
Piecewise Flat Embedding for Image Segmentation

Yizhou Yu† Chaowei Fang†‡ Zicheng Liao‡

† Department of Computer Science, The University of Hong Kong
‡ College of Computer Science and Technology, Zhejiang University

Figure 1. Given an input image (left), our piecewise flat embedding transforms the original color image into a set of embedding images
(middle left to middle right), each capturing a subset of the characteristics of the input image. These characteristic images are similar to
the results of other embedding methods, such as Laplacian Eigenmaps, with a main distinction that our embedding tends to be piecewise
flat. This property facilitates more robust image segmentation. On the right we show a segmentation result using our embedding.

Abstract

Image segmentation is a critical step in many com-
puter vision tasks, including high-level visual recognition
and scene understanding as well as low-level photo and
video processing. In this paper, we propose a new non-
linear embedding, called piecewise flat embedding, for im-
age segmentation. Based on the theory of sparse signal re-
covery, piecewise flat embedding attempts to identify seg-
ment boundaries while significantly suppressing variations
within segments. We adopt an L1-regularized energy term
in the formulation to promote sparse solutions. We further
devise an effective two-stage numerical algorithm based
on Bregman iterations to solve the proposed embedding.
Piecewise flat embedding can be easily integrated into ex-
isting image segmentation frameworks, including segmen-
tation based on spectral clustering and hierarchical seg-
mentation based on contour detection. Experiments on
BSDS500 indicate that segmentation algorithms incorpo-
rating this embedding can achieve significantly improved
results in both frameworks.

1. Introduction
Image segmentation remains a critical step in many com-

puter vision tasks, which not only include high-level vi-
sual recognition and scene understanding tasks, but also
low-level photo and video processing operations, such as
localized photo/video editing, enhancement and composit-
ing. Superpixels, small image regions resulted from over-
segmentation, are also valuable for accelerating a variety of
computer vision and image processing algorithms.

Many mainstream image segmentation methods measure
the similarity between pairs of pixels or regions before de-
termining the boundaries of image segments. Both of these
steps are highly nontrivial. An important reason is that pixel
attributes (with high-frequency textures suppressed) could
have smooth but relatively large variations over a single ob-
ject surface due to a variety of factors including spatially
varying illumination and shading. In the event of neigh-
boring pixels sharing similar attributes, small differences
between neighboring pixels can accumulate and give rise
to significant differences between distant pixels even when
they perceptually belong to the same object. As a result,
differences between distant pixels on the same object could
exceed the differences between nearby pixels on different
objects, making it hard to decide where the object boundary
should be.

To tackle the aforementioned challenges, a common
practice computes an embedding to map pixels to a new
feature space, where pixels with similar attributes are po-
sitioned closer to each other than those with dissimilar at-
tributes. Grouping pixels in this new feature space often
gives rise to improved segmentation results. Nevertheless,
existing methods typically generate smooth embeddings,
making it not easy to have clear-cut decisions on object
boundaries. Ideally, pixel grouping would be made much
easier if an embedding could map original pixels on the
same object to a point cloud tightly distributed around a
single point in the new feature space while points corre-
sponding to pixels on different objects are kept apart from

1

each other. However, solving such an embedding requires
the knowledge of object boundaries in the first place.

In this paper, we propose a new nonlinear embedding,
called piecewise flat embedding (PFE), to solve the above
dilemma in image segmentation. PFE attempts to iden-
tify segment boundaries while suppressing variations within
segments. It is based on the theory of sparse signal recov-
ery [10, 9] since segment boundaries consist of a sparse sub-
set of the original pixels. We adopt an L1-regularized en-
ergy term in the formulation to promote sparse solutions. A
sparse solution in our context implies that there only exists a
sparse subset of point pairs whose distances in the new fea-
ture space are sufficiently large, and the distances between
the rest of the point pairs are almost zero. Such an embed-
ding essentially form well-separated clusters, each of which
is a point cloud tightly distributed around a single center.
We further develop an effective numerical solution based
on Bregman iterations [5] to our L1-regularized objective
function.

The proposed piecewise flat embedding can be easily in-
tegrated into existing image segmentation frameworks, in-
cluding segmentation based on spectral clustering [19] and
hierarchical segmentation based on contour detection [1].
Experiments on a popular benchmark (BSDS500) indicate
that segmentation algorithms incorporating this embedding
can achieve significantly improved results in both frame-
works.

In summary, this paper has the following contributions:

• We propose piecewise flat embedding based on an
L1-regularized objective function. The formulation is
analogous to that of Laplacian Eigenmaps. But the L1-
norm in the formulation makes the embedding piece-
wise flat instead of piecewise smooth.

• We devise a two-stage numerical algorithm based on
Bregman iterations as well as effective initialization
schemes to solve the proposed embedding.

• We further integrate piecewise flat embedding into
two popular image segmentation frameworks. Exper-
iments on BSDS500 confirm the effectiveness of this
embedding in image segmentation tasks.

2. Related Work
Image Segmentation Image segmentation provides
building blocks for higher level vision inference and per-
ception [20], such as object detection, figure/background
analysis, and scene understanding. By treating pixels in
an image as a set of unordered data points, traditional
clustering algorithms, such as K-means, GMM and Mean
Shift [7], can be directly applied to segmentation. By
modeling an image as a function defined on a 2D space,
the Level Set Method [22, 6] extracts image segments

as implicit regions whose boundary curve is an isocon-
tour of the function. Another widely used method, the
Graphcut algorithm [4], forms a Markov random field
over the 2D pixel grid of an image. Efficient graphcut
algorithms [14, 4, 17] have been developed to solve binary
or multi-label image segmentation. Yet another method is
based on spectral embedding [27, 3]. Spectral embedding
projects pixels of an image into a low dimensional space,
where similar pixels are closer to each other than dissimilar
pixels. The embedded coordinates thus can be used for
producing better segmentation with K-means than the
original pixel values (e.g. RGB) [19]. The spectral images
also provide clearer boundary information. Therefore,
another segmentation approach extracts global contours
from spectral images, and then generates hierarchical
segmentations from integrated local and global contours[1].

Our image segmentation algorithms are closely related
to the above two spectral segmentation methods. The idea
is to replace the spectral images with our piecewise flat em-
beddings.

Manifold Embedding We first summarize previous work
on manifold embedding in the context of unsupervised
learning. There are two basic types of manifold embed-
ding, local methods and global methods. Local methods,
such as LLE [25] and Laplacian Eigenmap [3], attempt
to preserve local relationships among points. LLE seeks
an embedding that unfolds the global structure of a mani-
fold using linear models fit to local neighborhoods. Nor-
malized cuts [27], or the mathematically equivalent Lapla-
cian Eigenmaps, seeks a mapping such that originally sim-
ilar data points stay close in the embedding space. Global
methods, such as Isomap [28] and structure preserving em-
bedding [26], attempt to preserve local and global relation-
ships among all data points. Isomap is based on the idea of
preserving pairwise distances. However, instead of the Eu-
clidean distance, it preserves geodesic distances (the length
of the shortest paths) between pairs of points over a mani-
fold.

Note that most of the above embedding methods at-
tempt to minimize an objective function formulated using
the squared L2 norm, and solutions are found by solving
an eigendecomposition problem. Our method differs from
them in that we minimize an objective function formulated
using L1 regularization. Because of the L1 norm, closed-
form solutions do not exist any more. Instead, we use a
two-stage algorithm to minimize the objective function.

The above methods were developed in the context of un-
supervised learning where label information is absent. Em-
beddings obtained with label supervision (e.g. LDA [12]),
defined as linear projections (e.g. Locality Preserving Pro-
jection [15]), or based on kernelization are also related, but
out of the scope of this paper. Sparsity has been consid-

Figure 2. Embedding examples. Left column: input images; Others: four embedding images for the input image in each row.

ered in [21], which simultaneously performs dimension re-
duction and dictionary learning. It tries to represent high-
dimensional signals in a lower-dimensional space using
sparse coding.

3. Piecewise Flat Embedding
3.1. Problem Definition

As discussed earlier, when the input data is noisy and di-
verse, inter-cluster variations may be buried in intra-cluster
variations, which makes accurate grouping (clustering) a
challenging goal to accomplish. Thus, it is much desired
to have an embedding that maps the original data into a dif-
ferent space, where intra-cluster variations are significantly
suppressed while inter-cluster variations are still preserved
with respect to the underlying ground truth. Since data
points lying on cluster boundaries are relatively sparse in
comparison to the rest of the data, we apply the theory of
sparse signal recovery [10, 9] and devise a new data embed-
ding technique that facilitates the discovery of sparse cluster
boundaries while suppressing intra-cluster variations.

Given n data points X = {x1, · · ·,xn} inRm, we would
like to transform them into a new d-demensional space. Let
Y be a n×dmatrix, each row in Y has d elements, and they
represent the d coordinates of a data point in the new space.
We use Yi to represent the i-th row of Y. Each column in Y
has n elements. They represent the same coordinate in the
new space across all data points. Our goal is to find an em-
bedding Y that minimizes the following objective function,

min
Y

∑
ij

Wij ‖Yi − Yj‖1 s.t. YTDY = I (1)

where W is known as the affinity matrix, and D is a diag-
onal weight matrix with Dii =

∑
j Wji. Our embedding

formulation is inspired by Normalized Cuts [27] and Lapla-
cian Eigenmap [3], which is defined as follows.

min
Y

∑
ij

Wij ‖Yi − Yj‖22 s.t. YTDY = I (2)

where W and D are defined in the same way.
Although problem (1) and problem (2) are similar. The

most obvious difference is that we use the L1 norm in prob-
lem (1) while the formulation of Laplacian eigenmap inher-
its a common trait of all mainstream embedding methods,
which is the use of the squared L2 norm in the objective
function. In fact, such a small difference has the following
important implication. According to the theory of sparse
signal recovery [10, 9], the L1 norm promotes sparse so-
lutions while the L2 norm does not. A sparse solution in
our context implies that there only exists a sparse subset of
point pairs whose distances in the new space are sufficiently
large, and the distances between the rest of the point pairs
are almost zero. Such a sparse solution suggests points with
a large distance in the new space should belong to different
clusters and points with a very small distance in the new
space should belong to the same cluster. Therefore, per-
forming data clustering in the new space becomes a straight-
forward process. Although the affinity matrix in problem
(2) attempts to move points with similar attributes closer in
the new space, the resulting pairwise distances in the new
space still follows a relatively smooth distribution, and the
distinction between similar points and dissimilar points is
not as clear as in our results.

3.2. Numerical Solution

Solving problem (1) is challenging because it has both
L1 regularization and an orthogonality constraint while
most of existing numerical methods can handle one of them
only. Here we develop a numerical solution to problem (1)
by effectively nesting two existing methods that handle L1

regularization and orthogonality constraints respectively.

A. Solution to the Orthogonality Constraint First of all,
a numerical solver that is capable of enforcing the orthog-
onality constraint is required. Since the objective function
in (1) is convex, we apply the Splitting Orthogonality Con-
straint (SOC) algorithm in [18]. Following the derivation
of the SOC algorithm, we define P = D1/2Y, and rewrite

problem 1 as

min
Y

∑
ij

Wij ||Yi − Yj ||1 s.t. D1/2Y = P, PTP = I,

(3)
which can be iteratively solved using Bregman iterations [5]
as follows:

(a)

Y(k+1) = argmin
Y

∑
ij

Wij ||Yi − Yj ||1 +

r

2
||D1/2Y −P(k) + B(k)||22; (4)

(b)

P(k+1) = argmin
P
||P− (D1/2Y(k+1) + B(k))||22,

s.t. PTP = I; (5)

(c)
B(k+1) = B(k) + D1/2Y(k+1) −P(k+1), (6)

where B is an auxiliary matrix, and B(0) = 0.
According to Theorem 2.1 in [18], the spherically con-

strained problem in step (b) has the following closed form
solution:

D1/2Y(k+1) + B(k) = UΣn×dV
T ,

P(k+1) = UIn×dV
T , (7)

where U and V are matrices with orthogonal columns from
the SVD decomposition in the first step.

B. Solution to the L1-norm Problem Note that the sub-
problem in step (a) of the above numerical solution inher-
its the L1-regularized energy term from problem 1. There
exist many numerical solutions for optimization problems
with L1 regularization, and most of them can be applied
here. To be consistent with the top-level solution presented
above, we apply the Split Bregman algorithm in [13] to
solve the subproblem in step (a) efficiently. The Split Breg-
man algorithm also relies on Bregman iterations. By in-
troducing auxiliary variables, the Split Bregman algorithm
solves an L1 regularized optimization problem iteratively
by transforming the original optimization into a series of
differentiable unconstrained convex optimization problems.
The definition of any convex optimization in the series de-
pends on the auxiliary variables passed from the previous
iteration, and convergence can be achieved within a rela-
tively small number of iterations.

For notational convenience in the rest of this section,
let Y (k)

v , P (k)
v and B

(k)
v be vectors obtained by flatten-

ing matrices Y(k), P(k) and B(k) respectively, where flat-
tening means concatenating matrix columns. Further, let

M = {Mij} be a (n(n− 1)/2) × n matrix, where Mki =
wij ,Mkj = −wij if pi and pj are data points that form the
k-th pair, and define two new matrices, L and D̃ as follows,

L(dn(n−1)/2)×(dn) =

M

M
· · ·

M

 ,

D̃(dn(n−1)/2)×(dn) =

D

D
· · ·

D

 .

Then the problem in step (a) can be rewritten as follows,

Y (k+1)
v = argmin

Yv

||LYv||1 +
r

2
||D̃1/2Yv − P (k)

v +B(k)
v ||22, (8)

which can be solved by iterating the following steps until
||Y (k,l+1)

v − Y (k,l)
v || ≤ ε:

(a.1)

Y (k,l+1)
v = argmin

Yv

λ

2
||LYv + bl − dl||22 +

r

2
||D̃1/2Yv − P (k)

v +B(k)
v ||22; (9)

(a.2)

dl+1 = Shrink(LY (k,l+1)
v + bl,

1

λ
); (10)

(a.3)

bl+1 = bl + LY (k,l+1)
v − dl+1. (11)

Note that in the above steps, b and d are two auxiliary
vectors, b0 = d0 = 0, Y (k,0)

v = Y
(k)
v , and ε is a pre-

defined error tolerance. The problem in (a.1) is a least-
squares problem and can be easily minimized using its nor-
mal equation. In (a.2), suppose z = Shrink(y, γ). Then
zi = sign(yi)max(|yi| − γ, 0).

C. Two-Stage Implementation In practice, we devise
the following two-stage implementation to obtain a high-
quality solution efficiently.

Stage I This stage implements the full numerical solution
with nested Bregman iterations. A large penalty coefficient
for the orthogonality constraint is used. The iterations in
the outer loop make different dimensions of the embedded
data orthogonal to each other to remove redundancy among
them. This is important in avoiding naive solutions with

Figure 3. Initialization. The top two rows show pixelwise density defined by the 16 components of the Gaussian Mixture Model (GMM)
learned from an input image. Images in the bottom row show a GMM-based initialization of the 4 dimensions of our embedding. Each
image in the bottom represents the mixed density of 8 components of the GMM. Specifically, the first image in the bottom row records the
mixed density of the 8 components in the first row; the second image in the bottom records the mixed density of the first 4 components in
the top two rows; the third image in the bottom records the mixed density of the 1st, 2nd, 5th and 6th components in the top two rows; and
the fourth image in the bottom records the mixed density of the 1st, 3rd, 5th and 7th components in the top two rows.

highly redundant or even duplicate dimensions. However,
orthogonality is a highly non-convex constraint that pre-
vents the objective function in problem (1) settling into a
truly low-energy state; and more importantly, it is not ab-
solutely necessary for us to pursue an embedding whose
dimensions are strictly orthogonal as long as there is not
too much redundancy across different dimensions. There-
fore, following a few iterations of the full numerical solu-
tion, we optionally relax the orthogonality constraint in a

Figure 4. Energy curves. The black curve shows how the en-
ergy decreases with regular single-stage Bregman iterations with
λ = 1000, r = 100. The dashed curves show how energy evolves
with our 2-stage algorithm. The first stage is the same as the black
curve. The second stage starts from iteration 50. The three dashed
curves show varying convergence rates using different parameter
values (r = 100, 10, 1 respectively for the red, blue and pink
curves.)

second stage.
Stage II This stage only executes the Bregman iterations
in the inner loop to minimize the L1-regularized objective
function without performing the SVD in the outer loop to
strictly enforce orthogonality. Such relaxation of the or-
thogonality constraint allows the L1-regularized objective
function to reach a lower energy.

Figure 4 shows an example of the energy curve during
Stage I and Stage II. It can be verified in this figure that our
two-stage scheme can reach a lower energy than a single-
stage scheme.

D. Initialization and Parameters Our iterative numerical
solution requires an initialization. When the number of di-
mensions of the new space is at most 3, Y is simply ini-
tialized with some or all of the mean-subtracted color chan-
nels of the input image. When the number of dimensions
of the new space is larger than 3, we rely on GMM clus-
tering to initialize Y. Suppose the number of dimension is
d. We first perform GMM clustering with 2d Gaussians on
pixelwise color channels. The probability densities resulted
from GMM clustering are then encoded into the d dimen-
sions of the new space. Suppose the Gaussians in the GMM
have been ordered into a linear sequence. Each dimension
of the new space records the mean-subtracted mixed proba-
bility density of half of the Gaussians in this sequence. For
example, the first dimension records the mixed probability
density of the first half of the Gaussians; then we divide the
sequence in the middle into two equal subsequences, and
the second dimension records the mixed probability density
of the first half of the Gaussians in both subsequences. Once
the initial Y has been set, P is initialized with an orthogo-
nalized version of D1/2Y using (7).

In Stage I, we set the maximum number of outer itera-
tions to 10 and the number of inner iterations to 5. In Stage
II, the maximum number of inner iterations is set to 100.
It takes around 5 minutes for our prototype MATLAB code
to compute an embedding for an input image on an Intel
3.3GHz processor. The parameter setting for λ and r will
be given in the following section.

Figure 2 shows a few examples of embeddings.

4. Segmentation via Piecewise Flat Embedding
An image with resolution p × q gives rise to a set of

n = p × q data points. By computing an affinity value
between neighboring pixels, we have an n×n sparse affinity
matrixW . Using our method, we can obtain a piecewise flat
embedding of the input data in a new d-dimensional space.
We have integrated our embedding results in two popular
image segmentation frameworks.

4.1. Segmentation by Clustering

The first segmentation framework we have considered is
based on spectral clustering [19]. Spectral clustering first
computes a set of eigenvectors. The values in the eigenvec-
tors corresponding to the same pixel form a d-dimensional
feature vector at that pixel. It then runs standard cluster-
ing, such as K-means, on the pixelwise feature vectors. A
variant of spectral clustering, named weighted spectral clus-
tering in the rest of the paper, reweighs the i-th feature co-
ordinate by 1/

√
λi, where λi is the i-th eigenvalue.

Our revised clustering-based segmentation simply re-
places the eigenvectors with our piecewise flat embedding
of the pixels. That is, each row of the matrix Y becomes
the d-dimensional feature vector of the corresponding pixel.
We do not have a version corresponding to weighted spec-
tral clustering because our embedding is not a spectral one.
During the computation of our embedding, the parameters
λ and r are set to 10000 and 100 respectively in stage I, and
r is reduced to 10 in stage II.

Since our embedding is piecewise flat, pixels of the same
region are tightly distributed in the feature space. In con-
trast, existing embedding techniques, such as Laplacian
Eigenmaps, do not have such a property. A Laplacian eigen-
map is obtained by minimizing the squared L2 distance
between neighboring pixels. The resulting eigenmaps are
piecewise smooth but not piecewise flat. Therefore pixels
from the same region may still have reasonably large dis-
tances among them in the feature space, and may not be
grouped together into the same cluster. This is the reason
why large or elongated regions often break up in the middle
in segmentation results based on spectral clustering.

4.2. Contour-Driven Hierarchical Segmentation

One strategy to avoid the drawback of spectral cluster-
ing is deriving contour information from the eigenmaps,

and then form segments with respect to contours using hi-
erarchical clustering [1]. To make the algorithm robust,
their method also combines local edges with global con-
tours when constructing the contour probability map. It also
builds a hierarchical clustering tree from watershed seg-
mentation results. This makes it more flexible to choose
a segmentation granularity. Our contour-oriented segmen-
tation follows the same pipeline, except that global contour
information is extracted from our embedding results instead
of the eigenmaps. When computing our piecewise flat em-
bedding, we set the parameters λ and r to 1000 and 100
respectively in stage I, and reduce r to 10 in stage II.

Again, since our embedding is piecewise flat, coordi-
nates from the embedding have almost zero gradients ev-
erywhere except at region contours where gradients have a
large magnitude. Contour maps extracted from our embed-
ding are both clear and clean without many spurious edges.

Figure 5 shows our segmentation pipeline. A gallery of
segmentation results from various algorithms can be found
in Figure 6.

5. Experimental Results

In this section, we evaluate the performance of our
piecewise flat embedding (PFE) for segmentation on the
BSDS500 dataset [1]. We have conducted experiments
within the two aforementioned segmentation frameworks:
(a) segmentation by clustering and (b) contour-driven hier-
archical segmentation, and compared revised segmentation
algorithms incorporating our embedding against the origi-
nal and other existing algorithms.

We first incorporate piecewise flat embedding into the
clustering-based segmentation approach, and perform im-

Table 1. Comparison of Normalized Cut (NCut), spectral clus-
tering (SC), weighted spectral clustering (WSC) and our method
(PFE+K-means) on BSDS500 using the affinity in the original
Normalized Cut.

method Covering PRI VI
fixed dynamic fixed dynamic fixed dynamic

NCut 0.33 0.40 0.75 0.76 2.77 2.39
SC 0.36 0.44 0.75 0.77 2.68 2.24

WSC 0.36 0.44 0.75 0.77 2.63 2.21
Ours 0.46 0.52 0.77 0.79 2.21 1.91

Table 2. Comparison between existing segmentation-by-clustering
methods (spectral clustering, weighted spectral clustering) and our
method (PFE+K-means) on BSDS500 using the affinity based on
local contour information (mPb in [1]).

method Covering PRI VI
fixed dynamic fixed dynamic fixed dynamic

SC 0.35 0.45 0.76 0.77 2.66 2.17
WSC 0.35 0.44 0.76 0.77 2.67 2.20
Ours 0.45 0.56 0.78 0.81 2.26 1.77

Figure 5. Pipeline. Given an input image, our method generates a piecewise flat embedding of the image in a two-stage optimization. The
images corresponding to the embedding are used for image segmentation with a clustering-based method, or a contour-driven method.

age segmentation using two types of affinity matrices: the
affinity used in the original Normalized Cut algorithm [27],
and the affinity computed using local contour information
(mPb in [1]). We have compared against three existing
spectral methods using the affinity in the original Normal-
ized Cut: spectral clustering; weighted spectral clustering;
and Normalized Cut. Spectral clustering and the original
Normalized Cut use the same eigenvectors, but differ in
the way they use these eigenvectors. Spectral clustering as-
signs each pixel a d-dimensional feature vector taken from d
eigenvectors and runs standard K-means clustering on these
feature vectors afterwards, while the original Normalized
Cut recursively partitions an image into smaller regions us-
ing the eigenvector with the second smallest eigenvalue.
Weighted spectral clustering divides every eigenvector by
the square root of its corresponding eigenvalue before run-
ning K-means clustering. Our clustering-based segmenta-
tion performs K-means clustering on the coordinates from
piecewise flat embedding. We have also compared against
spectral clustering and weighted spectral clustering using
the affinity computed using local contours. Final segmenta-
tion results are evaluated using three criteria, Covering, PRI
and VI, discussed in BSDS segmentation benchmarks [1].

All the clustering-based methods need to be given the
number of segments at the beginning. We design the fol-
lowing two schemes: the fixed scheme and the dynamic
scheme. The fixed scheme uses the number of segments
in the groundtruth images. If there are multiple groundtruth
images, we run every algorithm multiple times, once for the
number of segments in each groundtruth image, and finally
average the performance from these multiple runs. The dy-
namic scheme chooses the number of segments that falls
between 5 and 25, and produces the best performance. In
our embedding, we use four channels each initialized with
joint probabilities of a distinct subset of Gaussians from a
Gaussian Mixture Model, as discussed earlier, in all experi-

ments (except indicated otherwise). For other methods that
require multiple NCut eigenvectors, we run each method
three times using 4, 8, and 16 eigenvectors respectively, and
the best performance from these three runs is reported.

Table 1 shows comparison results using the affinity in
the original Normalized Cut. Table 2 shows comparison
results using the contour-based affinity. Segmentation based
on our piecewise flat embedding produces the best result in
all scenarios. In particular, our method achieves 0.52 and
0.56 on Covering (dynamic scheme) in these tables, which
are respectively 18.2% and 24.4% higher than the second
best.

We have also incorporated piecewise flat embedding into
contour-driven hierarchical segmentation methods named
gPb [1] and MCG [2], which integrate contour informa-
tion derived from both local features and global eigenmaps.
In our revised algorithms, we simply replace global eigen-
maps in these methods with our piecewise smooth embed-
ding, which is computed using locally derived contour maps
in these methods. Then we compare the segmentation per-
formance of our revised algorithms with the original algo-
rithms and other existing algorithms. The comparison re-
sults are shown in Table 3, which clearly demonstrates hier-
archical segmentation based on our embedding achieves the
best results among all considered algorithms. Although the
algorithm in [23] achieves state-of-the-art results on contour
detection, integrating its local contours with the segmenta-
tion algorithm in [1] does not lead to good segmentation
performance.

The contours extracted from our embedding is a type of
global contours. To verify the effectiveness of our global
contours, we perform contour-driven hierarchical segmen-
tation using global contours only by skipping local con-
tour information. The results are shown in Table 4, which
compares our results against the results obtained using the
original global contours (in gPb) computed from Laplacian

Input Spectral Clustering NCut MCG Ours-Kmeans Ours-Hierarchical

Figure 6. Comparison of segmentation results. Spectral clustering uses the mPb affinity; Normalized Cut and MCG are based on their
original configuration; Our result by K-means clustering uses the Normalized Cut affinity; Our hierarchical segmentation follows the MCG
pipeline but uses our piecewise flat embedding to compute global contours.

Table 3. Segmentation performance on BSDS500. ‘PFE+mPb’
denotes results generated from the segmentation algorithm in
[1] using global contours from our piecewise flat embedding.
‘PFE+MCG’ denotes results generated from the segmentation al-
gorithm in [2] using global contours from our piecewise flat
embedding.‘SCG-owt-ucm’ means integrating the segmentation
algorithm in [1] and the local contours from [23].

method Covering PRI VI
ODS OIS Best ODS OIS ODS OIS

MS-NCut [8] 0.45 0.53 0.67 0.78 0.80 2.23 1.89
Felz-Hutt [11] 0.52 0.57 0.69 0.80 0.82 2.21 1.87
SCG-owt-ucm 0.51 0.56 0.66 0.78 0.83 1.98 1.84
Mean Shift [7] 0.54 0.58 0.66 0.79 0.81 1.85 1.64

Hoiem [16] 0.56 0.60 - 0.80 0.77 1.78 1.66
gPb-owt-ucm [1] 0.59 0.65 0.74 0.83 0.86 1.69 1.48

ISCRA [24] 0.59 0.66 - 0.82 0.85 1.60 1.42
MCG [2] 0.61 0.66 0.76 0.83 0.86 1.57 1.39

Ours (PFE+mPb) 0.62 0.67 0.76 0.84 0.86 1.61 1.43
Ours (PFE+MCG) 0.62 0.68 0.77 0.84 0.87 1.56 1.36

eigenmaps. It can be seen that segmentation results based
on global contours derived from our piecewise flat embed-
ding are not only clearly better than those from eigenmap-
based global contours, but also better than the results from
the complete gPb-owt-ucm algorithm, shown in Table 3.
In this comparison, our piecewise flat embeddings are ob-
tained using the local contour information computed in [1].

Table 4. Comparison of contour-driven hierarchical segmentation
using global contours only. ‘sPb-owt-ucm’ means segmentation
results from the algorithm in [1] using global contours from NCut
only; our results (PFE-owt-ucm) are generated with the algorithm
in [1] using global contours from piecewise flat embedding only.

method Covering PRI VI
ODS OIS Best ODS OIS ODS OIS

sPb-owt-ucm 0.58 0.64 0.73 0.82 0.85 1.71 1.49
PFE-owt-ucm 0.61 0.66 0.74 0.83 0.86 1.64 1.46

6. Conclusions
We have presented a new nonlinear embedding called

piecewise flat embedding for image segmentation. We
adopt an L1-regularized energy term in the formulation to
promote sparse solutions. We further devise an effective
two-stage numerical algorithm based on Bregman iterations
to solve the proposed embedding. Piecewise flat embed-
ding can be easily integrated into existing image segmen-
tation frameworks. Experiments on BSDS500 indicate that
segmentation algorithms incorporating this embedding can
achieve significantly improved results.

Acknowledgment
This work was partially supported by Hong Kong Re-

search Grants Council under General Research Funds
(HKU719313) and Zhejiang Natural Science Foundation
(ZJNSF Q15F020006).

References
[1] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik.

Contour detection and hierarchical image segmenta-
tion. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 33(5):898–916, May 2011. 2, 6, 7, 8

[2] P. Arbelaez, J. Pont-Tuset, J. Barron, F. Marques, and
J. Malik. Multiscale combinatorial grouping. In IEEE
Conference on Computer Vision and Pattern Recogni-
tion, 2014. 7, 8

[3] M. Belkin and P. Niyogi. Laplacian eigenmaps and
spectral techniques for embedding and clustering. In
Advances in Neural Information Processing Systems
14, pages 585–591. MIT Press, 2001. 2, 3

[4] Y. Boykov, O. Veksler, and R. Zabih. Fast approxi-
mate energy minimization via graph cuts. IEEE PAMI,
23(11):1222–1239, 2001. 2

[5] L. Bregman. The relaxation method of finding the
common points of convex sets and its application
to the solution of problems in convex optimization.
USSR Computational Mathematics and Mathematical
Physics, 7:200–217, 1967. 2, 4

[6] T. Chan and L. Vese. Active contours without edges.
IEEE IP, 2001. 2

[7] D. Comaniciu and P. Meer. Mean shift: A robust ap-
proach toward feature space analysis. IEEE PAMI,
2002. 2, 8

[8] T. Cour, F. Benezit, and J. Shi. Spectral segmentation
with multiscale graph decomposition. In CVPR, 2005.
8

[9] D. Donoho and B. Logan. Signal recovery and the
large sieve. SIAM J. Appl. Math., 52(2):577–591,
1992. 2, 3

[10] D. Donoho and P. Stark. Uncertainty principles and
signal recovery. SIAM J. Appl. Math., 49(3):906–931,
1989. 2, 3

[11] P. Felzenszwalb and D. Huttenlocher. Efficient graph-
based image segmentation. IJCV, 2004. 8

[12] R. A. Fisher. The use of multiple measurements in
taxonomic problems. Annals of Eugenics, 7:179–188,
1936. 2

[13] T. Goldstein and S. Osher. The split bregman method
for l1-regularized problems. SIAM J. Img. Sci.,
2(2):323–343, Apr. 2009. 4

[14] D. Greig, B. Porteous, and A. Seheult. Exact
maximum a posteriori estimation for binary images.
Journal o the Royal Statistical Society, Series B,
51(2):271–279, 1989. 2

[15] X. He and P. Niyogi. Locality preserving projections.
In Advances in Neural Information Processing Sys-
tems 16, 2003. 2

[16] D. Hoiem, A. Efros, and M. Hebert. Recovering oc-
clusion boundaries from an image. International Jour-
nal of Computer Vision, 91:328–346, 2011. 8

[17] V. Kolmogorov and R. Zabih. What energy functions
can be minimized via graph cuts? IEEE PAMI, 2004.
2

[18] R. Lai and S. Osher. A splitting method for or-
thogonality constrained problems. J. Sci. Comput.,
58(2):431–449, Feb. 2014. 3, 4

[19] J. Malik, S. Belongie, T. Leung, and J. Shi. Contour
and texture analysis for image segmentation. IJCV,
2001. 2, 6

[20] D. Marr. Vision: a computational investigation into
the human representation and processing of visual in-
formation. MIT Press, 1982. 2

[21] H. V. Nguyen, V. M. Patel, N. M. Nasrabadi, and
R. Chellappa. Sparse embedding: A framework
for sparsity promoting dimensionality reduction. In
ECCV, 2012. 3

[22] S. Osher and J. Sethian. Fronts propagation with
curvature dependent speed: Algorithms based on
hamilton-jacobi formulations. Journal of Computa-
tional Physics, 1988. 2

[23] X. Ren and L. Bo. Discriminatively trained sparse
code gradients for contour detection. In NIPS, 2012.
7, 8

[24] Z. Ren and G. Shakhnarovich. Image segmentation by
cascaded region agglomeration. In IEEE Conference
on Computer Vision and Pattern Recognition, pages
2011–2018, 2013. 8

[25] S. Roweis and L. Saul. Nonlinear dimensional-
ity reduction by locally linear embedding. Science,
290(5500):2323 – 2326, 2000. 2

[26] B. Shaw and T. Jebara. Structure preserving embed-
ding. In International Conference on Machine Learn-
ing, 2009. 2

[27] J. Shi and J. Malik. Normalized cuts and image seg-
mentation. IEEE Trans. Pattern Anal. Mach. Intell.,
22(8):888–905, Aug. 2000. 2, 3, 7

[28] J. B. Tenenbaum, V. Silva, and J. C. Langford. A
global geometric framework for nonlinear dimension-
ality reduction. Science, 290(5500):2319–2323, 2000.
2

