
© The Stephenson Project

Knowledge Sharing in Software
Development

Hans van Vliet, Antony Tang

VU University Amsterdam

QSIC 2010
July 14, 2010

© The Stephenson Project

My personal history

1967 computer operator, programmer

1996- Research Software Architecture (ALMA, GRIFFIN, Stephenson)

1973-
1978 MSc Mathematics/CS

1979 PhD, ALGOL 68

1986 Professor Software Engineering, VU University

1983 Software Engineering textbook (2000, 2008)

2008 Journal of Systems and Software (EiC)

© The Stephenson Project

© The Stephenson Project

Main hypothesis

Better knowledge sharing

Better quality

© The Stephenson Project 5

Summary

 Software people are not inclined to share knowledge

 There is a lot of knowledge in the artefacts

 Feedback based on continuous/regular mining of
artefacts

© The Stephenson Project

The Griffin Consortium

© The Stephenson Project

Software architecture

 Software architecture = components + connectors

 Software architecture = set of design decisions

 Software architecture knowledge = solution
(components + connectors) + why this solution (design
decisions + rationale)

© The Stephenson Project

Architecture of WWW – design decisions
(according to Taylor/Medvidovic/Dashevy book)

Web is a collection of resources with unique names
(URL)
 Each resource denotes some information
URI can be used to determine the identity of a machine
Communication is initiated by clients
Resources can be manipulated through their

representation
All communication goes through their representation,

with commands like GET, POST, …
 Interactions are stateless

© The Stephenson Project

0

5

10

15

20

25

30

35

40

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

N
um

be
r o

f p
ap

er
s

Year

Papers that discuss 'Architectural Knowledge'

© The Stephenson Project

Research themes Griffin

Traceability

Compliance !

Support alignment to common
architectural rules

Enable effective navigation through an
organization’s body of AK

Sharing

Discovery ?

Enhance the findability of relevant
Architectural Knowledge

Improve the way AK is shared within and
between organizations

© The Stephenson Project 11

Theoretical Framework -
What we thought architects do

1. Communicate
 Inform colleagues & customers, explain things, discuss, etc.

2. Make decisions
 Weigh pros & cons, consider alternatives and make tradeoffs

3. Assess quality
 Convince stakeholders, ensure QAs, assess architectures

4. Document
 Describe architectural solutions, (re)use templates, etc.

5. Acquire knowledge
 By training, reading, attending conferences, using the Internet

© The Stephenson Project

Theoretical Framework –
Support we thought architects would need

1. Decision management support
 Overviews, codification templates, repositories, traceability

2. Efficient search mechanisms
 Search for architectural guidelines and rules, decisions, or

relevant project information
3. Community building support
 Who is doing/knowing what? Ease collaboration, notifications

4. Intelligent advice
 Pro-active feedback, specific suggestions, overviews

5. Knowledge management support
 Automatic retrieval of AK, annotation support, central

management of knowledge entities

12

© The Stephenson Project

Survey analysis – main findings 1/3

What architects do
 Decision making is their most important activity
 Documenting the results is their least important activity
 More experienced architects spend more time in documenting

and in quality assessment

Discussion
 Lack of a defined visible process does not induce documenting
 Architects have a lot of tacit knowledge that is hard to codify
 Documenting results could make architects redundant
 The prevalent mindset of architects is focused on ‘to create

and communicate’ rather than ‘to review and maintain’ an
architecture

13

© The Stephenson Project

Survey analysis – main findings 2/3

What architects need
 Architects mostly need effective ways of searching AK and

support for decision management
 Architects are not that fond of knowledge management or

intelligent support

Discussion
 There is a lack of balance between production and

consumption of knowledge (architects really need previously
stored knowledge, but refrain from documenting it…)
 Architects wish to remain in control; no tool, method or

colleague can take over their role
 This might also explain why community building support was

ranked rather low

14

© The Stephenson Project

Meet the ‘lonesome architect’ (WICSA 2009)

 Someone who takes all major design decisions

 Someone who cares less about documenting and
sharing AK

 Someone not that interested in automated or intelligent
support

 Someone who demands effective ways of searching AK

15

© The Stephenson Project 16

Summary

 Software people are not inclined to share knowledge

 There is a lot of knowledge in the artefacts

 Feedback based on continuous/regular mining of
artefacts

© The Stephenson Project

How (un)evolvable is this architecture?

Subs1

Subs4

Subs2

Subs5

Subs3

© The Stephenson Project

Context

 hundreds of developers

 decades of development

 millions LOC

 developed in C, C++, C#, …

Magnetic Resonance
(MR)

© The Stephenson Project

Modification Similarity of Files

 Computed using the Jaccard similarity metric

a01a11a10

f1 f2

S(f1, f2) = a11/(a11 + a10 + a01)

© The Stephenson Project

Evolutionary Clusters

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

Evolutionary
Cluster

0

1

© The Stephenson Project

Example cluster hierarchy

© The Stephenson Project

Filtering the hierarchy

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

© The Stephenson Project

Filtered hierarchy and hot spots

Non-trivial
Evolutionary

Clusters

© The Stephenson Project

Hot Spots

Hot Spots are software entities (files or building blocks)
changing together frequently over the borders of
different subsystems.

Subs1 Subs2

© The Stephenson Project

The Top 10 Hot Spots

Hot Spot

Non-issue Issue

Already known Yet unknown

1 2 3 4 5 6 7 8 9 10

© The Stephenson Project

Relevant properties of a hot spot

 Support (Jaccard value)

 Size

Different subsystems/development groups/
development sites/ hardware…

When co-evolved first/last, tendency

…

© The Stephenson Project

The characterization

HS 7

Distributions Borders Crossed

Confidence Support First co‐evolution Last co‐evolution CE Tend. DEV IND HWP

Size:
15

MAX 0.1769 106 16 Oct 2004 07 Oct 2006 0.0593

OK !!! OK
MIN 0.0615 35 04 Apr 2005 16 Dec 2006 ‐0.2408

AVG 0.1050 61 19 Feb 2005 28 Nov 2006 ‐0.1180

SIG 0.0279 16 74 19 0.0590

© The Stephenson Project

Borders Crossed 1

Development Groups
 Independent Release Group
Hardware pieces

Borders Crossed

DEV IND HWP

OK !!! OK

same development groupsame hardware piece

© The Stephenson Project

The Characterization

HS 7

Distributions Borders Crossed

Confidence Support First co‐evolution Last co‐evolution CE Tend. DEV IND HWP

Size:
15

MAX 0.1769 106 16 Oct 2004 07 Oct 2006 0.0593

OK !!! OK
MIN 0.0615 35 04 Apr 2005 16 Dec 2006 ‐0.2408

AVG 0.1050 61 19 Feb 2005 28 Nov 2006 ‐0.1180

SIG 0.0279 16 74 19 0.0590

© The Stephenson Project

The characterization

HS 7

Distributions Borders Crossed

Confidence Support First co‐evolution Last co‐evolution CE Tend. DEV IND HWP

Size:
15

MAX 0.1769 106 16 Oct 2004 07 Oct 2006 0.0593

OK !!! OK
MIN 0.0615 35 04 Apr 2005 16 Dec 2006 ‐0.2408

AVG 0.1050 61 19 Feb 2005 28 Nov 2006 ‐0.1180

SIG 0.0279 16 74 19 0.0590

© The Stephenson Project

Distribution of Co-evolutions 1

31

time

NOW

First Last

© The Stephenson Project

Distribution of Co-evolutions 2

time

NOW

time

time

© The Stephenson Project

The characterization

HS 7

Distributions Borders Crossed

Confidence Support First co‐evolution Last co‐evolution CE Tend. DEV IND HWP

Size:
15

MAX 0.1769 106 16 Oct 2004 07 Oct 2006 0.0593

OK !!! OK
MIN 0.0615 35 04 Apr 2005 16 Dec 2006 ‐0.2408

AVG 0.1050 61 19 Feb 2005 28 Nov 2006 ‐0.1180

SIG 0.0279 16 74 19 0.0590

© The Stephenson Project

Which One Is More Important?

HS 7

Distributions Borders Crossed

Confidence Support First co‐evolution Last co‐evolution CE Tendency DEV IND HWP

Size:
15

MAX 0.1769 106 16 Oct 2004 07 Oct 2006 0.0593

OK !!! OK
MIN 0.0615 35 04 Apr 2005 16 Dec 2006 ‐0.2408

AVG 0.1050 61 19 Feb 2005 28 Nov 2006 ‐0.1180

SIG 0.0279 16 74 19 0.0590

HS 8

Distributions Borders Crossed

Confidence Support First co‐evolution Last co‐evolution CE Tendency DEV IND HWP

Size:
3

MAX 0.1226 26 14 Apr 2000 19 Jun 2006 ‐0.3681

!!! !!! !!!
MIN 0.0869 24 14 Apr 2000 19 Jun 2006 ‐0.3704

AVG 0.1047 25 14 Apr 2000 19 Jun 2006 ‐0.3693

SIG 0.0017 1 0 0 0.0013

© The Stephenson Project

Which One is More Important?

 The answer is context dependent

 Priorities have to be determined according to the
interests of architects / developers the list of hot
spots is pruned by executing queries on them (like “I
am only interested in hot spots that cross development
sites, where most changes occurred recently”)

© The Stephenson Project 36

Summary

 Software people are not inclined to share knowledge

 There is a lot of knowledge in the artefacts

 Feedback based on continuous/regular mining of
artefacts

© The Stephenson Project

A printer product line

© The Stephenson Project

Characteristics

 Product lines for both wide format printing and
document printing (in total: 7)

Many products under development/in operation

Controller software: ~250 people

 3 sites, in 3 countries (& legal relations differ)

© The Stephenson Project

Tensions

How much to document?
 Everything upfront? – classic approach
 Nothing? – pure agile
 Somewhere in between, just-in-time, just-enough

How much to plan?
 Grand upfront design? – enterprise architecture/product line

architecture document
 Let all flowers bloom
 Somewhere in between? – “Owen” model

© The Stephenson Project

Owen model

Platform Focus
- Large platform team
- Many small
- product teams
- Hierarchical work

Product Focus
- Platform dev by
product teams

- Small platform team
- Co-operative work

platform
product

Owen

Effort

Toft et al, A cooperative model for cross-divisional product development, SPLC1

© The Stephenson Project

Agile
Development

Process

Time-to-market Short Delivery
Cycle

Compromised
Documentation

Standards

Cost
Minimisation Insufficient

Documented
Knowledge

Compromised
Quality of

Analysis & Design

Software
Quality

High
Reliance on

Knowledge Workers

Impact costs because
of rework

impacts
delivery

Documented
Knowledge is
Disorganised

© The Stephenson Project

Example issues we investigate

How much should the architect tell

How far ahead should an architect plan

Knowledge sharing issues between sites

© The Stephenson Project

How much should the architect tell

I don’t care Verification boomerang

© The Stephenson Project

How much should the architect tell

 Investigate database with >400 architecture-related bug
reports
Classify causes:
 Quality of architecture documents
 Personnel volatility (multisite, agile)
 (Assumptions about) knowledge of developers (domain,

limitations, where to look)

© The Stephenson Project WICSA/ECSA 2009 / Cambridge / 14-17 September 2009 45

Dynamic feedback by mining bugs

bugs, level of detail, …

advice

© The Stephenson Project

How far ahead should an architect plan

architecture

standards

technology competitors

marketing

© The Stephenson Project

How far ahead should an architect plan

 Short-term, reactive planning (quick-fix) vs

 Long-term, architecture-guided planning

 Time to market/cost/flexibility

© The Stephenson Project WICSA/ECSA 2009 / Cambridge / 14-17 September 2009 48

Dynamic feedback about roadmaps used

roadmaps, time & cost, …

advice

© The Stephenson Project

Knowledge sharing between sites

Site A Site B
documents, people, n bugs

Site A Site B
documents, people, N bugs

project X

project Y

© The Stephenson Project

Knowledge sharing between sites

What causes these quality/productivity differences?
 Lack of communication?
 Lack of knowledge sharing?
 Relationship issues?
 Relative group size?

© The Stephenson Project

Relative group size

© The Stephenson Project WICSA/ECSA 2009 / Cambridge / 14-17 September 2009 52

Overall vision wrt knowledge sharing support:
Feedback loop based on mining diverse data sources

results, bugs, time, …

advice

© The Stephenson Project

Summary

 Large variety of knowledge sharing issues

 Industry cooperation leads to challenging problems

 Software engineering becomes data-intensive

