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1. CIFAR100 Dataset
1.1. HD-CNN Based on CIFAR100-NIN net

The instance of HD-CNN we use for CIFAR100 dataset is built upon a building block net CIFAR100-NIN. The layer
configurations in CIFAR100-NIN are listed in Table [, The architectures of both CIFAR100-NIN and the corresponding
HD-CNN are illustrated in Figure[I] We use the preceding layers from convl to pooll as shared layers.

2. ImageNet 1000-class Dataset

We experiment with two different building block nets on ImageNet dataset, namely ImageNet-NIN and ImageNet-VGG-
16-layer.

2.1. HD-CNN based on ImageNet-NIN

The layer configurations of the building block net ImageNet-NIN are listed in Table[2} The architectures of ImageNet-NIN
and the corresponding HD-CNN are shown in Figure 2| The preceding layers from convi to pool3 are shared in HD-CNN.

2.1.1 Category Hierarchy

We learn 89 overlapping coarse categories using the building block net ImageNet-NIN on ImageNet dataset. They are
visualized in Figure [3] Fine categories within the same coarse category are more visually similar to each other than those
absent in the coarse category. A histogram of the fine category occurrences in the coarse categories is shown in Figure [
Each fine category can appear in more than one coarse category.

2.1.2 More Case Studies

To better demonstrate HD-CNN can correctly classify the difficult images for which the building block net fails, we include
more case studies in Figure[5} For difficult cases, HD-CNN relies on the fine predictions from more than one fine category
classifier to make the correct final prediction.

2.2. HD-CNN based on ImageNet-VGG-16-layer

The layer configurations of the building block net ImageNet-VGG-16-layer are listed in Table 3] The architectures of
ImageNet-VGG-16-layer and the corresponding HD-CNN are shown in Figure[§] Layers from convi_I to pool4 are shared
within HD-CNN.
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Figure 1: Top: CIFAR100-NIN network. Bottom: HD-CNN network using CIFAR100-NIN building block.

LAY convl ccepl cccp2 | pooll | conv2 | cccp3 ccep4 pool2 | conv3 cceps ccepb pool3| prob

CFG 192,5,5 | 160,1,1 | 96,1,1 | 3,3,2 | 192, 192,1,1 | 192,1,1 | 3,3,2 | 192,33 | 192,1,1 | 100,1,1 | 6,6,1 | SMAX
MAX| 5.5 MAX AVG

ACT ReLU | ReLU ReLU | ReLU ReLU | ReLU

PAR # l.4e+4 | 3.1e+4 | 1.5e+4 4.6e+5 | 3.7e+4 | 3.7e+4 33e+5 | 3.7e+4 | 1.9e+4

PAR % | 1.5 3.1 1.6 46.9 3.8 3.8 33.8 3.8 2.0

FLOP# | 9.7e+6 | 2.1e+7 | le+7 7.8e+7 | 6.2e+6 | 6.2e+6 1.2e+7 | 1.3e+6 | 6.9e+5

FLOP 6.7 14.3 7.2 53.6 4.3 4.3 8.2 0.9 0.5

%

Table 1: CIFAR100-NIN network. The configuration of convolutional layer is denoted as (filter number, filter height, filter
width). The configuration of pooling layer is denoted as (pooling height,pooling width, stride). Notations: LAY=Layer.
CFG=Configuration. ACT=Activation. PAR #=Parameter number. PAR %=Parameter percentage. FLOP #=FLoating-
point OPerations. FLOP %=FLoating-point OPeration percentage. SMAX=SOFTMAX.
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Figure 2: Top: ImageNet-NIN network. Bottom: HD-CNN network using ImageNet-NIN building block.

LAY convl ccepl | ceep2 | pool0 | conv2 | ccep3 | ceepd | pool2 | conv3 | ccepS | ccep6 | pool3 | conv4 | ccep7 | ccep8 | poold | prob

CFG 96,11,11 96,1,1| 96,1,1 | 3,32 | 256,55 256,1,1| 256,1,1| 3,32 | 384,33| 384,1,1| 384,1,1| 3,32 | 1024,3|31024,1{1 1000,1]1 6,6,1 | SMAX
MAX MAX MAX AVG

ACT ReLU | ReLU | ReLU ReLU | ReLU | ReLU ReLU | ReLU | ReLU ReLU | ReLU | ReLU

PAR# | 3.5e+4 | 9.2e+3| 9.2e+3 6.1e+5| 6.6e+4| 6.6e+4 8.9e+5| 1.5e+5| 1.5e+5 3.5e+6| 1.le+6| 1.le+6

PAR 0.5 0.1 0.1 8.1 0.9 0.9 11.7 1.9 1.9 46.6 13.8 13.5

%o

FLOP le+8 2.7e+7| 2.7e+7 4.5e+8 | 4.8e+7| 4.8e+7 1.5e+8| 2.5e+7| 2.5e+7 1.3e+8| 3.8e+7| 3.8e+7

#

FLOP | 92 2.4 2.4 40.7 43 43 13.6 2.3 2.3 11.6 34 34

%o

Table 2: ImageNet-NIN network.
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Figure 3: The learnt 89 overlapping coarse categories, each of which is represented by a grid of size 3 x 3. For each coarse
category, we randomly choose 9 fine categories within it. An example image for each fine category is shown. Among the 9
fine categories, 4 of them are found by spectral clustering on the confusion matrix and their category labels are in green. The
remaining 5 fine categories are added subsequently to remove the separability constraint between coarse categories. Their
category labels are in blue.
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Figure 4: Histogram of fine category occurrences in 89 overlapping coarse categories. The category hierarchy is learnt using
the building block net ImageNet-NIN.
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Figure 5: More case studies. Column (a): test image with ground truth label. Column (b): top 5 guesses from the building
block net ImageNet-NIN. Column (c¢): top 5 Coarse Category (CC) probabilities. Column (d)-(f): top 5 guesses made by
the top 3 fine category CNN components. Column (g): final top 5 guesses made by the HD-CNN. All but the the last two
are positive cases where HD-CNN predicts the ground truth label in the top 5 guesses while the building block net fails.
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Figure 6: Top: ImageNet-VGG-16-layer network. Bottom: HD-CNN network using ImageNet-VGG-16-layer building
block.

LAY conv | conv | pooll| conv | conv2[2pool2| conv | conv pool3| conv | conv pool4| conv pool5| fc6 fc7 fc8 prob
11 12 2.1 3.1 3.{2,3} 4.1 4.{2,3} 5.{1.2,3}

CFG 64, 64, 222 | 128, | 128, | 2,22 | 256,33 256,33 | 2,22| 512, | 512,33 | 2,22 | 512,33 2,22 | 4096 | 4096 | 1000 | SMAX
33 33 MAX| 33 33 MAX MAX| 33 MAX MAX

ACT ReLU| ReLU| ReLU| ReLU; ReLU| ReLU ReLU| ReLU ReLU ReLU| ReLU|

PAR # 1.7e3| 3.7e4 7.4e4| 1.5e5 3.0e5| 5.9e5 1.2e6| 2.4e6 2.4e6 1.0e8| 1.7¢7| 4.1e6

PAR % | 0.01 | 0.03 0.1 0.1 0.2 0.4 0.9 1.7 1.7 743 | 12.1 | 3.0

FLOP 8.7¢7| 1.9¢9 9.3¢8| 1.9¢9 9.3¢8| 1.9¢9 9.3e8| 1.9¢9 4.6e8 1.0e8| 1.7¢7| 4.1e6

#

FLOP 0.6 12.0 6.0 12.0 6.0 12.0 6.0 12.0 3.0 0.7 0.11 | 0.1

%o

Table 3: ImageNet-VGG-16-layer network. For clarity, adjacent layers with the same configuration are merged, such as
layers conv3_2 and conv3_3.



