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Abstract. We introduce a novel intelligent system which can generate
new Chinese calligraphic artwork that meets certain aesthetic require-
ments automatically. In the machine learning phase, parametric represen-
tations of the existent calligraphic artwork are derived from input images
of calligraphy. Using a six-layer hierarchical representation, the acquired
knowledge is organized as a small structural stroke database, which is
then exploited by a constraint-based analogous reasoning component to
create artwork in new styles. The simulated analogous reasoning can gen-
erate new “e-calligraphy”, and constraint satisfaction is used to reject the
unacceptable results. The combination of knowledge from various input
sources creates a huge space for the intelligent system to explore and pro-
duce new styles of calligraphy. (http://www.csis.hku.hk/∼songhua/ca/
provides supplementary materials on this paper.)

Category:
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I.2.6 Artificial Intelligence: Learning [Analogies, Knowledge acquisition]
I.3.5 Computer Graphics: Computational Geometry and Object Modeling [Geo-
metric algorithms and systems, Hierarchy and geometric transformations]
I.4.9 Image Processing and Computer Vision: Applications
J.5 Computer Applications: Art and Humanities [Arts, fine and performing, Fine
art ]
Keywords: analogous reasoning, simulated analogous reasoning process, char-
acter skeletonization, radical extraction, character segmentation, constructive
element, topological constructor, hierarchical representation of calligraphic art-
work, constraint satisfaction, degree of interference, non-photorealistic rendering

1 Introduction

Chinese calligraphy is among the finest and most important of all Chinese art
forms, and an inseparable part of Chinese history. Other than artists, it has also
caught the attention of scientists who are interested in computer-assisted art.
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Fig. 1. Chinese painting with calligraphy

Chinese calligraphy is predominantly done using a brush. Computerizing Chinese
calligraphy is challenging as the shapes of brush strokes as well as the topology
over multiple strokes could be very complex. In comparison, Western calligraphy
which is based on Latin alphabets is much simpler and easier to computerize.
Chinese calligraphy can convey not just what is in the written message but
also the emotions of the writer. The very delicate aesthetic effects achievable by
Chinese calligraphy are unique among all calligraphic arts because the normal
shape and topological structure of the font in aesthetic Chinese calligraphy can
be largely distorted for its better perceptual impression. Chinese calligraphy is
also an integral part of traditional Chinese painting. The use is not just for
annotation, but also because calligraphy embedded in a painting can affect the
overall visual and perhaps also the emotional perception of the viewer. Figure 1
shows an example. As such, many people see calligraphy as a kind of painting.
This opinion is particularly widely accepted as to the specific case of Chinese
calligraphy.

Calligraphic art is based on font, which is a set of printer’s type of the same
size and face. Cubic Bezier curves and straight lines can be used to describe font
shapes [33, 30]. For artistic rendering, researchers have tried to model the brush
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Fig. 2. Architecture of our intelligent calligraphy generation system

(a) (b) (c)

Fig. 3. (a) 5 implemented primitive strokes. (b) 24 implemented compound strokes.
(c) 36 implemented radicals

used in calligraphy, such as [28] where the brush is modeled as a collection of
bristles which evolve over the course of the stroke. In [29], a virtual brush based
on solid modeling was demonstrated as a feasible interactive tool for creating
realistic Chinese calligraphic writings. In [7], the authors gave a detailed analysis
on the writing effects that hairy brushes can produce. There have also been
attempts on automatic generation of new fonts, such as [35] where the authors
employed an algebra of geometric shapes to generate fonts by mixing existing
fonts. But calligraphy can go beyond the boundaries of fonts; for example, it is
possible to mix different styles and sizes of characters in a calligraphic artwork.

There has not been any published work on automatic creation (not just im-
itation) of beautiful calligraphic artwork using existing calligraphy as learning
samples. This paper proposes and describes such an intelligent system. We dis-
cuss the underlying principles and theories, and present the calligraphic results
generated by a prototype we implemented. Our prototype system is able to gen-
erate brand new Chinese calligraphic artwork fully automatically. The number
of input training samples used is very small.

Figure 2 shows the overall architecture of our intelligent calligraphy system.
At the center of the system is an analogous reasoning component that creates
new calligraphic artwork based on the learned samples. The automatically gen-
erated calligraphic artwork would satisfy certain aesthetic constraints. In our
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experiments, these learning samples come from printed “copybooks”. Our simu-
lated analogous reasoning process is essentially data prediction (either interpo-
lation or extrapolation) subject to the aesthetical constraints. For convenience,
we abbreviate “analogous reasoning process” to ARP and “simulated analogous
reasoning process” to SARP.

The system has three main components. The first component learns and
produces facsimiles of the existent calligraphic artwork in a hierarchical and
parametric form; these facsimiles form a calligraphic knowledge base serving
as the knowledge source for the SARP. The second component generates new
calligraphic artwork automatically through the SARP. The third component
applies constraint satisfaction to admit only those generated results that are
aesthetically acceptable. The three components are referred to as the facsimile
component, the creation component, and the appreciation component, respec-
tively. To verify that the system was indeed able to generate quality outputs,
we devised an experiment and asked practicing artists, art school professors,
and amateurs to examine the outputs from our system. The examination results
led us to conclude that our approach is practical and the system is capable of
generating acceptable outputs.

The structure of the paper is as follows. Sections 2 addresses the represen-
tation of a calligraphic artwork in a parametric and hierarchical form. Section
3 discusses how input images of sample calligraphic artwork are analyzed and
parameterized by machine intelligence techniques. Sections 4 explains the gen-
eration of new calligraphic artwork automatically through the SARP. Section
5 introduces the appreciation component and how it can filter out unacceptable
generated samples. Section 6 shows some actual results generated by our proto-
type implementation. Section 7 discusses some advanced applications using our
method. Section 8 concludes the paper with a discussion on future work. Note
that because of space limitation, our discussions stop at the 4-th level, where
single characters as a whole are objects for the reasoning process.

2 Hierarchical and Parametric Representation

The earliest Chinese characters are pictographs, which project meanings through
shapes and images in an intuitive manner. Over time, these characters gradually
became symbols. In our system, we treat Chinese characters and calligraphic
artwork as images that are in a parametric form. This facilitates automatic
processing of knowledge. We adopt also a knowledge representation that is hier-
archical, which helps to increase the speed of the SARP and thus the system’s
performance.

2.1 Hierarchical Representation

It can be easily observed that many local features recur in many different Chi-
nese characters frequently. To capitalize on this image information redundancy,
we introduce a hierarchical representation of Chinese calligraphy. A piece of
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(a)

Layer Number Layer Name

the #5th layer the layer of calligraphic artwork

the #4th layer the layer of single characters

the #3rd layer the layer of radicals

the #2nd layer the layer of compound strokes

the #1st layer the layer of primitive strokes

the #0th layer the layer of constructive ellipses

(b)

Fig. 4. (a) Hierarchical representation of a character (only four levels are shown). (b)
Six-layer hierarchical representation of calligraphy

Chinese calligraphy as an image is decomposed into six layers (or levels): the
constructive ellipse layer, the primitive stroke layer, the compound stroke layer,
the radical layer, the single-character layer, and the complete artwork layer (see
Figure 4(b)). This hierarchical representation can avoid much redundancy when
storing the characters, and its various granularity makes SARP more effective
and the input reasoning source as well as the output reasoning results more
reusable. These six layers represent the calligraphic artwork parametrically. All
the input parametric representations of the calligraphic artwork together form
a reasoning space for the SARP to generate new aesthetic calligraphic artwork
automatically.

We can give a definition over the hierarchic representation of calligraphic
artwork based on the concept of equivalent relationship. If R is the equivalent
relationship defined over the field of P = {p1, p2, · · · , pn}, i.e. R is (1) self-
reflective (2) symmetrical (3) transitive, field P can be divided into a collection
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of sub-sets P1, P2, · · ·, Pm under R. We call pi is equivalent to pj if (pi, pj) ∈ R,
1 ≤ i, j ≤ n. Using the concept of equivalent relationships, we can now introduce
the formal definition for the multi-layer calligraphic artwork representation.

In an image of a piece of calligraphic artwork, we adopt the following five
kinds of equivalent relationships to establish our six-level hierarchic representa-
tion for one piece of calligraphy: R1: all the constructive ellipses that compose
the same primitive strokes are equivalent to each other; R2: all the primitive
strokes that compose the same compound strokes are equivalent to each other;
R3: all the compound strokes that compose the same radical are equivalent to
each other; R4: all the radicals that compose the same Chinese character are
equivalent to each other; R5: all the characters in the same piece of calligraphic
artwork are equivalent to each other.

Suppose in the parametric representation of a calligraphic artwork C, there
are num0 constructive ellipses, denoted as F0 , {P0,1,P0,2, · · · ,P0,num0}, where
each P0,i is a constructive ellipse. And F0 is divided into num1 equivalent classes
(of primitive strokes) under the equivalent relationship of R1, and denote these
classes as F1 , {P1,1,P1,2, · · ·, P1,num1}, where each P1,i is a primitive stroke.
These num1 primitive strokes are further divided into num2 equivalent classes (of
compound strokes) under the equivalent relationship of R2, and denoted as F2 ,
{P2,1,P2,2, · · · ,P2,num2}, where each P2,i is a compound stroke. All the com-
pound strokes are divided into num3 equivalent classes (of radicals) under the
equivalent relationship of R3, and denoted as F3 , {P3,1,P3,2, · · · ,P3,num3},
where each P3,i is a radical. Finally, all the radicals are divided into num4 equiv-
alent classes (of single Chinese characters) under the equivalent relationship of
R4, and denoted as F4 , {P4,1,P4,2, · · ·, P4,num4}, where each P4,i is a single
Chinese character. That is, in a certain calligraphic artwork of Chinese handwrit-
ing C, there are num0 constructive ellipses P0,i, i ∈ {1, 2, · · · , num0}. Or we can
view C as being composed by num1 primitive strokes P1,i, i ∈ {1, 2, · · · , num1}.
Namely, C contains num2 compound strokes P2,i, i ∈ {1, 2, · · · , num2}. Or we
can say that C contains num3 radicals P3,i, i ∈ {1, 2, · · · , num3}. We can also
say that C contains num4 single Chinese characters P4,i, i ∈ {1, 2, · · · , num4}.
From the point of view of level 5 in the hierarchical representation, C is actually
P5,1 with num5 = 1.

The hierarchical structural knowledge representation of calligraphic artwork
can be stated formally as (1). In (1.2), qk,l = min{t|Pk−1,t ∈

⋃l−1
s=1 Pk,s,Pk−1,t ∈

Fk−1}. And in (1), Pk−1,i ∈ Fk−1, k = 1, · · · , 5. Denote the number of elements
in set M as |M|, the relationship (2) holds within the hierarchy of Chinese
calligraphic artwork representation.

Pk,l ,
{{Pk−1,i|(Pk−1,i,Pk−1,1) ∈ Rk} (l = 1) (1.1)
{Pk−1,i|(Pk−1,i,Pk−1,qk,l

) ∈ Rk} (l 6= 1) (1.2) (1)

|Fk−1| =
|Fk|∑

i=1

|Pk,i| = numk−1 (k = 1, · · · , 5) (2)

The hierarchical representation describes how an artwork is composed from
constructive ellipses at the lowest level. Each higher level describes how to gen-
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Operators Definition Operators Definition

ª (18) ® (21)

⊕ (25) ¯ (27)

ϑx(), ϑy(), ϑs() (28) θx(), θy(), θs() (29)

∇b
m,n() (7) ∇c

n() (9)

∇o
n() (10) ∇d

n() (11)

∇e
n,m() (12) ∇g

t (16), (17)

∇f
n,m() (19) ⊗ (24)

Fig. 5. Operators Defined

erate one level of representation from the information at one level down. It is
essentially a tree-like knowledge representation. For the prototype implemen-
tation, we selected 5 typical and most frequently occurring primitive strokes:
horizontal strokes, vertical strokes, left slanting strokes, right slanting strokes,
and point strokes (Figure 3(a)), 24 typical and most frequently occurring com-
pound strokes (Figure 3(b)), and 36 radicals (Figure 3(c)). Figure 4(a) shows an
example of hierarchical representation, which is that of the Chinese character
“zhe”. Note that since the number of compound strokes and radicals imple-
mented in the system is limited because of resource limitations, it is possible
that some lower-layer element cannot be combined with other elements in the
same level. In this case, that lower-layer element promotes itself to the next
level. An example is the primitive stroke P1,1 in Figure 4(a). which becomes the
compound stroke P2,1 in the next level. Similarly, it is possible for a radical to
degrade to a compound stroke, and then to a primitive stroke.

2.2 Six Levels of Parametric Representation

We denote the i-th constructive element in the k-th level as Pk,i, and its matrix
form parametric representation as Ek,i. If k ≥ 1, Pk,i must be composed of one or
more constructive elements in one level down; we call the latter sub-constructive
elements. All the information needed for the composition of Pk,i is stored in
Tk,i, the topological constructor of Pk,i.

To derive Ek,i, we need first to define several operators for calligraphic knowl-
edge representation and operations to simulate the ARP. A quick index of these
operators is in Figure 5, which is a list over all the operators defined for knowl-
edge representation and simulating ARP with constraint satisfying in our sys-
tem to generate artistic calligraphy automatically.

We use Pk,i to represent the bounding box of the image space that the ele-
ment Pk,i occupies, that is, Pk,i , {Pk,i.h,Pk,i.w,Pk,i.x,Pk,i.y}, where Pk,i.h
is the box’s height, Pk,i.w the box’s width, and (Pk,i.x,Pk,i.y) the box’s center.
All the coordinates are in the world coordinate system.

In the 0-th level, the calligraphy is viewed as a set of ellipses, denoted as F0.
These ellipses are called the “constructive ellipses” of the calligraphic artwork
(Figure 4(b)). For each constructive ellipse, P0,i, let (xi, yi) be the center and
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ai and bi the lengths of its major and minor axis respectively. Then the “image”
of the calligraphic artwork C can be represented as the image area covered by
all its constructive ellipses, defined as (3). This representation is inspired by the
Blum model [7], in which a zonary area is defined through an ellipse moving
along a predefined curve.

Img(C) , {(x, y) ∈ R2|∃P0,i ∈ F0,
(x− xi)2

ai
2

+
(y − yi)2

bi
2 ≤ 1} (3)

The ranges for the horizontal and vertical coordinates xi, yi and the horizontal
and vertical distances ai, bi are normalized with respect to the bounding box
of the constructive ellipse P0,i, as defined in (4). The resultant respective val-
ues for xi, yi, ai, bi are denoted as x′i, y

′
i, a

′
i, b

′
i and recorded in the matrix form

representation of P0,i, such that E0,i , (x′i, y
′
i, a

′
i, b

′
i)

T .
Suppose that the element Pk+1,1 is composed of n elements in the next

lower level, Pk,l1 , · · · ,Pk,ln . Then Ek+1,1 can be derived by concatenating the
matrices Ek,l1 , · · · ,Ek,ln column by column in sequence. Since the parametric
representation of a constructive ellipse is a 4 × 1 matrix, concatenation at the
higher levels will produce matrices having exactly four rows. Each row of the
matrix form parametric representation of a constructive element is called a field
of the element’s parametric representation. Different fields of an element can be
separately reasoned on.

The parametric representation of each constructive element only records the
relative coordinates. The use of relative coordinates makes the representation in-
dependent from other elements’ representations, and hence reusable in different
SARPs. Also because of the use of relative coordinates, coordinate transforma-
tion is necessary to convert the relative coordinates between different relative
coordinate systems. We include the coordinate transformation associated with
Ek,li in Pk,li ’s topological constructor, Tk,li .

2.3 Deriving Parametric Representations for Constructive Elements

Level 0 of the Parametric Representation For each constructive element
in level 0, i.e. constructive ellipses P0,i in our hierarchy, we use procedure intro-
duced at Section 3.1 to compute the ellipse’s four parameters (xi, yi, ai, bi). We
then employ (4) to convert the absolute coordinates (x′i, y

′
i, a

′
i, b

′
i) into relative

coordinates, which are actually recorded by E0,i.




x′i
y′i
a′i
b′i


 =




xi−P0,j .x

P0,j .w
+ 1

2

yi−P0,j .y

P0,j .h
+ 1

2

ai

P0,j .w
bi

P0,j .h




(4)
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Levels 1–5 of the Parametric Representation To depict the order by which
several constructive elements compose one piece of calligraphic artwork in a level-
by-level method, we also introduce the topological constructor in our hierarchic
representation. Each of the five levels (1-st level to 5-th level) in the representa-
tion has its individual topological constructor. All the topological constructors in
one complete piece of calligraphic artwork are also managed in five levels, namely
the primitive stroke level, the compound stroke level, the radical level, the single
character level and the whole calligraphy level. All these form a topological tree.

Recall at Section 2.1, the i-th element on the k-th level in the hierarchy is
denoted as Pk,i, and Tk,i is the topological constructor associated with Pk,i.
Tk,i carries the topological constructive relationship to compose element Pk,i

based on Pk−1,1+lk,i
, Pk−1,2+lk,i

, · · ·, Pk−1,|Pk,i|+lk,i
, where lk,i =

∑i−1
s=1 |Pk,s|.

And we can derive the topological constructor Tk,i using matrix (5).




Tk,i , (TCRk,i,TCSk,i)

TCRk,i ,




TRk,1+lk,i

TRk,2+lk,i

...
TRk,|Pk,i|+lk,i




TCSk,i ,
(
TSk,1+lk,i

,TSk,2+lk,i
, . . . ,TSk,|Pk,i|+lk,i

)

(5)

In (5), lk,i ,
∑i−1

s=1 |Pk,s|; Pk,s ∈ Fk; k = 1, · · · , 5 and TCRk,i,TCSk,i are
the scale and transition transformation components of the topological construc-
tor Tk,i. The definitions for matrices TRk,z,TSk,z, which are the elements of
TCRk,i,TCSk,i are as (6), where z = 1 + lk,i, 2 + lk,i, · · ·, |Pk,i| + lk,i, I is a
unit matrix and 0 is a full zero matrix.





TRk,z ,








Pk,i.w

Pk−1,z.w
0

0 Pk,i.h

Pk−1,z.h


 (k = 2, 3, 4)

I2×2 (k = 1)

TSk,z ,








Pk−1,z.x−Pk−1,z.w

2 −Pk,i.x

Pk,i.w
+ 1

2

Pk−1,z.y−Pk−1,z.h

2 −Pk,i.y

Pk,i.h
+ 1

2


 (k = 2, 3, 4)

02×1 (k = 1)

(6)

With topological constructors of the calligraphic artwork, a one-to-one mapping
between points at different levels in its hierarchical representation can be es-
tablished. That is, any point [xk,i, yk,i] in the image space taken up by Pk,i is
uniquely mapped to the point [xl,t, yl,t] in the image space taken up by Pl,t.
Without lost of generality, we assume l > k. According to our hierarchical rep-
resentation, for any [xk,i, yk,i] there must exist such a chain: Pk,i ∈ Pk+1,m1 ∈
· · · ∈ Pk+(l−k−1),ml−k−1 ∈ Pl,t, where Pk+j,mj ∈ Fk+j (j = 1, 2, · · · , l − k − 1).
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For any point [xm,n, ym,n] on the m-th level in the hierarchy, which falls
within the image space taken up by Pm,n, we can use the matrix operator ∇b

m,n

to find its correspondent point ∇b
m,n([xm,n, ym,n]) on the (m + 1)-th level in the

hierarchy:

∇b
m,n([xm,n, ym,n]) , (TRm+1,n[xm,n, ym,n]T + TSm+1,n)T . (7)

We can also find the correspondent point [xl,t, yl,t] on the l-th level in the hi-
erarchical representation for any point [xk,s, yk,s], which is on the k-th level in
the hierarchy and falls within the image space taken up by Pk,s by applying the
above relationship iteratively as (8).

[xl,t, yl,t] = ∇b
l−1,ml−k−1

(
· · ·

(
∇b

k+1,m1

(∇b
k,s([xk,s, yk,s])

)))
(8)

We introduce the matrix operator ∇c
n which can generate a f × ∑n

l=1 dl di-
mensional matrix M = (mi,j)f×Pn

l=1 dl
by concatenating n input matrices Ml =

(ml,i,j)f×dl
, which is individually a m × dl (l = 1, 2, · · · , n) dimensional ma-

trix. That is, we can denote M , ∇c
n(M1,M2, · · · ,Mn) iff (9) holds. In (9.1),∑z

l=1 dl < j ≤ ∑z+1
l=1 dl, z = 1, 2, · · · , n− 1. In (9.2), j ≤ d1.

mi,j =
{

mz+1,i,j−Pz
l=1 dl

(9.1)
m1,i,j (9.2)

(9)

A slight variation of ∇c
n leads to a new operator ∇o

n, defined in (10). ∇o
n concate-

nates some matrices and transposes the resultant matrix. Based on the definition
of ∇c

n, we further define the matrix operator ∇d
n as (11), which concatenates n

copies of the input matrices.

∇o
n(M1,M2, · · · ,Mn) ,

(
∇c

n(M1,M2, · · · ,Mn)
)T

(10)

∇d
n(A) , ∇c

n( A,A, · · · ,A︸ ︷︷ ︸
n matrices As

) (11)

Once again, based on ∇d
n a new matrix operator ∇e

n,m is defined as (12), where
col(En,m) is the number of columns in matrix En,m and 02×2 is a 2× 2 dimen-
sional full zero matrix. ∇e

n,m converts the matrix form parametric representation
En,m for the constructive element Pn,m into its correspondent part in the ma-
trix form parametric representation En+1,l for the constructive element Pn+1,l,
in which Pn,m ∈ Pn+1,l.

∇e
n,m(En,m) ,

∇c
2

(
∇o

2(TRn,m,02×2),∇o
2(02×2,TRn,m)

)
En,m+

∇d
col(En,m)

(
∇o

2(TST
n,m,01×2)

) (12)
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Now, we can derive the formal definition for the hierarchical and parametric
representation for calligraphic artwork as (13), in which lk,i =

∑i−1
s=1 |Pk,s|.





Ek,i = (x′i, y
′
i, a

′
i, b

′
i)

T (P0,i ∈ F0) (k = 0)
Ek,i = ∇c

|Pk,i|

(
∇e

k−1,1+lk,i
(Ek−1,1+lk,i

),

∇e
k−1,2+lk,i

(Ek−1,2+lk,i
), . . . ,

∇e
k−1,|Pk,i|+lk,i

(Ek−1,|Pk,i|+lk,i
)
)

(k = 1, · · · , 5)

(13)

3 Facsimiling Existent Calligraphy

This is the process in which the hierarchical parametric representations are ex-
tracted from input images of existent calligraphic artwork. The reason why we
choose to process this kind of input rather than using tablet input devices is
that many famous calligraphists in history only left their handwriting as static
images. Obviously, it is very easy to tailor our system to process parametric
calligraphy directly sampled by tablet pen as input data.

3.1 Extracting Levels 0–1 Elements

To extract the ellipses from the input image, we first compute the skeleton
of the calligraphy. This is the “character skeletonization” problem. The target
is to extract a skeleton that is a close approximation to the actual trajectory
of the brush when the calligraphy was created. Several existing papers discuss
various approaches to automatic skeletonizing binary images of characters [2, 22,
34]. For the specific problem of handwritten Chinese character skeletonization,
many approaches have also been proposed [3, 4, 8–10, 13, 14, 32].

In our approach, we employed the algorithm in [26] to extract skeletons of
strokes from input images of Chinese characters. The strokes of a character are
extracted first and then the isolated strokes are skeletonized. The algorithm can
work effectively on characters written in most styles. However, for those largely
distorted calligraphic styles, it will tend to commit mistakes. These mistakes
occur during stroke segmentation, where multiple strokes could be mistaken to
be of the same stroke or a single stroke segmented into multiple strokes. This is
a difficult problem to tackle, and an important area for future research.

Once the skeleton of a primitive stroke is identified, each pixel on this dis-
crete curve is taken as the center of an ellipse, and the maximum ellipse within
the stroke area is computed. It is easy to compute all the constructive ellipses
using the Bresenham ellipse rasterization algorithm. In our approach, all the
constructive ellipses do not have rotational freedom, i.e. their major axes must
be either horizontal or vertical.

We then determine the syntax of the identified stroke. This is through com-
paring the shape of the stroke to the shapes of the five standard primitive strokes
(Figure 3(a)). The identified primitive stroke’s syntax is recognized as one of the
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five standard primitive strokes with which the mutual shape similarity is maxi-
mum. The similarity between two 2D shapes a and b is defined to be the max-
imum overlapping between a and b, i.e, Similarity(a,b) , max{Over(a,b)}
with the condition that shape a can be arbitrarily rotated and scaled. The over-
lapping between a and b is defined to be Over(a,b) , (a ∩ b)/(a ∪ b), where
a ∩ b and a ∪ b are respectively the intersection and union of the image spaces
taken up by a and b separately.

3.2 Extracting Levels 2–3 Elements

Based on the identified primitive strokes, we can use the spatial relation be-
tween them to compose constructive elements at higher levels through shape
grammar productions. We can therefore extract constructive elements on levels
2–3. The syntax of any constructive element produced this way can be easily
determined since each shape grammar production is associated with a certain
syntax. Inspired by [11], the idea of fuzzy set is used to increase the reliability
of the extraction process.

The shape grammar production for the compound stroke CS1 in the first
column and first row of Figure 3(b) is:

– IF {a is a horizontal primitive stroke} AND {b is a vertical primitive stroke}
AND {a is on top of b} AND {a is on the left side of b} AND {a touches b}
THEN {a,b should be combined to form the compound stroke CS1.}

And the shape grammar production for the radical R36 in the last column and
last row of Figure 3(c) is:

– IF {a is a degraded compound stroke, which resembles a vertical primitive
stroke} AND {b is a degraded compound stroke, which resembles a vertical
primitive stroke} AND {c is a compound stroke of the kind S2} AND {a is
on the left of c} AND {a is on the left of b} AND {b crosses c} AND {a
touches c}
THEN {a,b,c, should be combined to form the radical R36.}

S2 refers to the compound stroke in the first row and the second column of
Figure 3(b). The speaking of “a degraded compound stroke resembling a vertical
typed primitive stroke” is introduced at Section 2.1. Following [11], during shape
grammar production deduction, each statement in the production is associated
a confidence value. The overall confidence of the shape grammar production
can be derived by the confidence of all its statements. Only the shape grammar
production that yields the highest confidence will be applied.

The above processes of extracting compound strokes and radicals through
shape grammar productions are not always correct when the calligraphy is cur-
sive. Thus, during extraction of constructive elements on levels 2–3, direct user
interaction is allowed through a friendly GUI. Due to the space limitation, we
omit the discussion about this GUI.
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3.3 Extracting Level 4 Elements

To extract constructive elements on level 4, we need to determine which radicals
belong to the same character, and whether the radicals are degraded or not.
This is the well-known problem of “character segmentation” in pattern recogni-
tion research. In our system, we use projection analysis to account for possible
slanting of characters in order to segment the characters in a calligraphy piece,
like what is done in [1]. More accurate and sophisticated character segmentation
methods are introduced in [5], which could be incorporated into future versions
of our system.

4 Generating New Calligraphy

4.1 Principle of New Calligraphy Generation

As early as in 1968, Evan [31] proposed a paradigm for solving geometric analogy
intelligence test questions. In 1975, Simon pointed out that design and creation is
a class of problems featured by their synthesis nature [6]. In early 1980s, Winston
published his pioneering results on the relationship between learning, reasoning
and analogy [24, 25]. Other fundamental work on learning by analogy includes
[12] and [19]. Holyoak concluded that analogical thinking is an important fea-
ture of human intelligence [16]. Keane [20, 21] applied analogical mechanisms to
problem solving. Our approach is also based on analogical reasoning. We devised
a calligraphy creation component by simulating the ARP using a computational
approach.

Suppose that the SARP is applied to the k-th level in the hierarchical rep-
resentation of calligraphic artwork. In the reasoning, there are n constructive
elements Pk,l1 , · · ·, Pk,ln already learned by the computer, which are organized
and stored in a small structural stroke database and activated as source knowl-
edge for the SARP. Recall each element has four fields (Section 2.2). We denote
the analogous reasoning intensity used against the s-th field of the i-th source
knowledge (Pk,li) during the SARP as ωs

li
, where s’s range is 1, · · · , 4. All the

analogous reasoning intensities, ωs
li

(s = 1, · · · , 4), together form the “viewpoint
sequence” of the SARP: ω = {ωs

li
|i = 1, · · · , n; s = 1, · · · , 4}. We denote the re-

sult of the SARP as Pk,r with its matrix form parametric representation being
Ek,r. Then the general mathematic principle we adopted in the SARP can be
stated as (14), where Ek,li is the matrix form parametric representation of the
constructive element Pk,li . With (14), we can generate a new constructive ele-
ment Pk,r based on all the machine-learned samples, Pk,li (i = 1, · · · , n), and the
viewpoint sequence ω through our SARP. Note that (14) is not a strict mathe-
matic equation. It is only a sketch showing the principle we adopted to generate
new calligraphy through the SARP. Section 4.2 discusses in more details the
principle.

Ek,r =
n∑

i=1

4∑
s=1

ωs
liEk,li (14)
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Our SARP is essentially either an interpolation or an extrapolation process.
That is,

∑n
i=1 ωs

li
= 1 (i = 1, · · · , n; s = 1, · · · , 4). In our intelligent calligraphy

generation system, all the analogous reasoning intensities can be input and ad-
justed by the user manually through a graphical interface; the computer would
perform auto-normalization to scale the sum of all the input reasoning intensities
to 1. Our system is also equipped with a component to generate random num-
bers to be used as reasoning intensities, and to filter out those “ugly looking”
calligraphic outputs via a constraint satisfying procedure. Section 5 has more
details on this component.

4.2 New Calligraphy Generation System

Generating new Constructive Elements To carry out the SARP, we need
to equalize the dimensions of the reasoning sources. That is, if Pk,s and Pk,t

are reasoning sources of SARP, their matrix representations (Ek,s)4×n1 and
(Ek,t)4×n2 must be such that n1 = n2. To make the SARP also possible even
when the dimensions of Pk,s and Pk,t are different, we introduce an equalization
operator, ∇g

t , to convert a matrix with any number of columns into a new matrix
with t columns based on “key columns” in the original matrix.

Assume that Pk,li is a reasoning source in the SARP. We first derive a
discrete planar curve composed of the centers of all the constructive ellipses that
Pk,li contains by (15), denoted Ck,li . In (15), (en,i)n×1 , (σ(i, 1), · · · , σ(i, n))T ,
where σ(i, j) = 1 if i = j, otherwise σ(i, j) = 0 and co = col(Ek,ls).

Ck,ls = ∇o
2

(
(eT

4,1 ×Ek,ls)
T , (eT

4,2 ×Ek,ls)
T
)

=
(

x1 x2 · · · xco

y1 y2 · · · yco

) (15)

If the curve has v + 1 key points, with their occurrences in the curve being
the sequence u0, u1, · · ·, uv, the “key columns” in the matrix Ek,li are selected
as the u0, u1, · · ·, uv-th columns. That is, if the curve Ck,ls has v +1 key points,
with their individual coordinates as Ck,lseco,u0 , Ck,lseco,u1 , · · ·, Ck,lseco,uv , the
key columns in the matrix Ek,ls are selected as Ek,lseco,u0 , Ek,lseco,u1 , · · ·,
Ek,lseco,uv . We use the algorithm in [23] to extract key points on the planar
curve. With the key columns of the matrices for all the reasoning sources, a
correspondence between related pieces of knowledge can be set up.

Suppose Ek,ls is the matrix representation of a certain analogy source Pk,ls

with v+1 key columns extracted. These key columns are the u0th, u1th, · · ·, uvth
columns in the matrix (1 = u0 < u1 < · · · < uv = col(Ek,ls), s = 1, 2, · · · , n).
Then, a matrix operator ∇g

t can be defined as (16), which converts one matrix
into a matrix having t columns. In (16), θ = duj + uj+1−uj

d t×(j+1)
v e−d t×j

v e × (i−d t×j
v e)e

; d t×j
v < i ≤ d t×(j+1)

v e ; j ∈ {0, 1, · · · , v − 1}; s = 1, 2, · · · , n; d·e is a floor
function. In particular, if each column in matrix Ek,ls is selected as the key
column, operator ∇g

t can be simplified into (17).
(∇g

t (Ek,ls)
)
et,i , Ek,lsecol(Ek,ls ),θ (i = 1, 2, · · · , t) (16)



Automatic Artistic Calligraphy Generation 15

(∇g
t (Ek,ls)

)
et,i , Ek,lse

col(Ek,ls ),d i×col(Ek,ls
)

t e
(i = 1, 2, · · · , t) (17)

In the SARP, we assume the shape of a constructive element written in the
font style “Kai” (GB2312) as used in recent versions of Microsoft Word to be the
standard shape of the element. For each reasoning source Pk,li in the SARP,
we denote its associated standard constructive element as Pstd

k,li and its matrix
form parametric representation as Estd

k,li . We then compute the distance Ef
k,li

by
which the shape of Pk,li differs from that of Pstd

k,li , as expressed in (18). Ef
k,li

is
used as the feature of Pk,li in the SARP.

Ef
k,li

, Ek,li ªEstd
k,li (18)

Based on the operator of ∇g
t , we can define an active analogy source reaction

operator ∇f
n as (19). In (19), h = max{col(Mi)|i = 1, 2, · · · , n}.

∇f
n(M1,M2, · · · ,Mn) , ∇c

n

(∇g
h(M1),∇g

h(M2), · · · ,∇g
h(Mn)

)
(19)

Applying the operator ∇f
n can derive a feature matrix Ef

k,src relating to all
the activated analogous reasoning sources as (20), where h = max{col(Ek,li)|i =
1, 2, · · · , n}. (20) is a detailed version of (18), which gives the implementation of
the operator ª.

Ef
k,src = Ek,src ªEk,std , Ek,src −∇f

n(Estd
k,l1 , · · · ,Estd

k,ln) (20)

Recall that all the reasoning intensities in SARP are organized into the view-
point sequence ω (Section 4.1). We simulate ARP as an interpolation/extrapolation
process. To derive Pf

k,r, the feature of the reasoning result from the SARP, we
take the reasoning intensity ωs

li
against the s-th field of the i-th reasoning source

Pk,li as the weight for the s-th row of the feature matrix Ef
k,li

of Pk,li in an in-
terpolation/extrapolation process (s = 1, · · · , 4; i = 1, · · · , n). This means that
Ef

k,li
s are the entities that are actually interpolated/extrapolated. The inter-

polation/extrapolation process we employ to simulate ARP is in the form of
(21).

Ef
k,r = ®(Ef

k,l1
, · · · ,Ef

k,ln
, ω) (21)

where Ef
k,r is the matrix form parametric representation of Pf

k,r; ® is the analo-
gous reasoning mechanism simulation operator, which is currently implemented
as an interpolation/extrapolation process in our prototype system. (24) depicts
the specific interpolation/extrapolation strategy we employed, to be explained
later.

According to a user specified reasoning intensities ωs
li

for each reasoning
source in the hierarchy, we can derive an analogous reasoning viewpoint matrix
Ws acting on the s-th fields of all the activated analogous reasoning sources in
SARP as (22), where h = max{col(Ek,li)|i = 1, 2, · · · , n} and Ih×h is a h × h
dimensional unit matrix, s = 1, · · · , 4.

Ws , ∇o
n(ωs

l1 × Ih×h, ωs
l2 × Ih×h, · · · , ωs

ln × Ih×h) (22)
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Now, we can get the reasoning feature result Ef
k,r from SARP as (23). (23) is

a detailed version of (21), which gives the implementation of the operator ®.

Ef
k,r = ®(Ef

k,l1
, · · · ,Ef

k,ln
, ω) ,(

∇c
4

(
(Ef

k,src ⊗W1)T e4,1, · · · , (Ef
k,src ⊗W4)T e4,4

))T (23)

In (23), ⊗ is the analogous reasoning mechanism simulation operator, defined at
(24). In (24), ci,j is the element in the i-th row and j-th column of the matrix
Cp×r. If the SARP is linear, ⊗ is defined as (24.1). In (24.1), • is the ordinary
matrix multiplication operator. If the reasoning process is z-degree polynomial,
⊗ is defined as (24.2). If the process is non-polynomial, ⊗ can be defined as
(24.3).

Cp×r = Ap×q ⊗Bq,r ,





Ap×q •Bq,r (24.1)
ci,j = z

√∑q
k=1(ai,k × bk,j)z (24.2)

ci,j = q
√∏q

k=1(ai,k × bk,j) (24.3)
(24)

If all the intensities of reasoning sources fall within (0, 1), namely 0 ≤ ωs
li
≤ 1

(s = 1, · · · , 4; i = 1, · · · , n), the ARP is simulated using an interpolation process;
otherwise it is simulated using an extrapolation process. From a psychological
point of view, if ∃ωs

li
< 0, the SARP reflects the inverse reasoning of brain ac-

tivity; if ∃ωs
li

> 1, the SARP represents positive exaggeration of brain activity;
and if n ≥ 3, SARP mimics combined thinking activity.

Finally by adding back the shape of Pstd
k,r , the standard constructive element

associated with the feature Pf
k,r of the reasoning result Pk,r in the SARP, we

obtain the parametric representation Ek,r of Pk,r as indicated by (25), where
Estd

k,r is the matrix form parametric representation of the shape of Pstd
k,r .

Ek,r = Ef
k,r ⊕Estd

k,r (25)

(26) is a detailed version of (25), which gives the implementation of the operator
⊕. With ⊕, the resultant knowledge (constructive elements in calligraphy) from
the SARP can be derived. In (26), h = max{col(Ek,li)|i = 1, 2, · · · , n}.

Ek,r = Ef
k,r ⊕Estd

k,r , Ef
k,r +∇g

hE
std
k,r (26)

Generating new Topological Constructor Note that the SARP can be ap-
plied not only on the matrix representations, Ek,l1 , · · ·, Ek,ln , of all the reasoning
sources, Pk,l1 , · · ·, Pk,ln , by evaluating a series of matrix operations simulating
the ARP, but can also be applied to the topological constructors of all the
reasoning sources, Tk,l1 , · · ·, Tk,ln . If the corresponding intensities of Tk,l1 , · · ·,
Tk,ln are ωl1 , · · ·, ωln , where

∑n
i=1 ωli = 1, the newly generated topological con-

structor Tk,r can be given as: Tk,r , ¯(Tk,l1 , · · · ,Tk,ln , ωl1 , · · · , ωln). Here ¯
is the ARP simulation operator for topological constructors. Similarly, we can
overload the definition of the operator ¯ to simulate different types of creative
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thinking activities; some simple ones are: arithmetic mean, geometric mean and
harmonic mean. The strict definition about the analogous reasoning simulation
operator for topological constructors ¯ are as (27).

Tk,r , ¯(Tk,l1 , · · · ,Tk,ln , ωl1 , · · · , ωln) ,





∑n
i=1(Tk,li × ωli) Arithmetic Mean∏n
i=1(T

ωli

k,li
) Geometric Mean( ∑n

i=1(
ωli

Tk,li

)
)−1

Harmonic Mean

(27)

5 Generating Artistic Calligraphy

5.1 Constraints on the Process

There are four constraints that are useful: Con1 is a rigid constraint, and Con2,
Con3, and Con4 are soft constraints.

Con1 says that the source knowledge that is being reasoned must be homo-
geneous in terms of its compositive constructive elements; that is, they must be
composed of the same number of sub-constructive elements from one level down.
Con2 and Con3 suggest that all the reasoning sources in the SARP, namely
parameterized constructive elements from existent calligraphy, must have similar
syntax. Con2 requires all the constructive elements used in the reasoning process
must be in the same level; specifically, when we apply reasoning on Pm,s and
Pn,t, we must guarantee m = n. Con3 dictates that the constructive elements
being reasoned on should have similar properties. For instance, if we are rea-
soning at the level of “primitive strokes”, the elements involved must be of the
same type which is one of the five possible types in level 1: a horizontal stroke,
a vertical stroke, a left slanting stroke, a right slanting stroke or a point stroke,
which are illustrated at Figure 3(a). Con4 demands that the structure of the
newly generated calligraphy should not go beyond the maximum and minimum
tolerable constraint extracted from all the samples learned. Section 5.3 discusses
the details of maximum and minimum tolerable constraints.

5.2 Extracting Aesthetic Constraints from Existent Artwork

Interference between Constructive Elements Needed for a quantifiable
constraint on aesthetics is the concept of the degree of interference between two
constructive elements, which indicates the spatial inter-relationship between the
elements. These degrees of interference supervise the process of generating an
upper-level constructive element from several lower-level ones.

We denote the bounding boxes of two constructive elements a and b as a
and b. There are three kinds of degrees of interference possible between a and
b, as given in (28). ϑx(a,b) is the x dimensional degree of interference; ϑy(a,b)
the y dimensional degree of interference; and ϑs(a,b) the shaping degree of
interference. In (28.3), I(a) and I(b) are the image spaces that the constructive
elements a and b take up; I(a) ∩ I(b) and I(a) ∪ I(b) are the intersection
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and union of these two image spaces, respectively. With (28), the x, y directional
spatial relativity between a and b can be compactly represented, and the shaping
degree of interference ϑs(a,b) can depict the degree of overlapping of the two
constructive elements a and b.





ϑx(a,b) , (a.x− b.x)/(a.w + b.w) (28.1)
ϑy(a,b) , (a.y − b.y)/(a.h + b.h) (28.2)
ϑs(a,b) , (I(a) ∩ I(b))/(I(a) ∪ I(b)) (28.3)

(28)

Introducing these three kinds of the degrees of interference not only gives
much convenience in describing the spatial relativity between the two construc-
tive elements concerned quantitatively, but also helps express the spatial rela-
tivity qualitatively. Take ϑx(a,b) for example, if ϑx(a,b) < − 1

2 , a is on the
left side of b, not overlapping; if ϑx(a,b) = − 1

2 , a is on the left side of b, just
overlapping; if ϑx(a,b) ∈ [− 1

2 ,− 1
2 ], a overlaps with b; if ϑx(a,b) = 1

2 , a is on
the right side of b, just overlapping; if ϑx(a,b) > 1

2 , a is on the right side of
b, not overlapping. In the same manner, with ϑy(a,b), the spatial relativity be-
tween a and b along the y dimension can be conveniently derived. ϑs(a,b) also
reveals whether the two constructive elements overlap: if ϑs(a,b) > 0, the two
constructive elements overlap.

Structure Matrix of a Constructive Element Based on the degrees of
interference between two constructive elements just defined, we introduce the
structure matrix of a constructive element. Let Pk+1,1 be the bounding box of a
constructive element Pk+1,1, which is composed of m constructive elements Pk,l1 ,
· · ·, Pk,lm in the next lower level. We use three matrices, θx(Pk+1,1), θy(Pk+1,1),
and θs(Pk+1,1), to represent the structure of Pk+1,1, as given in (29). The three
matrices are essentially made up of the x, y dimensional and shaping degrees of
interference between every pair of Pk,li and Pk,lj .





θx(Pk+1,1) , (θi,j
k,x)m×m; θi,j

k,x = ϑx(Pk,li ,Pk,lj )
θy(Pk+1,1) , (θi,j

k,y)m×m; θi,j
k,y = ϑy(Pk,li ,Pk,lj )

θs(Pk+1,1) , (θi,j
k,s)m×m; θi,j

k,s = ϑs(Pk,li ,Pk,lj )
(i = 1, · · · ,m; j = 1, · · · ,m)

(29)

5.3 Constraint Satisfaction for Calligraphy Generation

In Section 4.1, we assumed there are n knowledge sources, Pk,l1 , · · ·, Pk,ln , in the
SARP. With the structure matrices of these n samples computed according to
(29), we can derive constraint matrices for the SARP needed for the generation
of artistic calligraphy. Without lost of generality, we discuss how to derive two
x-dimensional constraint matrices based on θx(Pk,l1), · · ·, θx(Pk,ln). Among the
two constraint matrices, one is the matrix of the maximum tolerable structure
θmax

x and another one is the matrix of the minimum tolerable structure θmin
x . As-

sume each of Pk,l1 , · · ·, Pk,ln is composed of m constructive elements of the next



Automatic Artistic Calligraphy Generation 19

lower level; then θmax
x and θmin

x are both m×m dimensional matrices. In θmax
x ,

the element in the i-th row and the j-th column (θmax
x (i, j)) is the maximum

value of all the n elements in the i-th row and the j-th column of θx(Pk,l1), · · ·,
θx(Pk,ln). Similarly, θmin

x (i, j), the element in the i-th row and the j-th column
of θmin

x , is the minimum value of all the elements in the i-th row and the j-th
column of θx(Pk,l1), · · ·, θx(Pk,ln). The use of the two constraint matrices in the
SARP is simple: during the SARP, each time when the system automatically
generates a new constructive element Pk,r, the x-dimensional structure matrix
of this element is computed as θx(Pk,r). The system will output this newly gen-
erated constructive element only if θx(Pk,r) is no smaller than θmin

x under the
tolerance τmin and no larger than θmax

x under the tolerance τmax. We say a
matrix is larger (resp. smaller) than another matrix under a certain tolerance τ
only if all of its elements are at least (resp. at most) τ times that of the corre-
sponding elements in another matrix and these other elements are non-zero. In
our experiments, we set τmax = 0.8 and τmin = 1.2. Similarly, we also derive
θmin

y , θmax
y , θmin

s , θmax
s to constrain the randomly generated intensities of the

SARP to forbid the system to output a calligraphy that violates the aesthetic
constraints extracted from existent calligraphy.

5.4 Relaxing the Aesthetic Constraints

The constraints of the SARP can be relaxed in order to allow for results with
new styles that are not so imaginable. To relax Con1, constructive elements
that are heterogeneous can be turned into homogeneous ones by combining some
sub-constructive elements together. [17] gives an optimized strategy to do the
combining using fuzzy-attribute graphs. To relax Con2, we apply the SARP
simultaneously to constructive elements belonging to different layers. To relax
Con3, we apply the SARP to constructive elements with different syntaxes,
such as reasoning between a point and a vertical stroke. To relax Con4, we can
adjust the thresholds τmin and τmax when comparing the structure matrix of
the newly generated constructive element against the maximum and minimum
tolerance matrices.

From a computational psychology’s perspective, relaxing or ignoring the con-
straints in our analogous reasoning process corresponds to creative brain activity
of the calligraphists such as when performing cursive and running style writing.
Such a loose SARP could well be the reflection of the thinking process of a cal-
ligraphist while creating an artwork of running style, a style which is considered
to be the freest of all forms. Without the constraints or with them relaxed, there
is a huge space in which reasoning could lead to plenty of fancy results. Going
to the extreme with the relaxation, however, might give rise to ugly handwriting
results. When such a situation arises, some human intervention to filter out the
unacceptable might be necessary.
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Fig. 6. A single character in many styles; the first row is the learned samples, and the
other four rows are the computer generated results

6 Experimental Results

Because of space limitation, we can show a small sample of the results. Fig-
ure 6 shows the results from the SARP being applied to a single character
using six learned samples as the reasoning source, with the analogous reasoning
simulated as a linear interpolation process. Figure 7 shows the results at the
single-character level using five learned samples, with the analogous reasoning
simulated as a non-linear interpolation process. Figure 8 is the result of another
experiment of analogous reasoning up to the single-character level. The results
verify that our approach can yield different new styles, as well as consistently
styled characters within the same new style.

We also analyzed the sensitivity in terms of the increase of creativity of
the system when the number of learned samples was varied. Figure 9 reports
the results, where the sample styles learned are the shapes of the “Kai”, “Li”,
“Xingshu”, “Weibei”, “Xingkai”, “Xingchao”, and “Kuangchao” styles. We in-
vited six calligraphic fans with at least more than 2 years’ writing experience
and four professional calligraphists to form a review committee, including a pro-
fessor major at calligraphy in an art school as the reviewing committee. They
cast votes on the calligraphic artwork generated by the system. If an artwork
received more than seven votes, it was considered a new calligraphic work. Fig-
ure 9 clearly shows that with more learned samples, the chance of generating an
acceptable calligraphy piece increases.

We would like also to show Figure 10. The calligraphy (the character “for-
ever” in Chinese) at the top of the picture was generated fully automatically
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(a) (b)

(c) (d) (e) (f) (g)

(h) (i) (j) (k) (l)

Fig. 7. A “couple” in many styles. (a) The learned samples. (b)–(l) Some selected
computer generated results
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(a)

(b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o)

Fig. 8. (a) Learned samples in seven styles. (b)–(o) Some selected samples of newly
generated calligraphy
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(a) (b)

Fig. 9. System’s creativity (vertical axis—number of acceptable results) against num-
ber of learned samples (horizontal axis). (a) Single-character level using linear reason-
ing. (b) Single-character level using non-linear reasoning

Fig. 10. “Forever running”
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using the our prototype system, while the horse was generated through human
manipulation using a paint-brush software [29]. The character is in a rapid-
running style that projects the same spirit as that of the running horse.

7 Advanced Applications

The system described above is an interesting and practical system by itself.
There are other, more advanced applications that are possible using our current
framework as a base.

7.1 Recognizing Artistic Calligraphy

Artistic calligraphy tends to contain many distorted characters. Normal opti-
cal character recognition techniques (OCR) cannot effectively deal with them
because they are mostly based on templates of styles that are commonly used.

However, each person is likely to have his own personal handwriting style.
Thus there are countless different styles in the world. With our system, a rela-
tionship between the shapes of the same character written in different styles can
be established. Such a relationship between even a small number of typical hand-
writing styles would allow the shapes of the character in a wide range of styles
to be predicted by the system. This mechanism can be used in a calligraphy
recognition system.

7.2 Beautifying Personal Handwriting

In many places, especially in Asia, handwriting is looked on as something that
reflects the quality of a person. In situations where personal handwriting is pre-
ferred to writing with regular font types, our system can help beautify a person’s
handwriting. He first writes his own handwriting. And then the handwriting is
input to our system as one source for the simulated analogous reasoning process.
He may pick a beautiful style as another source for the reasoning process, or sev-
eral of them. By manually specifying the reasoning intensities, he can choose to
what extent his personal handwriting should be rectified. The computer can re-
member the setting, and so in the future, he can always generate his beautiful
handwriting with the same consistent style.

8 Conclusion and Future Work

With the parametric hierarchical knowledge representation of Chinese calligra-
phy, the computer is able to create new Chinese calligraphic artwork in a variety
of styles fully automatically and in real time after learning a limited number of
printed calligraphic inputs. The creative ability of the proposed intelligent cal-
ligraphy generation system is very powerful because of the huge feasible space
available for the simulated analogous reasoning process. The experimental re-
sults show that our approach can indeed generate calligraphic artwork that can
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stand among existing artwork, whether they appear to be realistic or completely
inventive.

There is a tradeoff between the creativity and the practical acceptability of
interpolation results. Too strict a set of constraints can limit the creativity, while
too loose a set of constraints could harm the overall acceptability of the results.
How to find the best tradeoff point should be a worthwhile future pursuit.

The input calligraphic artwork samples we used are in different well-disciplined
styles in the Chinese calligraphy world, based on which our system can produce
a large number of new writing styles. How to create a new writing style with
a pre-specified constraint on its style (as opposed to a character) is a much
harder and more challenging research issue. In order to solve the problem, we
need to extract the relationships between the parameters driving the analogy;
these parameters include the analogous reasoning’s source intensities and quan-
titative definitions for the visual features of different writing styles. The degree
of automation to which our system can learn the sample source knowledge from
copybooks can be further improved, which is a nontrivial pattern recognition
problem for characters in cursive writing style.

Every piece of newly created calligraphic artwork has a set of source inten-
sities associated with the reasoning. Some generated results are more beautiful
than others. An interesting task would be to find out the relationships among
these source intensities and how they translate into aesthetic values. This can be
called “quantitative aesthetics”, which should be a challenging topic for future
research.
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