconstruction
algorithms. In this paper, we intro-
duce a photogrammetric method for
recovering free-form objects with
curvilinear structures. Our method
chooses to obtain the topology and
geometry of a sparse 3D wireframe of
the object first instead of directly re-
covering a surface or volume model.
Surface patches covering the object
are then constructed to interpolate
the curves in this wireframe while
satisfying certain heuristics such
as minimal bending energy. The
result is an object surface model with

curvilinear structures from a sparse
set of images. We can produce
realistic texture-mapped renderings
of the object model from arbitrary
viewpoints. Reconstruction results on
multiple real objects are presented to
demonstrate the effectiveness of our
approach.

Keywords Image-based model-
ing · Bundle adjustment · Curve
reconstruction · Thin-plate splines ·
Constrained Delaunay triangulation

1 Introduction

One of the main thrusts of research in computer graphics
and vision is to study how to reconstruct the shapes of 3D
objects from images and represent them efficiently. Now-
adays, the techniques for reconstructing objects, which
can be easily described by points and/or lines, have be-
come relatively mature in computer vision, and the the-
ory for representing curves and surfaces has also been
well-developed in computer graphics. Nevertheless, re-
constructing free-form natural or man-made objects still
poses a significant challenge in both fields. One important
subset of free-form objects have visually prominent curvi-
linear structures such as contours and curve features on
surfaces. Intuitively, the two surface patches on different

sides of a curvilinear feature should have a relatively large
dihedral angle. More precisely, curvilinear features should
have large maximum principal curvature. Because of this
property, they are very often part of the silhouette of an
object, and are very important in creating the correct oc-
clusions between foreground and background objects as
well as between different parts of the same object. As a re-
sult, unlike smooth free-form objects, the shape of an ob-
ject with curvilinear features can be described fairly well
by these features only. Such objects are ubiquitous in the
real world, including natural objects, such as leaves and
flower petals, as well as man-made objects, such as archi-
tecture and furniture, automobiles and electronic devices.
Therefore, a robust method for reconstructing such objects
would provide a powerful tool for digitizing natural scenes
and man-made objects.
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3D image-based reconstruction methods can be clas-
sified as either automatic or photogrammetric. Automatic
reconstruction methods include structure-from-motion
and 3D photography. Structure from motion (SFM) tries
to recover camera motion, camera calibration and the
3D positions of simple primitives, such as points and
lines, simultaneously via the well-established methods in
multiple-view geometry [7, 10]. The recovered points and
lines are unstructured and require a postprocessing stage
for constructing surface models. On the other hand, 3D
photography takes a small set of images with precalibrated
camera poses, and is able to output surface or volume
models directly. However, both methods typically require
sufficient variations (texture or shading) on the surfaces
to solve correspondences and achieve accurate reconstruc-
tion.

However, detecting feature points or curvilinear struc-
tures on free-form objects is often an error-prone pro-
cess which prevents us from applying the automatic al-
gorithms. Photogrammetric reconstruction, which allows
the user to interactively mark features and their corre-
spondences, comes handy at this point. Photogrammetric
methods along with texture mapping techniques [5, 8, 14,
22] can effectively recover polyhedral models and sim-
ple curved surfaces, such as surfaces of revolution. A few
commercial software packages [3, 18, 25] are available for
photogrammetric reconstruction or image-based model-
ing and editing. Certain algorithmic details of the pack-
ages have not been made public. When the real object is
a free-form object, even photogrammetric methods need
a significant amount of effort to reach reasonable accu-
racy.

Our research aims to make the process of modeling
free-form objects more accurate, more convenient and
more robust. The reconstructed models should also exploit
compact and smooth graphical surface representations that
can be conveniently used for photorealistic rendering.
To achieve these goals, we introduce a photogrammetric
method for recovering free-form objects with curvilinear
structures. To make this method practical for objects with-
out sufficient color or shading variations, we define the
topology and recover a sparse 3D wireframe of the ob-
ject first instead of directly recovering a surface or volume
model as in 3D photography. Surface patches covering the
object are then constructed to interpolate the curves in this
wireframe while satisfying certain heuristics such as min-
imal bending energy. The result is that we can reconstruct
an object model with curvilinear structures from a sparse
set of images and can produce realistic renderings of the
object model from arbitrary viewpoints.

1.1 Background and related work

Photographs and range images have been the two major
data sources for 3D object reconstruction.

Acquiring high quality smooth object shapes based on
range images has been a central endeavor within computer
graphics. The initial data from a range scanner is a 3D
point cloud which can be connected to generate a polygon
mesh. Researchers have been trying to fit smooth surfaces
to point clouds or meshes [6, 11, 13]. While these surface
fitting techniques can generate high quality object models,
obtaining the point clouds using range scanners is not al-
ways effective since range scanners cannot capture the
3D information of shiny or translucent objects very ac-
curately. Furthermore, obtaining dense point clouds for
objects with curvilinear structures is not always necessary,
either, if a sparse wireframe can describe the shape fairly
well. On the other hand, taking images using a camera
tends to be more convenient, and is not subject to the same
restrictions as range scanners.

In computer vision, while multiple-view geometry of
points, lines, and planes have been extensively studied and
well-understood, recent studies have gradually turned to
use curves and surfaces as basic geometric primitives for
modeling and reconstructing 3D shapes. The difficulty in
the reconstruction of curves is that the point correspon-
dences between curves are not directly available from the
images because there are no distinct features on curves
except the endpoints. An algorithm was proposed in [28]
to automatically match individual curves between images
using both photometric and geometric information. The
techniques introduced in [20] aimed to recover the mo-
tion and structure for arbitrary curves from monocular
sequences of images. Reconstruction of curves from mul-
tiple views based on an affine shape method was studied
in [1, 2]. The reconstruction of algebraic curves from mul-
tiple views has also been proposed by [12].

There has also been much work in computer vision
on reconstructing smooth surface models directly from
silhouettes and/or curve constraints. Each silhouette gen-
erates a visual cone that is tangential to the object surface
everywhere on the silhouette. The object surface can be
reconstructed as the envelope of its tangent planes from
a continuous sequence of silhouettes [4, 9]. The problem
with silhouettes is that they are not static surface fea-
tures and tend to change according to a moving viewpoint.
Thus, the camera poses must be obtained independent
of the silhouettes. In addition, concave regions on the
surface cannot be accurately recovered. In [30], this ap-
proach is further extended and the whole object surface
is covered with triangular splines deformed to be tangen-
tial to the visual cones. The strength of the extended ap-
proach lies in representing smooth free-form objects that
do not have high-curvature feature curves. In the event
that such salient curves are present, a larger number of im-
ages would be necessary to capture both the position and
surface normal changes across them. In comparison, by
explicitly representing these feature curves, our method
can reconstruct shapes from less images, and can repre-
sent both convex and concave features equally well. In
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[33], a method is developed to reconstruct 3D surfaces
from a set of unorganized range curves which may inter-
sect with each other. It requires dense range curves as
opposed to sparse salient curves.

A single view modeling approach was taken by [37] to
reconstruct free-form surfaces. It solves a variational op-
timization to obtain a single thin-plate spline surface with
internal curve constraints to represent depth as well as
tangent discontinuities. The proposed technique is both ef-
ficient and user-friendly. Nevertheless, representing both
foreground and background using a single spline surface
is inadequate for most 3D applications where the re-
constructed objects should have high visual quality from
a large range of viewing directions.

2 Overview

In this section, we first provide an overview of our pho-
togrammetric system from the point of view of the user,
then we describe our model representation, and outline our
curve and surface reconstruction algorithms. The recon-
struction pipeline is shown in Fig. 1.

Fig. 1. Schematic of our photogrammetric reconstruction pipeline

2.1 The user’s view

Constructing a geometric model of an object using our
system is an incremental and straightforward process.
Typically, the user selects a small number of photographs
to begin with, and recovers the 3D geometry of the vis-
ible feature points and curves as well as the locations
and orientations from which the photographs were taken.
Eventually, 3D surface patches bounded by the recovered
curves are estimated. These surface patches partially or
completely cover the object surface. The user may refine

Fig. 2. During user interaction, three types of features—points,
curves (lines) and regions—are marked. The points (little squares)
and curves are originally drawn in black on the image planes. Their
color changes to green once they are associated with correspon-
dences. A region, shown in red, is marked by choosing a loop of
curves

the model and include more images in the project until the
model meets the desired level of detail.

There are two types of windows used in the reconstruc-
tion system: image viewers and model viewers. By de-
fault, there are two image viewers and one model viewer.
The image viewers display two images of the same object
at a time and can switch the displayed images when in-
structed. The user marks surface features, such as corners
and curves, as well as their correspondences in the two
windows (Fig. 2). Straight lines are considered as a special
case of curves. The user marks point features in the images
by point-and click; marks curve features by dragging the
mouse cursor in the image plane with one of the buttons
pressed. Features with and without associated correspon-
dences are displayed in two distinct colors so that isolated
features can be discovered easily. The user can also choose
a sequence of curves to form the boundary of a region on
the object surface. When the user concludes feature and
region marking for the set of input images, the computer
determines the 3D positions and shapes of the corners and
curves that best fit the marked features in the images as
well as the locations and orientations of the cameras. A 3D
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surface patch that interpolates its boundary curves is also
estimated for each marked image region.

The user can add new images to the initial set, and
mark new features and correspondences to cover addi-
tional surface regions. The user can choose to perform
an incremental reconstruction by computing the camera
pose of a new image as well as the 3D information for
the features associated with it. Alternatively, a full recon-
struction can be launched to refine all the 3D points and
curves as well as all the camera poses. An incremental
reconstruction is less accurate and takes only a few sec-
onds while a full reconstruction for reasonably complex
models takes a few minutes. To let the user verify the
accuracy of the recovered model and camera poses, the
computer can reproject the model onto the original images
(Fig. 5c,d). Typically, the projected model deviates from
the user-marked features by less than a pixel.

Lastly, the user may generate novel views of the con-
structed object model by positioning a virtual camera at
any desired location. Textures from the original images
can be mapped onto the reconstructed model to improve
its appearance.

2.2 Model representation and reconstruction

We represent the reconstructed 3D object model using
boundary representations (B-reps) [16]. Such representa-
tions typically consist of three types of primitives: ver-
tices, edges and faces. Edges can be either line segments
or curve segments. Faces can be either planar polygons
or curved surface patches that interpolate their respective
boundary edges. For the same object, our system actu-
ally uses two boundary representations for different pur-
poses: a compact and accurate representation with curves
and curved surface patches for internal storage, and an
approximate triangle mesh for model display and texture-
mapping. The triangle mesh is obtained by discretizing the
curves and surface patches into line segments and trian-
gles, respectively.

Every boundary representation of an object implies
two aspects: topological and geometric specifications. The
topological specification involves the connectivity of the
vertices and the adjacency of the faces while the geo-
metric specification involves the actual 3D positions of
the vertices and the 3D shapes of the curves and sur-
face patches. The topological information can be ob-
tained without knowing any specific geometric informa-
tion. In our system, the topology of the reconstructed ob-
ject evolves with user interactions. In the following, let
us enumerate the types of user interaction and the corres-
ponding topological changes they incur.

– Marking a 2D point feature. A 3D vertex is always
created along with every new 2D point feature. The
position of this 3D vertex is unknown at the beginning.
Every 3D vertex maintains a list of its corresponding

2D points in the images. This list only has one member
at first.

– Marking the correspondence between two 2D points.
The two 3D vertices associated with the two point fea-
tures are merged into one single vertex. The list of 2D
points of the resulting vertex is the union of the original
two lists.

– Drawing a 2D curve. In our system, an open 2D curve
must connect two previously marked points while
a closed curve must start and end at the same previ-
ously marked point. A 3D curve is also created along
with every new 2D curve. The geometry of this 3D
curve is unknown at this moment. However, the 3D
curve automatically connects the two 3D vertices cor-
responding to the two endpoints of the 2D curve. Thus,
a curved edge is created for the object. Every 3D curve
maintains a list of its corresponding 2D curves in the
images.

– Marking the correspondence between two 2D curves.
The two 3D curves associated with the two 2D curves
are merged into one single curve. The list of 2D curves
of the resulting 3D curve is the union of the original
two lists.

– Marking a 2D region. A 2D region is defined by
a closed loop of 2D curves. When a 2D region is
marked, a 3D surface patch is also created. The shape
of this surface patch is unknown at this moment. The
loop of 2D curves for the 2D region has a correspond-
ing loop of 3D curves which define the boundary edges
of the created 3D surface patch.

This topological evolution has two major advantages:

– Correspondence propagation. Once two vertices or
curves merge, their corresponding 2D primitives are
also merged into a single list. Thus, any two 2D primi-
tives in the resulting list become corresponding to each
other immediately without any user interaction.

– Consistency check. Marking correspondences is prone
to errors. One important type of error is that two prim-
itives belonging to the same image become corres-
ponding to each other after correspondence propaga-
tion. This is not allowed because it implies that a 3D
point can be projected to two different locations in the
same image. This type of error can be easily detected
through vertex or curve merging.

The geometric aspect of the object model is recov-
ered automatically through 3D reconstruction algorithms
which will be elaborated in the next few sections. A full
reconstruction process consists of the following sequential
steps (Fig. 1):

– The 3D positions of the vertices and all the camera
poses are recovered once 2D point features and their
correspondences have been marked;
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– The 3D shapes of all the curves are obtained through
a robust curve reconstruction algorithm (Fig. 5a,b);

– 3D thin-plate spline representations of the surface
patches are obtained through a surface fitting algorithm
(Fig. 5e);

– The curves and spline surface patches are further dis-
cretized to produce a triangle mesh for the object
(Fig. 5f);

– Texture maps for the triangle mesh are generated
from the original input images for synthetic rendering
(Fig. 5g,h).

3 Camera pose and vertex recovery

In the first stage of geometric reconstruction, both cam-
era poses and the 3D coordinates of the vertices are re-
covered simultaneously given user-marked point features
and their correspondences. This is analogous to traditional
structure-from-motion in computer vision. Therefore, we
simply adapt classical computer vision techniques. Unlike
structure-from-motion, we only have a sparse set of im-
ages while feature correspondences are provided by the
user.

Camera poses involve both camera positions and orien-
tations, which are also named external parameters. Be-
sides these external parameters, a calibrated camera also
has a set of known intrinsic properties, such as focal
length, optical center, aspect ratio of the pixels, and the
pattern of radial distortion. Camera calibration is a well-
studied problem both in photogrammetry and computer
vision; some successful methods include [32]. Although
there are existing structure-from-motion techniques for
uncalibrated cameras [10], we have found camera calibra-
tion to be a straightforward process and using calibrated
cameras considerably simplifies the problem.

Given multiple input images with feature correspon-
dences, we start the recovery process by looking for pairs
of images with eight or more pairs of point correspon-
dences. The point correspondences can be either user-
specified or obtained through correspondence propaga-
tion. The relative pose between two cameras can be recov-
ered from the linear algorithm presented in [15]. This al-
gorithm requires that the points used are not coplanar. The
major advantage of this algorithm is its linearity which is
unlike nonlinear optimization that is likely to get stuck in
local minima. Therefore, the user does not need to provide
a good initialization through a user interface.

When the relative pose between two cameras has been
computed, the system marks a connection between these
two cameras. Once all the connections among the cameras
have been created, we actually define a graph implicitly
with the set of cameras as the nodes and the connections
as the edges. The largest connected subgraph is chosen
for reconstructing the geometry of the object. An arbitrary
camera in this subgraph is chosen to be the base camera

whose camera coordinate system also becomes the world
coordinate system for the object. The absolute pose of
any other camera in the subgraph can be obtained by con-
catenating the sequence of relative transformations along
a path between that camera and the base camera. Once the
camera poses have been obtained, the 3D positions of the
vertices each of which has at least two associated 2D point
features can be calculated by stereo triangulation.

The camera poses and vertex positions thus obtained
are not extremely accurate. They serve as the initial so-
lution for a subsequent nonlinear bundle adjustment [31].
Consider a point feature x in an image. Suppose it has
an associated 3D vertex with position X, the projection
of X in the image should be made as close to x as pos-
sible. In bundle adjustment, this principle is applied to all
marked image points while refining multiple camera poses
and vertex positions simultaneously. We have achieved ac-
curate reconstruction results with bundle adjustment.

4 Curve reconstruction

We reconstruct curves with the previously recovered cam-
era poses and vertices. In the simplest situation, we have
two corresponding image curves in two camera frames.
For every pair of corresponding points on the image
curves, a point on the 3D curve can be obtained by stereo
triangulation. Therefore, the whole 3D curve can be recon-
structed if the mapping between points on the two image
curves can be obtained.

Let us first review the epipolar constraint before solv-
ing the mapping function. Suppose the relative rotation
and translation between two camera frames are denoted as
R and T. The epipolar constraint between two correspond-
ing points, x1 and x2 (in 2D homogeneous coordinates), in
the respective two image planes can be formulated as

x2
T T̂ Rx1 = 0 (1)

where T̂ is the skew symmetric matrix for T [19]. This
epipolar constraint actually represents two distinct (epipo-
lar) lines in the two image planes. If x1 is fixed and x2
is the variable in (1), it represents a line equation that the
corresponding point of x1 in the second image should sat-
isfy. Similarly, if we switch the role of x1 and x2 in (1),
a line equation in the first image is defined. The distance
between x2 and the epipolar line in the second image can
be formulated as

D2(x1, x2) = |x2
T T̂ Rx1|

||ê3T̂ Rx1||
(2)

where e3 = [0, 0, 1]T , and

ê3 =
[

0 −1 0
1 0 0
0 0 0

]
.
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Fig. 3. The basic principle for obtaining point correspondences
across image curves is based on the epipolar constraint. l1 and l2
are corresponding epipolar lines in two image planes. The intersec-
tions between the image curves and the epipolar lines correspond
to each other

Similarly, the distance between x1 and the epipolar line in
the first image can be formulated as

D1(x1, x2) = |x2
T T̂ Rx1|

||x2
T T̂ RêT

3 || . (3)

Because of the epipolar constraint, solving the point
mapping function between two image curves seems trivial
at the first thought. For every point on the first curve, we
can obtain an epipolar line in the second image. And the
intersection between this line and the second curve is actu-
ally the corresponding point on the second curve (Fig. 3).
However, this is true only when there is exactly one such
intersection. In reality, uncertainties arise because of the
shape of the curves and minor errors in the recovered cam-
era poses (Fig. 4). There might be zero or multiple such
intersections. In the worst case, the image curve is al-
most straight but parallel to the epipolar line to cause huge
amount of uncertainty in the location of the intersection.

To obtain point correspondences between image curves
robustly, we propose to compute one-to-one point map-
pings in an optimization framework. In general, recon-
structions based on multiple views are more accurate than
those based on two views because multiple views from

a) b) c)

Fig. 4a–c. Uncertainties may arise when solving point correspondences across image curves. (a) There might be multiple intersections
between the curve and the epipolar line. (b) The epipolar line might be tangential to the curve (in the image on the right). There is a huge
amount of uncertainty in the location of the intersection if the curve is locally flat. (c) There might be no intersections between the curve
and the epipolar line (in the image on the right) due to minor errors in camera calibration

various directions can help reduce the amount of uncer-
tainty. Therefore, we discuss general multiple view curve
reconstruction as follows. Note an image curve γ(s) can
be parameterized by a single variable s ∈ [a, b]. Con-
sider the general case where there are m corresponding
image curves, γi(si), 0 ≤ i ≤ m − 1, each of which has
a distinct parameter si ∈ [ai, bi]. Since we require that
every curve connects two marked point features, the cor-
respondences among the endpoints of these m curves
are known. Without loss of generality, we choose γ0 as
the base curve and assume that γ0(a0) corresponds to
γi(ai), 1 ≤ i ≤ m − 1. Thus, obtaining point correspon-
dences among these m curves is equivalent to solving m −
1 mappings, σi(s0), 1 ≤ i ≤ m −1, each of which is a con-
tinuous and monotonically increasing function that maps
[a0, b0] to [ai, bi]. In terms of closed image curves, as long
as there are at least two point features on each of them and
the respective point features correspond to one another,
each closed curve can be broken into two or more open
curves. The mapping functions for closed curves can then
be represented as in open curve cases.

Since these curves lie in m different image planes, the
relative rotations and translations between the ith camera
frame and the jth camera frame is respectively denoted as
Ri j and Ti j , 0 ≤ i, j ≤ m −1. The epipolar constraint be-
tween corresponding points on the ith and the jth curves
requires that

γj(σj(s0))
T T̂i j Ri jγi(σi(s0)) = 0, s0 ∈ [a0, b0]. (4)

Thus, the desired mappings should be the solution of the
following minimization problem,

min
σi ,1≤i≤m−1

∑
ij,i< j

b0∫
a0

(γj(σj(s))
T T̂i j Ri jγi(σi(s)))

2ds. (5)

As in bundle adjustment, it is more desirable to mini-
mize projection errors in the image planes directly. In an
image plane, satisfying the epipolar constraint is equiva-
lent to minimizing distances similar to those given in (2)
and (3). Furthermore, to guarantee that σ(s) is a monotoni-
cally increasing one-to-one mapping, σ(s) ≤ σ(s′) must be
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held for arbitrary s ∈ [a, b] and s′ ∈ [a, b] such that s < s′.
To incorporate these considerations, the above minimiza-
tion problem should be reformulated as

min
σi ,1≤i≤m−1

∑
ij,i< j

b0∫
a0

(
(γj(σj(s))T T̂i j Ri jγi(σi(s)))2

||ê3T̂i j Ri jγi(σi(s))||2

+ (γj(σj(s))T T̂i j Ri jγi(σi(s)))2

||γj(σj(s))T T̂i j Ri j êT
3 ||2

)
ds

+λ
∑

i

b0∫
a0

b0∫
s

max2(σi(s)−σi(s
′), 0)ds′ ds (6)

where the first term addresses the epipolar constraints, the
second term enforces that σi(s) is a one-to-one mapping,
and λ indicates the relative importance between these two
terms. The second term vanishes when σi(s) is actually
a one-to-one mapping no matter how large λ is. Therefore,
we have found that λ can be set to a large value such as 103

without biasing the final solution.
There are practical issues concerning the above min-

imization. First, before numerical optimization methods
can be applied, the integrals should be replaced by sum-
mations since each user-marked image curve is actually
a discrete set of pixels. A continuous image curve with
subpixel accuracy is defined to be the piecewise linear
curve interpolating this set of pixels. Given m corres-
ponding image curves, γi(si), 0 ≤ i ≤ m −1, to achieve
a high precision, we discretize their corresponding 3D
curve using the number of pixels on the longest image
curve which is always denoted as γ0(s0). This scheme
basically considers the longest image curve as the 2D pa-
rameterization of the 3D curve and there is a depth value
associated with each pixel on the longest image curve.
Each mapping σi(s) is thus also a discrete function with
the same number of entries as the number of pixels on
γ0(s0). Given a pixel on γ0(s0), its corresponding points
on other shorter image curves may have subpixel loca-
tions. Both the quasi-Newton and conjugate gradient [21]
methods can then effectively minimize the discretized cost
function. The number of discrete points on each curve is
fixed throughout the optimization.

Second, a reasonably good initialization is required to
obtain an accurate solution from a nonlinear formulation.
In practice, we parameterize the image curves using their
arc lengths. For the mapping functions we seek, the lin-
ear mapping between two parameter intervals is one of
the possible initializations. But we actually initialize the
mappings using dynamic programming which is particu-
larly suitable for order-preserving one-dimensional map-
pings. We initialize each σi(s) independently using only
two curves (γ0 and γi) and adopt the discrete version of
the first term in (6) as the cost function for dynamic pro-
gramming while enforcing one-to-one mapping as a hard

constraint which means only order-preserving mappings
are admissible. Specifically, we represent each curve γi
as a discrete set of pixels, pk

i , 0 ≤ k ≤ ni , where ni is the
number of pixels on the curve. Dynamic programming
recursively computes the overall mapping cost. The cumu-
lative cost between a pair of pixels on the two curves is
defined as

Cdp
(

pk
0, pl

i

) = D
(

pk
0, pl

i

)+ min
r∈Skl

Cdp
(

pk−1
0 , pr

i

)
(7)

where D
(

pk
0, pl

i

) = D1
(

pk
0, pl

i

)+ D2
(

pk
0, pl

i

)
, and Skl con-

tains all admissible values of r under the condition that pk
0

matches pl
i .

Once we have obtained all the mapping functions, for
every discrete value of s0 ∈ [a0, b0], there is a set of cor-
responding image points, γi(σi(s0)), 0 ≤ i ≤ m −1. The
point on the 3D curve corresponding to this list of 2D
points can be obtained using bundle adjustment. At the
end, all the 3D points recovered in this way form the re-
construction of the 3D curve. This reconstructed 3D curve
is essentially unparameterized.

When smooth curves are desirable, we actually per-
form a novel and efficient bundle adjustment to directly
fit a smooth 3D curve to a set of corresponding image
curves. The smooth 3D curve can be either a spline curve
or a subdivision curve. Both types of curves are controlled
by a sparse set of control vertices. We only consider the
sparse set of 3D control vertices Xc

l , l = 0, 1, . . . , M, as
the unknowns during optimization to improve perform-
ance. A smooth curve can always be generated from this
set of control vertices. A dense set of points sampling
the generated curve are denoted as, Xs

k, k = 0, 1, . . . , N,
where N equals the number of pixels on the longest
image curve γ0(s0) again. A sample point Xs

k can be pro-
jected into the m image planes to obtain m projected 2D
points xp

k j, j = 0, 1, . . .m. We can see that the locations
of these projected 2D points are indirectly determined by
the sparse set of 3D control vertices. Ideally, xp

k j should
lie on the image curve γj . In practice, there is likely to
be a nonzero distance between the projected point and the
image curve. We would like to minimize this type of dis-
tance by searching for the optimal 3D positions of the
control vertices. In summary, we would like to solve the
following minimization problem,

min
Xc

l ,0≤l≤M

N∑
k=0

m−1∑
j=0

dist
(
xp

k j, γj
)

(8)

where dist(x, γ) represents the minimum distance between
a point and a curve. In practice, we adopted a type of in-
terpolative subdivision curve [38] and have obtained accu-
rate and efficient 3D curve reconstruction by solving the
minimization problem in (8) using the conjugate gradi-
ent method. In our current implementation, the number of
control vertices for each curve is fixed during optimiza-
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tion. It is at least one order of magnitude smaller than the
number of pixels on the image curves.

5 Surface reconstruction

In the reconstruction system, every surface patch is de-
fined by a closed loop of 2D boundary curves. The bound-
ary curves need to be marked in the same image, and they
enclose a 2D image region which we actually adopt as the
parameterization for the target surface patch. Because of
this parameterization, the surface patch is a depth function
defined on the image plane in the local camera coordinate
system. Therefore, recovering the surface patch has been
reduced to estimating a depth value at every pixel inside
the closed image region. The estimated surface patch can
be represented in the world coordinate system by simply
applying the transformation between the camera’s local
frame and the world frame.

There are two different choices for estimating the
depth function in the local camera frame. If the original
object surface has rich texture, but is not highly reflec-
tive or translucent (as the object in Fig. 7), the first option
would try to estimate a dense depth field using a version
of the stereo reconstruction algorithm [26] that is based
on anisotropic diffusion of the depth values. It imposes
a regularization term to guarantee depth smoothness and
at the same time preserves depth discontinuities. Such an
algorithm requires that there is at least another image of
the same surface region. Since the depth on the boundary
curves have already been recovered, these known depths
serve as a boundary condition for the regularization term.
The algorithm in [26] can be easily extended to incorpo-
rate more than two views of the surface.

On the other hand, if the original object surface has
very sparse point features or no features at all, estimat-
ing a dense depth field becomes infeasible. In this case,
we choose to simply fit a thin plate spline (TPS) surface
to the boundary depth values as well as the depths at
the sparse set of interior features if there are any. Since
the thin plate spline model minimizes a type of bending
energy, it is smooth and would not generate undesirable
effects in featureless regions. We only use one single view
for TPS fitting. In practice, our system chooses the image
with the most frontal-facing view of the surface region.
The reason that we only need one single view for TPS fit-
ting is related to the type of objects we choose to focus on
in this paper. As mentioned in Sect. 1, the feature curves
are responsible for creating the correct occlusions between
foreground and background objects as well as between
different parts of the same object. Therefore, the visual
shape of an object is captured very well by these curves.
The surface patches in between these curves only need to
be reconstructed to a less degree of accuracy. Necessary
conditions for avoiding visual artifacts and inconsisten-

cies are that the surface patches should interpolate their
boundary curves and should be smooth without obviously
extruding vertices because extruding vertices modify the
occluding contours and silhouettes of the object and can
be noticeable.

The thin plate spline model is commonly used for
scattered data interpolation and flexible coordinate trans-
formations [17, 23, 34]. It is the 2D generalization of the
cubic spline. Let vi denote the target function values
at corresponding locations xi in an image plane, with
i = 1, 2, . . . , n, and xi in homogeneous coordinates,
(xi, yi, 1). In particular, we will set vi equal to the depth
value at xi to obtain a smooth surface parameterized on the
image plane. We assume that the locations xi are all dif-
ferent and are not collinear. The TPS interpolant f(x, y)
minimizes the bending energy

I f =
∫∫

f 2
xx +2 f 2

xy + f 2
yy dxdy (9)

and has the form:

f(x) = aT x +
n∑

i=1

wiU(||xi − x||) (10)

where a is a coefficient vector and wi represents the
weights of the basis function U(r), which is defined as fol-
lows: U(r) = r2 log r for r �= 0; U(0) = 0. In order for f(x)
to have square integrable second derivatives, we require
that

n∑
i=1

wi xi = 0 . (11)

Together with the interpolation conditions, f(xi) = vi , this
yields a linear system for the TPS coefficients:(

K P
PT 0

)(
w
a

)
=

(
v
0

)
(12)

where Kij = U(||xi − xj ||), the ith row of P is xi
T , w and

v are column vectors formed from wi and vi , respectively,
and a is the coefficient vector in (10). We will denote the
(n +3)× (n +3) matrix of this system by L. As discussed,
e.g., in [23], L is nonsingular and we can find the solution
by inverting L. If we denote the upper left n ×n block of
L−1 by A, then it can be shown that I f ∝ vT Av = wT Kw.

When there is noise in the specified values vi , one may
wish to relax the exact interpolation requirement by means
of regularization. This is accomplished by minimizing

E( f ) =
∑

i

(vi − f(xi))
2 +βI f . (13)

The regularization parameter β, a positive scalar, controls
the amount of smoothing; the limiting case of β = 0 re-
duces to exact interpolation. As demonstrated in [34], we
can solve for the TPS coefficients in the regularized case
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by replacing the matrix K by K +βI, where I is the n ×n
identity matrix.

6 Mesh construction and texture mapping

We actually obtain a triangle mesh for texture mapping
by discretizing the estimated surface patches. To avoid
T-junctions in the resulting mesh, we require that two
adjacent surface patches sharing the same curve should
be discretized such that the two sets of triangles from
the two patches have the same set of vertices on the
curve. We satisfy this requirement by discretizing the
curves first. Given an error threshold, each curve is ap-
proximated by a polyline such that the maximum dis-
tance between the polyline and the original curve is be-
low the threshold. Thus, the boundary of a surface patch
becomes a closed polyline. Since each surface patch has
a marked region as its parameterization in one of the in-
put images, the 3D boundary polyline of a patch is re-
projected onto that image to become a boundary polyline
for the marked region. A constrained Delaunay triangula-
tion (CDT) is then constructed to triangulate the image
region while keeping its boundary polyline. This planar
triangulation is elevated using the surface depth informa-
tion to produce the final triangulation for the 3D surface
patch.

We use texture-mapping to generate synthetic im-
ages of the reconstructed models. Since texture-mapping
is not the focus of this paper, we simply apply previ-
ously developed image-based texture-mapping techniques
[5, 29, 36]. The basic idea is to backproject some of
the images onto each surface patch of a reconstructed
model.

7 Time complexity analysis

Let us analyze the time complexity of the 3D recon-
struction algorithms in this paper. There are multiple
components for the curve reconstruction algorithms in
Sect. 4. Let Np be the total number of pixels on the image
curves. The initialization step using dynamic program-
ming takes O(Np) time since dynamic programming has
linear time complexity. The nonlinear optimization fol-
lowing dynamic programming needs multiple iterations
to converge. During each iteration, we need to calculate
the gradient of the cost function. This gradient compu-
tation is linear in terms of Np. Let ni be the maximum
number of iterations necessary for reconstructing a curve.
The complexity of the nonlinear optimization is O(ni Np).
Nonlinear optimization using sparse control vertices tends
to be more efficient because it has the same complexity
for gradient computation, but has fewer variables and thus
usually requires less iterations.

For the thin-plate spline (TPS) fitting in Sect. 5, we
need to solve a linear system for each surface region.
Let nr be the number of surface regions, and nc be
the maximum number of constraints in a region. Solv-
ing a linear system needs at most O(n3

c) time. Therefore,
the total complexity for TPS fitting is O(nrn3

c). From
the reconstructed curves, we can obtain depth values at
every pixel on the boundary of a surface region. How-
ever, since we produce a triangle mesh at the end, we
only need to set constraints at the vertices of the bound-
ary polylines. At the interior of a region, we use the
depth values at a very sparse set of feature points as
well. Thus, nc is typically very small, less than 50.
Solving such small linear systems does not take much
time.

At the end, we need to run constrained Delaunay tri-
angulation (CDT) to obtain the final meshes. Let nv be
the maximum number of vertices for a surface region.
The complexity of CDT is O(nv log nv). The total com-
plexity of mesh construction is O(nrnv log nv). Again,
mesh vertices are very sparse compared to the dens-
ity of pixels. The number of vertices in our models is
typically less than 1000. Running CDT at such a scale
does not take much time, either. In addition to the ori-
ginal set of constraints for TPS fitting, CDT typically
inserts new vertices into the mesh to guarantee mesh
quality. The depth values at these new vertices are ob-
tained from the TPS interpolation which thus becomes
indispensable.

8 Reconstruction examples

We have reconstructed multiple objects using our inter-
active reconstruction system. The results are shown in
Figs. 5–7. Four to twenty images were used for each
of the models. The more views of an object we use,
a more complete 3D model we can recover. Because of
our emphasis on salient curves, a texture-mapped model
can faithfully reproduce the original appearances of an
object even from a very sparse set of images. This is
demonstrated in Fig. 6. From the reconstructed curvilin-
ear structures shown in Figs. 5–7, it is clear that these
structures provide a compact shape description of the
type of objects considered in this paper. The thin-plate
spline surfaces estimated using these curves have high
visual quality for texture-mapping. There are 303 ver-
tices and 439 triangles for the model shown in Fig. 5;
335 vertices and 515 triangles for the model shown in
Fig. 5; and 736 vertices and 1216 triangles for the model
shown in Fig. 7. Synthetically rendered images of the
reconstructed models can be generated from arbitrary
viewpoints.

Given the user-marked point and curve features, the
3D reconstruction algorithms only took about 10–15 min
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a) b)

c) d)

e) f)

g) h)

Fig. 5a–h. a,b Two views of the
reconstructed 3D curvilinear
structure of the printer shown
in Fig. 2. c,d The reconstructed
curvilinear structures can be pro-
jected back onto the input im-
ages to verify their accuracy. The
user-marked curves are shown
in black while the reprojected
curves are shown in blue. e A tri-
angle mesh is obtained by dis-
cretizing the reconstructed spline
surface patches. f The wireframe
of the triangle mesh shown in (e).
g,h Two views of the texture-
mapping result for the recovered
printer model

to recover the aforementioned models on a standard Pen-
tium 4 processor. Because the user may need to refine
feature marking and selection, user interaction and auto-
mated 3D reconstruction need to be repeated alterna-
tively a few times to obtain the final results. In sum-
mary, it took from one hour to a few hours to finish
the whole process and produce the final version of each
object. More than half of the time was spent on user
interaction. The amount of user interaction is a limita-
tion of our method. However, it is justified by the dif-
ficulty of automatic detection of high-curvature feature

curves which are mostly geometric features instead of
pixel intensity features. Automated feature detection is
only possible when there are reasonable pixel intensity
variations across the curves. For example, in Fig. 6, the
whole object has a more or less uniform color and it is
infeasible to detect some of the user-marked curves au-
tomatically if they do not happen to be intensity fea-
tures. Nevertheless, humans can locate these curves using
their prior knowledge of the object. Also in Fig. 7, the
strong specular reflectance of the object surface produces
many reflected textures which would significantly inter-
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a)

b) c)

d) e)

Fig. 6a–e. a Two of the four input images used for a couch. bitem The reconstructed 3D curvilinear structure of the couch. c The wireframe
of the discretized triangle mesh for the couch. d,e Two views of the texture-mapping result

fere with automatic surface curve detection. Therefore,
we mean “salient curves” from a human perspective in-
stead of from the machines’. When a free-form object does
not seem to have recognizable salient curves from a hu-
man observer, our approach becomes inappropriate for its
reconstruction.

As shown in Fig. 5c–d, the user can verify the accu-
racy of the recovered vertices and curves by reprojecting
them back onto the original images. Usually, the projected
vertices and curves deviate from the user-marked features
by one pixel or less. Actually, the user does not have to
be extremely careful in feature marking to achieve this ac-
curacy. Typically, one only needs to mark a sparse set of
key points on a curve and a spline interpolating these key
points would be sufficient. In summary, such an accuracy
is achieved through multiple measures in image acquisi-
tion, automatic 3D reconstruction and user interaction:

– The baseline between every pair of images should
be relatively large. As in stereopsis, a large baseline
makes the reconstruction less sensitive to errors in fea-
ture location.

– There should be at least one baseline not parallel to
each surface curve. Otherwise, the reconstruction algo-
rithm in Sect. 4 would not produce acceptable results.

– We use bundle adjustment in both camera pose estima-
tion and curve reconstruction to make the final recon-
struction less sensitive to errors in individual feature
marking.

– The reprojected feature locations provide feedback to
the user who can move a marked feature to a more
accurate position once a marking error has been dis-
covered. Thus, a user marking error behaves like an
outlier in the reconstruction process and can be interac-
tively eliminated.
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a)

c)b)

d)

f)

e)

g)

Fig. 7a–g. a Four of the input images used for an automobile. b,c Two views of the reconstructed 3D curvilinear structure of the automo-
bile. d,e Two views of a high-resolution triangle mesh for the automobile. f,g Two views of the texture-mapping result. The image on the
right shows an aerial view from the top

In Figs. 5–7, there were no images covering the bottom
planes of the objects. Therefore, the bottom planes were
missing in the reconstructed models. However, the user
can always interactively fill these missing regions using
simple primitives such as planar polygons in a postpro-
cessing step. Because texture-mapping is able to provide
additional details, certain small-scale 3D structures can be
simplified during reconstruction. For example, the bottom
part of the paper feeder of the printer has been simplified
to a frustum. Note that lines are a special case of curves.
A 3D line segment can be obtained immediately once its
two endpoints have been recovered. We use line segments
whenever appropriate because of the convenience they
provide.

9 Conclusions and future work

In this paper, we have introduced a photogrammetric
method for recovering free-form objects with curvilinear
structures. The result is an object surface model that can
be discretized into a triangle mesh. Realistic renderings
of the object model can be generated through texture-
mapping.

There are possible improvements and extensions to
our reconstruction system. Additional shape constraints
should be exploited to further reduce the number of in-
put images and the amount of user interaction. For ex-
ample, many man-made objects have reflective, rotational
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or translational symmetries. The enforcement of such
symmetries can further improve the quality of the re-
constructed models. The rendering part of our system
can also be improved. Instead of texture-mapping, one

should be able to recover surface photometric proper-
ties from photographs using the techniques in [24, 27, 35]
to obtain a lighting independent representation of each
object.
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