
IEEE COMPUTER GRAPHICS AND APPLICATIONS,  Vol. 36, No. 6, November/December 2016 1

3D Human Model Reconstruction from Sparse
Uncalibrated Views

Xiaoguang Han, Kwan-Yee K. Wong, Yizhou Yu

Abstract—This paper presents a novel two-stage algorithm for
reconstructing 3D human models wearing regular clothes from
sparse uncalibrated views. The first stage reconstructs a coarse
model with the help of a template model for human figures. A
non-rigid dense correspondence algorithm is applied to generate
denser correspondences than traditional feature descriptors. We
fit the template model to the point cloud reconstructed from dense
correspondences while enclosing it with the visual hull. In the
second stage, the coarse model from the first stage is refined
with geometric details, such as wrinkles, reconstructed from
shading information. To successfully extract shading information
for a surface with nonuniform reflectance, a hierarchical density
based clustering algorithm is adapted to obtain high-quality pixel
clusters. Geometric details reconstructed using our new shading
extraction method exhibit superior quality. Our algorithm has
been validated with images from an existing dataset and images
captured by a cell phone camera.

Index Terms—3D human reconstruction, multi-view stereo, shape
from shading

I. INTRODUCTION

With the recent advances and growing popularity in 3D data
capturing techniques, it has now become more convenient to
acquire realistic 3D models of human figures. Such 3D models
can be used to produce 3D self-portraits using 3D printers,
or used as custom-designed avatars in computer games and
virtual reality.

Common techniques for acquiring 3D human models can be
categorized into those based on depth cameras (e.g., Mi-
crosoft’s Kinect) [1], [2] and those based on regular cam-
eras [3]. Depth camera based methods often require com-
plicated capturing steps or produce low-quality results. For
example, Tong et al. [1] used three Kinect cameras to capture
different parts of a person standing still on a rotating turntable.
A major limitation of such methods is that depth cameras
can only be used for short-range indoor scanning. Methods
based on regular cameras commonly rely on multi-view stereo
(MVS) algorithms. Most of these methods, such as the system
in [3], require fully-calibrated cameras. With uncalibrated
input images, structure-from-motion (SFM) [4] can be applied
to estimate camera parameters from feature correspondences,
and the resulting calibrated images can then be fed to MVS
systems, such as PMVS [5]. Such an approach usually requires
a large number of images with a sufficient number of feature
correspondences to ensure the successes in camera calibration
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and dense reconstruction. For instance, Autodesk 123D catch1

requires around 40 images for producing a human figure,
and the images must have textured areas for feature point
extraction.

This paper aims at developing a technique for reconstructing
high quality 3D models of human wearing regular clothes
from sparse uncalibrated cameras. This is a very challenge
problem for the following reasons. First, traditional feature
descriptors (e.g., Harris, DOG or SIFT) are incapable of
finding a sufficient number of feature correspondences from a
sparse image sequence for dense point cloud reconstruction.
Second, camera parameters estimated using SFM are usually
inaccurate and the generated point cloud are usually noisy and
incomplete. Third, it is a common practice to enhance a coarse
geometry resulting from MVS using shading information.
However, existing intrinsic image decomposition algorithms
cannot handle the intricate patterns often appear on the clothes,
and fail to extract accurate shading information necessary for
detailed geometric reconstruction.

In this paper, we propose a two-stage algorithm to tackle
the aforementioned problems. In first stage of our algorithm,
we first apply the non-rigid dense correspondences (NRDC)
algorithm [6] to generate dense correspondences for camera
calibration and point cloud reconstruction. Although NRDC
works reasonably well in featureless regions, the reconstructed
point cloud is still noisy with missing regions and the estimat-
ed camera parameters are of low accuracy which causes an
imprecise visual hull. A watertight template model for human
figures is used as a deformable prior to fit the incomplete point
cloud as well as the inaccurate visual hull. This produces a
coarse model of the human figure. In the second stage, we
refine this coarse model with geometric details, such as wrin-
kles, reconstructed from shading information. To successfully
extract shading information from a surface with a nonuniform
reflectance pattern (e.g., clothes), we adopt a hierarchical
density based clustering algorithm to produce high-quality
pixel clusters with uniform reflectances. Geometric details
reconstructed from shading information estimated using our
new method exhibit superior quality.

We have validated our proposed algorithm using dataset from
[3] as well as images captured by our own cameras, and
compared our results against those of the previous methods.
Note that our algorithm only requires a dozen of images to
reconstruct a 3D human model.

In summary, our major contributions are as follows.

1Autodesk 123D catch http://www.123dapp.com/catch
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Fig. 1: The flowchart of our system.

• A novel two-stage pipeline is proposed for reconstructing
3D models of human wearing regular clothes from sparse
uncalibrated views.

• In the first stage (coarse reconstruction), we exploit a
non-rigid dense correspondence algorithm for generating
dense correspondences from a sparse image sequence for
camera calibration and point cloud reconstruction. We
also develop an algorithm to fit a deformable human
model to both the incomplete and noisy point cloud, as
well as the silhouettes in images to produce a coarse
model.

• In the second stage (refinement), the coarse model is
refined using shading information. A novel shading ex-
traction algorithm is proposed which can handle surfaces
with nonuniform reflectance patterns. This algorithm is
built on a hierarchical density based clustering algorithm
to produce high-quality pixel clusters with uniform re-
flectances.

II. RELATED WORK

Researchers pay less attention to dense multi-view stereo from
uncalibrated images in recent years. A quasi-dense reconstruc-
tion approach from uncalibrated images was proposed in [7],
which generated more robust and accurate geometry estimation
and required fewer images than sparse methods for modeling.
Wu et al. [8] also presented a quasi-dense approach which
exploited 3D tensors to provide a unified approach for the
implementation of a match-propagate-filter pipeline. Both of
these methods required initial confident correspondences. Our
proposed algorithm based on NRDC requires fewer images
than these methods, as NRDC does not require an initial sparse
matching.

Our work is closely related to the topic of human model
reconstruction from images. In [9], [10], the authors at-
tempted to reconstruct human body from a single image.
They constrained the 3D model by a parametric human body
space. Another related area is template based marker-less
performance capture. Most of the recent techniques (e.g. [11],
[12], [13]) in this area used calibrated multi-view video and a
well-reconstructed mesh with the same character wearing the
same garment as input. The input mesh was then deformed to
fit the silhouettes or the point cloud resulting from MVS in

each frame. Different from these methods, our method begins
with a template body mesh and aims at generating a detailed
model of human with regular garments.

Geometry refinement by shape-from-shading (SfS) under gen-
eral illumination is another area closely related to our paper.
In [14], [15], the authors used a non-linear optimization
solver to deform rough 3D models to match the shadings in
images. Their initial 3D models were obtained using MVS
or performance capture. Similar optimization approaches were
used in [16], [17] to refine coarse depth data from Kinects.
However, most of these methods were designed to work
with surfaces with constant albedo. With the help of coarse
geometry, shading extraction can be performed by a clustering-
optimization strategy [15], [17], [16]. Based on color infor-
mation, the input image was firstly segmented into different
regions of approximately constant albedo. The albedos for
each segment and the global lighting model were then solved
as an optimization problem. Wu et al. [15] used graph based
image segmentation for clustering and formulated a MAP
problem for optimization. Mean shift was used in [17] for
clustering, and the global lighting model and relative albedos
were optimized in an alternating manner. A simple method is
proposed in [16] which performed k-means for clustering and
used the dominant cluster for global lighting estimation. The
albedos of other groups were then determined by the estimated
global lighting model. The output quality of these methods
depended on the clustering results. However, all the previous
image clustering methods usually produced inaccurate results
especially when the shading varying too much. To address
this issue, a novel density based pixel clustering algorithm is
proposed in this paper.

III. SYSTEM OVERVIEW

The workflow of our system is shown in Fig 1. Our system
takes as input n images captured around a real person. These
images are indexed using a circular order. Our approach begins
with the silhouettes of the human in the images and labeled 2D
skeletons in a subset of the images. We first apply the NRDC
algorithm in [6] to obtain dense correspondences across the
images, which are combined with the joint locations in the
2D skeletons as the input to SFM for simultaneous point cloud
reconstruction and camera calibration.
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Fig. 2: Comparison of point correspondences obtained using
ASIFT and NRDC. (a) ASIFT feature matching result (all cor-
respondences are shown). SFM fails on such sparse correspon-
dences. (b) NRDC matching result (only 1% correspondences
are shown). SFM can successfully reconstruct a dense point
cloud from such dense correspondences.

Fig. 3: (a) Original point cloud reconstructed by SFM from
NRDC matching result. (b) Updated point cloud after filtering
and resampling. (c) Coarse model generated using the visual
hull only. (d) Coarse model generated using both the point
cloud and the visual hull.

Given the roughly calibrated cameras and a point cloud, our
system computes a watertight human model from a template
model in two stages. In our system, the template model is used
as a deformable prior. We fit this template to the point cloud as
well as various cues in the images, including silhouettes and
shading. In the first stage, the template model is deformed
to fit the reconstructed point cloud while the contours of its
projections are made as close as possible to the silhouettes
in the images. In the second stage, geometric details are
recovered using shape from shading and added onto the coarse
mesh obtained in the first stage. In this part, a novel shading
extraction method is proposed through an adapted density-
based clustering algorithm.

IV. COARSE MODEL GENERATION

Suppose the input images are {Ik}, the silhouettes in the
images are {Sk}, and the template mesh is T . The template
model is equipped with a skeleton. We use the same skeleton
representation as [10]. Our system provides a simple drag-
and-drop user interface as [18] for skeletons labeling in a
subset (3 images are used in our experiments) of the input
images.

A. Point Cloud Reconstruction

To obtain correspondences between images, all of previous
sparse feature matching methods failed for our sparse and
textureless input images. This is shown in Fig 2, where Affine
SIFT matching, one of the best sparse matching methods to
date, are compared with NRDC matching. The dense point
cloud reconstructed by SFM is shown as dark points.

One simple way to prepare correspondences for SFM is
applying NRDC to every pair of images. However, this results
in few correspondences when two images only have a small
overlap, and it is also time consuming. We use a match-
propagate-filter pipeline to obtain dense correspondences for
SFM.

Match The NRDC algorithm [6] is first applied to every pair
of adjacent images Ii and Ii+1. Their dense correspondences
are noted as Ci,i+1 : R2 → R2. For each pixel p ∈ Ii,
Ci,i+1(p) returns the corresponding pixel q ∈ Ii+1 if the
confidence of this correspondence is over a threshold (0.5 in
our experiments); otherwise it returns null. Meanwhile, we
also compute Ci,i−1 from Ii to Ii−1 for every image Ii.

Propagate We further compute Ci,i+2...Ci,i+k and
Ci,i−2, ..., Ci,i−k through propagation to obtain
correspondences between more pairs of views. Such
propagation is made possible by the higher density of the
correspondences obtained from the NRDC algorithm. Here,
Ci,i+k = Ci,i+1 ◦ Ci+1,i+2 ◦ . . . ◦ Ci+k−1,i+k where ◦ is a
compound operator. And Ci,i−k is defined similarly.

Once the correspondences have been computed and propagat-
ed, they are combined with the joint correspondences from the
labeled 2D skeletons, and used as the input to SFM. We use
the bundle adjustment algorithm in [19] as the SFM solver.
The output includes the camera projection matrices {Projk}
for all views, a 3D skeleton S3d and a rough point cloud P̃ .

Filter Because of missing and inaccurate correspondences, the
point cloud from SFM is noisy and incomplete. We clean
it as follows. First, we enforce spatial consistency of pixel
correspondences. Considering two adjacent images Ii and
Ii+1. Suppose p′1, p

′
2 ∈ Ii+1 are the corresponding pixels of

two adjacent pixels p1, p2 ∈ Ii. We remove the two related
points in P̃ if the Euclidean distance dist(p′1, p

′
2) is greater

than a threshold (5 pixels is setting in our experiments). Then
we apply the density constraint, PCA eigenvalue constraint and
normal constraint in [3] for further filtering. After this two-
steps cleaning, we run SFM and filtering again. The algorithm
in [20] is applied to the clean point cloud afterwards. Noted
that, in addition to cleaning, another objective of using edge-
aware resampling here is preserving major cloth wrinkles in
the point cloud (as shown by the highlight region in Fig. 3).

The final point cloud is denoted as P . Fig 3 shows point cloud
before and after filtering and resampling. It also illustrates
the importance of this point cloud during the coarse model
generation.
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Fig. 4: The flowchart of our template based model fitting.

B. Template-Based Model Fitting

The template mesh is viewed as a deformable model M which
aims to fit the given silhouettes {Sk} and point cloud P . This
can be formulated as an optimization problem. The energy is
defined as

E = Edist(M, {S, P}) + Esmooth(M). (1)

Edist means the distance between M and the point cloud P
and the visual hull defined by the silhouettes {Sk}. Esmooth
here is to ensure the smoothness of M during its deforming
procedure. Our optimization is performed in an iterative man-
ner as follows:

Initial value We first make the embedded 3D skeleton of the
template mesh T the same as the reconstructed 3D pose S3d,
and the template mesh is deformed together with its skeleton
using the skinning scheme in [21]. The deformed mesh is set
to M as its initial value.

Update Mesh To deform the mesh, the updated vertex po-
sitions are solved by a constrained Laplacian system, which
minimizes

E =
∑
i

‖vi − ti‖2 + wc
∑
i

∥∥∥∥∥∥vi −
∑

j∈N(i)

cijvj

∥∥∥∥∥∥
2

, (2)

where wc is the smoothness weight, N(i) means the neigh-
borhood of vertex i, cij is defined using the cotangent weight,
and ti represents the target position of vi during deformation.
Note that the first and second terms in (2) correspond to Edist
and Esmooth in (1), respectively.

The key task here is to determine the target ti using the
silhouettes and the point cloud for each vertex. Inspired by
[22], we define ti = vi + λini, where ni is the normal at vi,
and the offset λi is defined as

λi = min(min
k
λSik, λ

P
i ), (3)

where λSik is the offset of vi calculated from silhouette Sk and
λPi is the offset of vi calculated from point cloud P . They are
computed as follows.

λSik = argminλ(dist2(v̄ki , t̄
k
i )− distC(v̄ki , Sk))2,

λPi = dist3(vi, P ),

where t̄ki = Projk(vi + λni), v̄
k
i = Projk(vi). dist2 stands

for the distance between two pixels in an image, and distC
means the chamfer distance from a pixel to the silhouette,
which can be pre-calculated using the fast marching method.
dist3 is the distance between a 3D point and its closest point in
a point cloud. The argmin here can be solved via a quadratic
equation, and the sign of the root is determined by if projection
of the vertex lies inside the corresponding silhouette. This
step is performed iteratively (usually 3 iterations are sufficient
based on our experiments) and the resolution of M is also
changed dynamically using subdivision during deformation
procedure as [22].

Update Image Due to imprecise projection matrices estimation
from SFM, the projection of the mesh cannot toward the
silhouettes very well in the above step as the conflicts of λSik
between different views. Instead of re-calibrating the cameras
which is very challenging, our system fixes {Projk} and tries
to deform the silhouettes in images toward the projections of
the mesh generated by the above steps as much as possible.
To do this, we firstly apply the 2D-to-3D matching method in
[23] to obtain correspondences between M and the silhouettes
in those views. We define the distance of one correspondence
as the Euclidean distance of the projected point pairs on
image. Thus, the correspondences whose distance larger than a
threshold (5 pixels is set in our experiments) are considered as
control points to move the silhouettes toward the projected M
by image warping. We use as rigid as possible method [24]
in our paper to preserve the shape of contour in the image, for
example, thickness of the arm in Fig 4 should not be changed
too much during image warping.

The mesh and images are updated iteratively to achieve the
best mesh M with its well-aligned silhouettes. Fig 4 shows the
whole optimization procedure. The result generated without
image updating is also shown, which is shrunk too much
caused by the inaccurate projection matrices. It is notice that
our image updating strategy usually does not change the image
too much and thus produces few affections on the quality of
our reconstruction, which is validated by the results shown
later.

At last, we perform a final laplacian deformation to move M
towards P as closely as possible, where the target position ti
are determined by ICP, and we reduce the smoothness weight
in this step. Note that, self-intersections usually occur in the
model after mesh updating, for instance, the two legs of the
girl in Fig 4 intersect during the mesh evolving procedure.
We remove the self-intersections using the technique in [25]
to only keep the outermost surface of the model before ICP
registration.

V. MODEL REFINEMENT

We develop a novel shading extraction technique and integrate
it with a state-of-the-art shape-from-shading algorithm to
recover geometric details in this section. Since the clothes
worn by a human character may have spatially varying color
patterns, which imply spatially varying albedo. To extract
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Fig. 5: Our adapted density based clustering.

shading information from pixel colors for such a surface with
spatially varying albedo, it is necessary to group pixels into
clusters such that pixels in the same cluster share the same
albedo. This is nontrivial because pixelwise albedo is unknown
at the time of clustering.

A. Density Based Pixel Clustering

Even when one region of an image has a constant albedo,
its color can still have much variation due to shading. This
property usually makes traditional K-means or mean shift
algorithms produce inaccurate clustering results. However, it
can be observed that, over a region with constant albedo,
the pixel color is smoothly varying on the image plane and
the pixel cloud in the color space is also connected. Density
based clustering algorithms are capable of handling such
scenarios, where the data points are noisy and their distribution
has an irregular shape. A recent hierarchical density based
clustering algorithm [26] is modified to extract pixel clusters
with varying densities. This clustering approach only requires
two input parameters and can determine the number of clusters
automatically.

We first introduce notations similar to their original definitions
in [26].

Core Distance: The core distance of a pixel p, dcore(p), is
the Euclidean distance from p to its mpts-th nearest neighbor
in the Lab color space.

Density: The density of a pixel p is defined as density(p) =
1/dcore(p).

Mutual Reachability Distance: The mutual reachability dis-
tance between two pixels p and q is defined as dmreach(p, q) =
max{dcore(p), dcore(q), d(p, q)}, where d(p, q) means the Eu-
clidean distance between p and q in Lab space.

ε-Mutual Reachability Graph: It is a graph, Gmpts,ε, where
the nodes represent the pixels in the image. For each pixel p,
only its neighboring pixels with a distance to p below ε are
used to form edges with p. The weight of each edge is set to
the mutual reachability distance.

Clustering begins with a ε-mutual reachability graph Gmpts,ε

(ε is a given parameter), which may contain a few connected
subgraphs, and performs the following steps.

Fig. 6: A comparison between K-means and density based
clustering. (a) Input image. (b) K-means clustering result
(k=5). (c) Shading extraction based on K-means clustering.
(d) Density based clustering result (ε = 0.8, mpts = 8). (e)
Shading extraction based on our density based clustering (skin
and hair clusters are excluded).

Step 1. Extract the minimum spanning tree (MST ) of each
subgraph in Gmpts,ε.

Step 2. Label each pixel as an individual cluster.

Step 3. Visit the edges in MST in an increasing order of the
weight. When an edge (p, q) is visited (p in cluster Gp and q
in cluster Gq), perform one of three operations: pseudo-merge,
absorb and merge.

i) Pseudo-merge: make Gp and Gq two sub-clusters of a new
cluster G̃p.

ii) Absorb: assign Gq to the noise set in Gp.

iii) Merge: really merge all sub-clusters and noise sets in Gp
and Gq into one cluster G̃p.

The core of the algorithm is to determine which operation to
perform. ‘Absorb’ is performed if the size of Gp or Gq is
smaller than a pre-defined parameter mcltsize (it is set to 20
in all experiments).

As illustrated in Fig 5, before deciding whether G0 and
G1 need to be really merged (when the edge (p0, p1) is
visited), ‘Pseudo-merge’ is performed to form a new cluster
G̃0. Edge traversal then continues, while nearby noise pixels
(blue points) are being absorbed, until absorbing is stopped by
an edge across a gap (when the edge (p2, p3) is visited). All of
the absorbed pixels (blue points) in this process are assigned
to the temporal noise set of G̃0. The stability of G̃0 is defined
as follows.

S(G̃0) =
∑
p∈G̃0

(λmax(p, G̃0)− λmin(G̃0)). (4)
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Fig. 8: The 5 examples used in our experiments are shown in the red box, listed as input image, coarse model and final model.
Some results of other views are shown in green box.

Fig. 7: Geometry refinement using extracted shading images.

where

λmax(p, G̃0) = min(density(p), 1/dmreach(p0, p1)),

λmin(G̃0) = 1/dmreach(p0, p1).
(5)

A detailed explanation why (4) and (5) are used to define the
stability is given in [26]. Intuitively, G̃0 is more stable if it is
denser and farther away from G2. If S(G̃0) > S(G0)+S(G1),
really merge G0 and G1, and the absorbed pixels are still kept
in the noise set of G̃0. Once all edges have been visited, there
is only one root cluster at the top of the hierarchy. The sub-
clusters of this root cluster are taken as the real clusters we
need, and its noise set contains all the noise pixels.

This clustering algorithm only has two primary parameters ε
and mpts, which are set to 0.8 and 8 in all of our experiments.
As shown in Fig 6, a comparison against the traditional
K-means algorithm indicates that density based clustering
generates much cleaner results even when pixelwise shading
has much variation, which facilitates more accurate shading
extraction.

B. Shading Extraction

We extract shading information from multiple input images in
three main steps:

Clustering: The above density based clustering algorithm is
first performed on each input image. The resulting clusters
in different views are then merged according to two cues,
correspondence and color similarity. A cluster G1 in view Ii is
merged with another cluster G2 in view Ij if some pixels from
G1 correspond to pixels from G2 and the difference between
the mean colors of G1 and G2 falls below a predefined
threshold.

Global Lighting Estimation: After merging clusters across
different views, we choose the largest cluster and set its
albedo to be the mean color of its pixels. Pointwise shading
(image color divided by the albedo) in this cluster is then used
to estimate the global lighting and visibility function using
the method in [14]. The estimated global lighting model is
represented using spherical harmonics.

Shading Calculation: The predicted shading at every vertex
on the coarse model are calculated using the normal vector
at the vertex and the global lighting, and the albedo at the
vertex is simply the ratio between the predicted shading and
the image color corresponding to the vertex. By assuming the
vertices in the same cluster share the same albedo, we set the
albedo of a cluster to be the mean albedo of these vertices.
Finally, a shading image is calculated as the ratio between
the original image and the mean albedo of the cluster a pixel
belongs to.

To fulfill the Lambertian assumption, we skip skin and hair
regions during shading extraction. The skin region is identified
with a skin color detection algorithm and the hair region is
identified as the spatially separated cluster at the top of the
segmented human figure. Some results on shading extraction
are shown in Fig. 6.
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C. Geometry Refinement

To reconstruct geometric details in each view from the ex-
tracted shading information, we apply the algorithm in [14] to
minimize the following cost function

E({λi}) =
∑
i

(Isi −Si)2+wf
∑
i

∥∥∥∥∥∥vi −
∑

j∈N(i)

cijvj

∥∥∥∥∥∥
2

, (6)

where Isi represents the shading value at the pixel location
Proj(vi) which is the projection of vi, Si is the predicted
shading value based on the normal vector ni at vi and the
estimated global lighting. We also constrain every vertex to
move along its normal from the coarse model during the
minimization and λi means the offset at vi. The second part
of this cost function ensures the smoothness of the mesh, wf
is the smoothness weight and cij is the cotangent weight. This
nonlinear optimization is solved using L−BFGS.

In surface regions visible to multiple views, the computed
offsets at the same vertex but from different views are usually
inconsistent due to inaccurate camera projection matrices. To
overcome this issue, we find an optimal seam on the mesh
surface to stitch together the refined geometry from every pair
of adjacent views. The graph cut algorithm is used here to find
the optimal seam. Fig 7 gives an example to show the results
of geometry refinement.

Fig. 9: Comparison of final 3D reconstruction with PMVS and
PCMVS. (a) Result from PCMVS using 20 calibrated images.
(b) Reconstructed point cloud and mesh from PMVS using
our roughly estimated camera parameters. (c) Our result from
16 uncalibrated images.

The face part of our coarse model is enhanced with a simple
template based deformation scheme. Facial feature points are

first detected in a frontal view, and they are backprojected
onto the coarse model using the estimated camera projection
matrix to find their corresponding vertices there. A pre-labeled
face template is first rigidly registered with the backprojected
3D facial feature points. Displacements parallel to the frontal
view are then added to the pre-labeled feature points on the
template such that their projections on the frontal view match
the detected facial features. Finally, we deform the facial
region of our coarse model towards the displaced face template
using the ICP strategy.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

We have successfully evaluated our proposed algorithm on
multiple examples, including the ones shown in Fig. 8. Among
these examples, “man”, “girl 1” and “girl 2” are taken
from the indoor dataset in [3]. Each of them has 20 images
from different views. In our experiments, we use 15 images
of “man”, 16 images of “girl 1” and 13 images of “girl 2”
for 3D reconstruction. The “boy 1” and “boy 2” examples are
captured with a cell phone camera in an outdoor environment
with 15 images and 16 images respectively. The entire image
acquisition process for each example takes around 3 minutes.
These examples exhibit quite a few challenges: complicated
pose (“man”), complicated garment (“girl 1”) and textureless
clothes (“boy 1”). Some sample views of the reconstructed
results are also shown in Fig 8.

A. Comparison with PMVS/PCMVS

PMVS [5] is one of the best multi-view stereo algorithms.
However, it requires camera parameters and cannot handle
our sparse uncalibrated views directly. We use our estimated
camera parameters as input and perform the reconstruction by
PMVS. Fig 9 (b) shows that this method can only reconstruct
an incomplete point cloud which is insufficient for surface
reconstruction. Our result is also compared against PCMVS
[3] on the “girl 1” example in Fig 9. The result of PCMVS
is obtained from 20 views with well-calibrated camera param-
eters, while our result is reconstructed from 16 views without
making use of their existing camera parameters. To validate
the quality of our generated mesh M , we use the result of
PCMVS as the ground truth G and take the nearest neighbor
distance for each vertex of M to G as the error. The max
distance error is 3.8 millimeters (where the girl is of 170 cm
height) and the distribution is visualized in Fig 9 (c) . It is
also shown that the biggest errors happen at the bottom of
skirt and feet and are due to the lacking of point cloud and
the low accuracy of visual hull at those parts.

B. Number of Input Images and Skeleton-labeled Images

One important question is how many images are required for
3D reconstruction with our algorithm. Generally speaking, the
more input images the more accurate the result. As shown
in Fig 10, we run our algorithm on the “girl 1” example
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Fig. 10: Our result from different numbers of input images and skeleton-labeled images. The point clouds and coarse models
are reconstructed from (a) 8 images, (b) 12 images, and (c) 16 images, respectively. And, (c) is generated by labeling skeletons
of 3 images and (d) uses 6 labeled images. The color maps of (a), (b) and (c) show the differences of their models with the
model generated by PCMVS using the nearest neighbor distance, while the color map of (d) shows the difference between its
model with model in (c).

using different numbers of input images. 8, 12 and 16 images
are respectively chosen from the original 20 images as the
input. As seen in the results, both 8 and 12 views cannot
generate a sufficiently dense point cloud to capture the shape
of the highlighted region on the dress. According to our
experiments, around 15 uniformly sampled views around a
person are recommended. We also compared the generated
results with different number of skeleton-labeled images as
shown in Fig 10, where the mesh of (c) is generated from
3 labeled images and (d) used 6 labeled views. The nearest
neighbor distance between these two meshes is also shown in
(d). One can notice that there only exists some tiny differences
at the parts of arms and feet. This shows that our algorithm
is insensitive to the number of skeleton-labeled images. It is
because the labeled skeletons in our system only served for
the 3d skeleton reconstruction and initial mesh generation,
and the final result is mostly determined by the point cloud
and visual hull which are reconstructed primarily from the
pixel correspondences. Based on our experiments, 3 skeleton-
labeled images in different views are sufficient and all of our
results in this paper are generated by 3 labeled images.

C. Runtime Performance

Our algorithm is implemented using C++ and runs on a
standard PC with a 3.4GHz Intel quad core processor. Take
“girl 1” as an example, it is generated in 33 minutes in total(the
input images have a 300x600 resolution). NRDC matching
and propagation takes 643 seconds in total (where NRDC
matching takes on average 20 seconds for each pair of adjacent
images), SFM takes 46 seconds, coarse model generation takes
110 seconds (where the template mesh has 6,449 vertices),
clustering and shading extraction take 54 seconds, and final
geometry refinement with nonlinear optimization takes 1,132
seconds for a coarse model with 253,212 vertices. The other
four models have similar runtime performance and all of them
are produced less than 35 minutes.

D. Limitations and Future work

Requiring a small number of skeleton-labeled images is the
primary limitation of our algorithm which prevents the system
from performing automatically. Eliminating the user interac-
tion during the reconstruction procedure is left as one of our
future works. Another one important limitation of our system
is that it usually generates low-quality results for some detailed
parts such as hand and hair as shown by the highlighted orange
box in “girl 1” example of Fig 8. This is due to the low-
quality of visual hull, reconstructed point cloud and extracted
shading at these parts, and it is also very challenging to evolve
the mesh into these small areas while keeping the smoothness.
Additionally, reconstruction of high-quality hair and face from
the input images is another direction of the future work.

VII. CONCLUSIONS

We have presented a novel two-stage algorithm for recon-
structing 3D human models from sparse uncalibrated views.
The first stage reconstructs a coarse model with the help of a
template model for human figures. We fit the template model
to the point cloud reconstructed from dense correspondences
while enclosing it with the visual hull. In the second stage,
the coarse model from the first stage is refined with geometric
details reconstructed from shading information. A novel shad-
ing extraction algorithm has been proposed for surfaces with
nonuniform reflectance. This algorithm builds on an adapted
density based clustering algorithm. Our algorithm has been
validated with images from an existing dataset as well as
images captured by a cell phone camera.
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