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Challenges in Image Segmentation

1. Small differences between neighboring pixels may accumulate to
significant differences between distant pixels on the same object.

2. Textures exist everywhere.

Solution: embedding pixels into a different feature space where distances

are more consistent with visual pixel grouping results




Related Work

= Normalized Cuts [Shi & Malik 2000]

Approximate solution: Rayleigh quotient problem,
min 4 (D—W)y

v y'Dy
= Laplacian Eigenmaps [Belkin & Niyogi 2001]

st.y'D1=0

Dimensionality data reduction, L=D—W
- 2
min ;Wij IV, Y[ stYTDY =1

Solution: generalized eigendecomposition LY =ADY



Piecewise Flat Embedding

= | ,-regularized energy function adapted from Laplacian Eigenmaps
in W, [V, -V st.Y'DY = == min YW, |V, Y| st.Y'DY =1
1] I

Input K-means clustering
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Motivations |

= Boundary Sparsity in Locally Connected Graphs

a) 1D boundaries occupy few pixels in a 2D image plane.
b) Percentage of pairwise connections crossing boundaries is very small.
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Motivations |1

= | ,-norm promotes sparser solutions with few nonzero entries than L,
= | ,-norm gives rise to a convex energy function closest to the one from L,
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Justifications

= |,-norm in Piecewise Flat Embedding

min > W, Y, Y| st.Y'DY =1
)

1

Ideally, d —‘Y v ‘ >0 If pixel1and j belong to different objects
oI =0 if pixeliand j belong to same obiject

a) Optimal Y would make nonzero entries In d;’s sparse. Thus L,-based
regularization produces solutions consistent with boundary sparsity.

b) Ideally, pixels within the same segment would have constant embedding
coordinates, giving rise to piecewise flat embedding results.



An Example of Sparsity Analysis
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Numerical Solution |
The numerical solver for piecewise flat embedding consists of a double loop
a) Outer loop: enforce the orthogonality constraint using Splitting Orthogonality

Constraint (SOC) [Lal & Osher 2014]
b) Inner loop: minimize an L,-regularized energy using Split Bregman Iterations
[Goldstein & Osher 2009]

min > W, |Y, -Y,|, st.D"*¥ =P, PP =1
)

= Quter Loop
Outer Loop (SOC)

; r 2
Y %N = arg min ZWij HYi Y, H + _HDUZY —p® Lg® H Solved by an Inner Loop
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Numerical Solution |1

= Inner Loop solves Y®™ =arg min Zj:Wi,- HYi -, H1 +%HD”ZY —P%+ B(k)Hi

1. Concatenate columns of Y&, P® and B®), forming Y P* and B
2
,
2. Split Bregman lterations Inner Loop
2
,

|
|
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d"* = Shrink (LY,*"" +b! ,%) |
|
|

Y& =arg min > LY, |, +£ D2y, —P%) + B
j

Y & = arg min iH LY, +b' —d' HZ + £H|5”ZYV —p® 4+ B® Cholmod
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Numerical Solution 111

= Two-stage Implementation

600

Stage I: run the full numerical solver with st

nested Bregman iterations.

400
Stage 1I: only minimize the L,-regularized £so0-
energy function in the inner loop without ol
strictly enforcing orthogonality.
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Initialization

Input: original image.
Output: initial embedding with d channels

RGB Image

IEM

24 probability densities

weighted sum

d-dimensional initialization



Initialization ---- An Example

The top two rows show pixelwise density defined by the 16 components of the Gaussian
Mixture Model (GMM) learned from an input image. Images in the bottom row show a GMM-

based initialization of the 4 dimensions of our embedding. Each image in the bottom represents
the mixed density of 8 components of the GMM.



Piecewise Flat Embedding Results




Segmentation Pipeline Using Piecewise Flat Embedding

Piecewise Flat Embedding (PFE) Segmentations

Segmentation
by clustering

Input Image

Contour-driven
Segmentation

Stage 11



PFE + MCG
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Performance of Contour-Driven Segmentation on BSDS500

Covering PRI Vi

method
ODS OIS Best ODS OIS ODS OIS
MS-Ncut 0.45 0.53 0.67 0.78 0.80 2.23 1.89
Felz-Hutt 0.52 0.57 0.69 0.80 0.82 2.21 1.87
SCG-owt-ucm 0.51 0.56 0.66 0.78 0.83 1.98 1.84
Mean Shift 0.54 0.58 0.66 0.79 0.81 1.85 1.64
Hoiem et al. 0.56 0.60 - 0.80 0.77 1.78 1.66
gPb-owt-ucm 0.59 0.65 0.74 0.83 0.86 1.69 1.48
ISCRA 0.59 0.66 - 0.82 0.85 1.60 1.42
MCG 0.61 0.66 0.76 0.83 0.86 1.57 1.39
PFE+mPb 0.62 0.67 0.76 0.84 0.86 1.61 1.43
PFE+MCG 0.62 0.68 0.77 0.84 0.87 1.56 1.36




Comparison of Clustering-Based Segmentation Results
Input Spectral Clustering ~ Weighted SC Ours-Kmeans
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= Affinity matrix in the original Normalized Cut

Performance of Clustering-Based Segmentation on BSDS500

Covering PRI Vi
method ) : ) ) : :
fixed dynamic fixed dynamic fixed dynamic
Ncut 0.33 0.40 0.75 0.76 2.77 2.39
SC 0.36 0.44 0.75 0.77 2.68 2.24
WSC 0.36 0.44 0.75 0.77 2.63 2.21
Ours 0.46 0.52 0.77 0.79 2.21 1.91
= Affinity matrix in gPb-owt-ucm
Covering PRI Vi
method : : : : : :
fixed Dynamic Fixed dynamic fixed dynamic
SC 0.35 0.45 0.76 0.77 2.66 2.17
WSC 0.35 0.44 0.76 0.77 2.67 2.20
Ours 0.45 0.56 0.78 0.81 2.26 1.77




An L, Image Transform for Edge-Preserving Smoothing
and Scene-Level Intrinsic Decomposition [SIGGRAPH 2015]

Sai Bi, Xiaoguang Han, Yizhou Yu

Our Smoothing Results ‘Reflectance Image



Conclusions

= \We propose piecewise flat embedding which adopts an L,-regularized energy term
to promote sparse solutions.

= \We devise an effective two-stage numerical algorithm based on Bregman iterations
to solve the proposed embedding.

= EXxperiments indicate that segmentation algorithms incorporating piecewise flat
embedding achieve much improved results.
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