
Assessing dependability for mobile and
ubiquitous systems:

Is there a role for Software Architectures?

Software Engineering and Architecture Group
Dipartimento di Informatica

Università degli Studi dell'Aquila
I-67100 L'Aquila, Italy

Paola Inverardi

QSIC 2010, Zhangjiajie, China

Setting the context

» Software architecture

- gives structure to the composition mechanism

- imposes constraints to the interaction mechanism

> roles, number, interaction mode, etc.

2

SEA Group

> roles, number, interaction mode, etc.

» Mobile & Ubiquitous scenario

- location-based

- resource-aware

- content-based

- user-need-aware

Context Awareness

» (Physical) Mobility allows a user to move out of his
proper context, traveling across different contexts.

» How different? In terms of (Availability of)
Resources (connectivity, energy, software, etc.) but
not only …

3

SEA Group

not only …

» When building a closed system the context is
determined and it is part of the (non-functional)
requirements (operational, social, organizational
constraints)

» If contexts change, requirements change � the
system needs to change � evolution

When and How can the system change?

» When? Due to contexts changes � while it is operating �
at run time

4

SEA Group

» How? Through (Self)adaptiveness/dynamicity/evolution
Different kind of changes at different levels of granularity,
from software architecture to code line

» Here we are interested in SA changes

The Challenge for Mobile & Ubiquitous scenario

» Context Awareness : Mobility and Ubiquity
�

» (Self-)adaptiveness/dynamicity/evolution: defines
the ability of a system to change in response of
external changes

5

SEA Group

external changes

» Dependability: focuses on QoS attributes
(performance and all ---abilities)

It impacts all the software life cycle but …

How does the SA contribute to dependability?

Dependability

» the trustworthiness of a computing system which
allows reliance to be justifiably placed on the service
it delivers ...

Dependability includes such attributes as reliability,
availability, safety, security . (see IFIP WG 10.4 on

6

SEA Group

availability, safety, security . (see IFIP WG 10.4 on
DEPENDABLE COMPUTING AND FAULT TOLERANCE
http://www.dependability.org/wg10.4/)

How do we achieve dependability? All along the
software life cycle from requirements to operation to
maintenance.

By analysing models, testing code, monitor
execution

Dependability and QoS attributes

»» analysinganalysing models: models: functional and non-functional,
several abstraction levels, not a unique model

»» testingtesting code: code: various kind of testing e.g. functional-
based, operational-based (still models behavioral and
stochastic, respectively)

7

SEA Group

stochastic, respectively)

»» monitormonitor execution: execution: implies monitoring (yet another …
model of) the system at run time, it impacts the
middleware

» Focus is on models, from behavioral to stochastic

Models for SA (examples)

» System dynamic model (LTS, MSC, etc)

» Queuing Network models (+-extended) derived from
the dynamic models

8

SEA Group

the dynamic models

» Models analysis, e.g. reacheability for deadlocks
etc.

» Performance indices evaluation for QN

SOFTWARE ARCHITECTURES

» Abstractions of real systems: Design stage

» Computations => Components

9

SEA Group

» Computations => Components

» Abstraction over :

» Interactions => Connectors

» ++++ Static & Dynamic Description ++++

SOFTWARE ARCHITECTURES

» (Closed) Software Architectures: components +
connectors

» Architectural Styles: family of similar systems. It
provides a vocabulary of components and connector
types, and a set of constraints on how they can be

10

SEA Group

types, and a set of constraints on how they can be
combined.

» Architectural Patterns: well-established solutions
to architectural problems. It gives description of the
elements and relation type together with a set of
constraints on how they may be used.

Analysing Evolving Systems

» Systems that change structure and/or behaviour

» Change the four Ws:

- Why there is the need to change?

11

SEA Group

- Why there is the need to change?

- What does (not) change ? (only SA changes)

- When does the change happen?

- What/Who how is the change managed?

Four Examples

- Synthesis

- Performance

- Chamaleon

- Connect

12

SEA Group

- Connect

EVOLUTION 1

SYNTHESIS

13

SEA Group

SYNTHESIS
Tivoli, Autili, Inverardi

CBSE-Synthesis
Problem: The ability to establish properties on

the assembly code by only assuming a
relative knowledge of the single components
properties.

14

SEA Group

A software architecture represents the reference skeleton
used to compose components and let them interact:
interactions among components are represented by the
notion of software connector.

Goals

» Provide a framework to support the development of
distributed component-based systems out of a set of
already implemented heterogeneous components by
ensuring the correct functioning of the assembled system

15

SEA Group

ensuring the correct functioning of the assembled system
at components interaction protocol level.

Problem description (1/2)

C1C1 C2C2

AdaptorAdaptor--FreeFree ArchitectureArchitecture (AFA)(AFA)

Deadlocking Deadlocking

16

SEA Group

C3C3 C4C4

Deadlocking Deadlocking
interactioninteraction

Problem description (2/2)

C1C1 C2C2

AdaptorAdaptor--Free Architecture (AFA)Free Architecture (AFA)

Desired behaviorDesired behavior
specificationspecification

XX

17

SEA Group

C3C3 C4C4

Desired behavior Desired behavior
violating interactionviolating interaction

XX

Distributed SYNTHESIS method: first step
CentralizedCentralized AdaptorAdaptor--BasedBased ArchitectureArchitecture (CABA)(CABA)

C1C1 C2C2
Centralized glue Centralized glue
Adaptor modelsAdaptor models--LTSLTS

»»It models a It models a dummydummy
router for the router for the

AdaptorAdaptor--FreeFree ArchitectureArchitecture (AFA)(AFA)

Specific (additional)

18

SEA Group

C3C3 C4C4

Centralized glue AdaptorCentralized glue Adaptor router for the router for the
components components
interactioninteraction

»» Automatically Automatically
generated by generated by
SynthesisSynthesis

Specific (additional)
computational entities

Distributed SYNTHESIS method: second step

C1C1 C2C2

Centralized glue Adaptor (LTS)Centralized glue Adaptor (LTS)

1) Deadlock1) Deadlock--freedomfreedom
analysisanalysis

Centralized AdaptorCentralized Adaptor--Based Architecture (CABA)Based Architecture (CABA)

19

SEA Group

C3C3 C4C4

Centralized glue Adaptor (LTS)Centralized glue Adaptor (LTS)

Desired behaviorDesired behavior
specification: specification:
LTSLTS--based notationbased notation

2) Desired behavior2) Desired behavior analysisanalysis

SYNTHESIS method overview: second step
DistributedDistributed AdaptorAdaptor--BasedBased ArchitectureArchitecture (DABA)(DABA)

C1C1 C2C2

W1W1 W2W2

Distributed AdaptorDistributed Adaptor
((i.e.i.e., set of wrappers), set of wrappers)

»» Deadlock freeDeadlock free

20

SEA Group

C3C3 C4C4

Centralized glue AdaptorCentralized glue Adaptor
W1W1 W2W2

W3W3 W4W4

»» Deadlock freeDeadlock free

»» Desired behavior Desired behavior
satisfyingsatisfying

(automatically distributed (automatically distributed
by by SynthesisSynthesis))

To summarize …

C1C1 C2C2

C3C3 C4C4

C1C1 C2C2

C3C3 C4C4

Centralized AdaptorCentralized Adaptor

21

SEA Group

C1C1 C2C2

C3C3 C4C4

W1W1 W2W2

W3W3 W4W4

The Distributed SYNTHESIS tool

DISTRIBUTED

22

SEA Group

The four Ws: Synthesis

* the four Ws:

- Why there is the need to change?

> To correct functional behavior. E.G. Avoid deadlock

- What does (not) change ?

23

SEA Group

- What does (not) change ?

> The topological structure and the interaction behavior

- When does the change happen?

> At Assembly time but also …

- What/Who how is the change managed?

> An external entity: Synthesis

EVOLUTION EXAMPLES: 2

PERFORMANCE

24

SEA Group

PERFORMANCE
Caporuscio-Di Marco-Inverardi

Monitor its
performance

Reconfigure it dynamically We want to …

PERFORMANCE : system reconfiguration

25

SEA Group

Running
software application

Decide its next running configuration

a framework
We reach our
aims by means
of …

The Adaptation process

Plan
Changes

Deploy
change

description

Evaluate
and Monitor

Observations

Adaptation
Management

Performance
model of SA

Reconfiguratio
n policies

I1:C1

I3:C3
I5:C2

I2:C2

I4:C4

monitor data

Current application
configuration Perf. Model

RP1
RPk RPn

Perf. Model Perf. Model

2

2

1

26

SEA Group

3

Enact changes and
Collect observations

Evolution
Management

Performance
Model of the SA

Implementation

Maintain Consistency
and System Integrity

I1:C1

I3:C3

I2:C2

I4:C4
New application

configuration

configuration Perf. Model
Alt1

Results Results Results

Decider

Other
factors

RPk

Perf. Model
Altk

Perf. Model
Altn

New
performance
model of SA

Solver

(a) The Processes (b) Flow of the activities in an adaptation step

3 1

1

Issues to address
» What is the relevant data to collect? And how to use it?

- Data collected is more fine-grained than the performance model
parameters.

» When should we reconfigure the application? Which are the
reconfiguration alternatives?

- It depends on the application.

27

SEA Group

- It depends on the application.

» Models have to be modified and evaluated online (fast solution
techniques).

- Which performance model should we use?

- How do we take the decision on the next configuration?

- Different aspects should be considered (security, resources
availability,…)

The four Ws: Performance

* the four Ws:

- Why there is the need to change?

> To correct non- functional behavior. i.e. Adjust Performance

- What does (not) change ?

28

SEA Group

- What does (not) change ?

> The topological structure

- When does the change happen?

> At run time …

- What/Who how the change is managed?

> An external entity: the configuration framework

EVOLUTION EXAMPLES: 3

CHAMELEON

29

SEA Group

A framework for the development and deployment of
adaptable Java applications

Di Benedetto, Mancinelli, Autili, Inverardi

Summary
- A programming model to develop adaptable applications

reducing redundancy and promoting maintenance

- Models to represent and reason on resources

- An abstract analyzer that is able to estimate applications
resource consumptions

An integrated framework that enables the

30

SEA Group

- An integrated framework that enables the
development, discovery and deployment of
adaptable applications and services.

� Resource-aware adaptation
The applications used to provide and/or consume services
are implemented as “generic” code that, at discovery time,
can be customized (i.e., tailored) to run correctly on the
actual execution context.

CHAMELEON Framework

31

SEA Group

Architecture ���� Development Env. ���� Resource Model ���� Customizer ���� Analyzer ���� Validation

Development Environment

32

SEA Group

Architecture ���� Development Env. ���� Resource Model ���� Customizer ���� Analyzer ���� Validation

Programming Model
adaptable class C {

adaptable void m1 () ;
adaptable void m2 () ;

}

alternative class A1 adapts C {
void m1() { . . . }
void s1 () { . . . }

}

alternative class A2 adapts C {

class C {
void m1 () { . . . } // from A2
void m2 () { . . . } // from A3

}

class C {

33

SEA Group

alternative class A2 adapts C {
void m1() { . . . }

}

alternative class A3 adapts C {
void m2() { . . . }

}

alternative class A4 adapts C {
void m1() { . . . }
void m2() { . . . }

}

class C {
void m1 () { . . . } // from A1
void s1() { . . . } // from A1
void m2 () { . . . } // from A3

}

class C {
void m1 () { . . . } // from A4
void m2 () { . . . } // from A4

}

Architecture ���� Development Env. ���� Resource Model ���� Customizer ���� Analyzer ���� Validation

Alternatives Tree

34

SEA Group

Architecture ���� Development Env. ���� Resource Model ���� Customizer ���� Analyzer ���� Validation

Adaptable Application Preprocessing

C.1 { A1.m1(); A1.s1(); A3.m2() }

C.2 { A2.m1(); A3.m2() }

C.3 { A4.m1(); A4.m2() }

C.4 { B1.m1(); B2.m3(); A3.m2() }

C.5 { B1.m1(); B3.m3(); A3.m2() }

C.6 { D1.m1(); D2.m2() }

35

SEA Group

C.6 { D1.m1(); D2.m2() }

C.7 { D1.m1(); D3.m2() }

C.8 { tag(T1)E.m1(); A3.m2() }

C.9 { A1.m1(); A1.s1(); tag(T2; T5)F.m2() }

C.10 { A2.m1(); tag(T2; T5)F.m2() }

C.11 { B1.m1(); B2.m3(); tag(T2; T5)F.m2() }

C.12 { B1.m1(); B3.m3(); tag(T2; T5)F.m2() }

C

Architecture ���� Development Env. ���� Resource Model ���� Customizer ���� Analyzer ���� Validation

Resource Model

36

SEA Group

Architecture ���� Development Env. ���� Resource Model ���� Customizer ���� Analyzer ���� Validation

Resource Model
» Resource Model: formal model for resources

» Resource: entity required to accomplish an activity/task.

37

SEA Group

» CHAMELEON Resources as typed identifiers:
- Natural for consumable resources (Battery, CPU,...)

- Boolean for non consumable resources that can be present
or not (API, network radio interface, ...)

- Enumerated for non consumable resources that admits a
limited set of values (screen resolution, …)

Architecture ���� Development Env. ���� Resource Model ���� Customizer ���� Analyzer ���� Validation

Resource Instances and sets

Resource Instance
� Association resource(value)

�e.g. Bluetooth(true)

Resource Set

38

SEA Group

Architecture ���� Development Env. ���� Resource Model ���� Customizer ���� Analyzer ���� Validation

Resource Set
�a set of resource instances, with no

resource occurring more than once

Resource Sets are used to specify
� Resource Supply: {Bluetooth(true), Resolution(low), Energy(30)}
� Resource Demand: {Bluetooth(true), Resolution(high)}

Compatibility
� Used to determine if an application can run safely on the execution environment

� A resource set (demand) P is compatible with a resource set (supply) Q (P � Q) if:
1. (Availability) For every resource instance r(x) ∈ P there exists a resource

instance r(y) ∈ Q.
2. (Wealth) For every pair of resource instances r(x) ∈ P and r(y) ∈ Q, p(x) ≤ p(y).

� A resource sets family (demand) P is compatible with a resource set (supply) Q, if P �

39

SEA Group

� A resource sets family (demand) P is compatible with a resource set (supply) Q, if Pi �

Q, ∀ Pi ∈ P.

Architecture ���� Development Env. ���� Resource Model ���� Customizer ���� Analyzer ���� Validation

� used to choose the best compatible application alternative w.r.t. a given execution context
� based on a notion of priority (P) among resources that expresses the “importance” given to a

particular resource consumption
� P:Resources�Integer.

� P(r) < 0 � the less r is consumed the better is (e.g., Energy).
� P(r) = 0 � the consumption of resource r is ininfluent (Bluetooth)
� P(r) > 0 � the more r is consumed the better is (e.g., Thread)

Goodness

Customizer

40

SEA Group

Architecture ���� Development Env. ���� Resource Model ���� Customizer ���� Analyzer ���� Validation

Abstract Analyzer

41

SEA Group

Architecture ���� Development Env. ���� Resource Model ���� Customizer ���� Analyzer ���� Validation

Abstract Analyzer

» Interpreter that abstracts a standard JVM

» Statically analyzes an application inspecting all

42

SEA Group

» Statically analyzes an application inspecting all
the possible computation paths and determines
its Resource Demand (resources required to
correctly execute the application)

» Worst case analysis based on the resource
consumption profile

Architecture ���� Development Env. ���� Resource Model ���� Customizer ���� Analyzer ���� Validation

Resource Consumption Profiles
» Provides the description of the characteristics of a specific

execution environment

» Specifies the impact that Java bytecode instructions
(patterns) have on resources

1) istore_1 → {CPU(2)} 2) invoke.* → {CPU(4)}

3) .* → {CPU(1), Energy(1)}

43

SEA Group

» Can be created on the basis of:

- experimental results based on benchmarking tools

- Information provided by device manufacturers, network sensors …

» Always exists a default Resource Consumption Profile

» The more are accurate, the more the analysis is precise

3) .* → {CPU(1), Energy(1)}

4) invokestatic LocalDevice.getLocalDevice() → {Bluetooth(true), Energy(20)}

Architecture ���� Development Env. ���� Resource Model ���� Customizer ���� Analyzer ���� Validation

Fall-Back Leaf Rule

CnMbe

{r}Cb(instr) r

nonIsAnnotati

invokeLikeinstr

instrnLabelnIsLeaf

→
==

=

,,,

)(!

)*"("!

)()(

44

SEA Group

CnMbe AA→,,,

1) istore_1 → {CPU(2)}

2) invoke.* → {CPU(4)}

3) .* → {CPU(1), Energy(1)}

4) invokestatic LocalDevice.getLocalDevice() → {Bluetooth(true), Energy(20)}

0: iconst_0 � C={ {CPU(1), Energy(1)} }

1: istore_1 � C={ {CPU(2), Energy(1)} }

:

0: iconst_0

1: istore_1

:

Architecture ���� Development Env. ���� Resource Model ���� Customizer ���� Analyzer ���� Validation

IF_ELSE rule

45

SEA Group

Architecture ���� Development Env. ���� Resource Model ���� Customizer ���� Analyzer ���� Validation

The four Ws: Chamaleon

* the four Ws:

- Why there is the need to change?

> To match resource supply of the execution context

- What does (not) change ?

46

SEA Group

- What does (not) change ?

> The component non functional behavior

- When does the change happen?

> At deployment time but also …

- What/Who how is the change managed?

> An external entity: Chamaleon

A completely open scenario: CONNECT

» Ubiquitous systems: components travel around willing to
communicate with only their own knowledge

» Exploit the process: discover-learn-mediate-communicate

» No global SA assumed

47

SEA Group

» No global SA assumed

» The SA in terms of components and connectors results from
the completion of the process

» and dependability … ? It is built in the composition e.g.
embedded in the connectors.

CONNECTCONNECTCONNECTCONNECT
Emergent Connectors for Eternal Software Emergent Connectors for Eternal Software Emergent Connectors for Eternal Software Emergent Connectors for Eternal Software

Intensive Networked SystemsIntensive Networked SystemsIntensive Networked SystemsIntensive Networked Systems
7FP-Call 3 - ICT-2007

http://connect-forever.eu/

48

SEA Group

A run-time model-centric approach to eternal
interoperability

Networked
system

Networked
system

Pre-built
middleware protocol

translation

From
Non-CONNECTed

Pre-built connectors
at syntactic level

1) Modelling and

Pre-built
middleware protocol

substitution

49

SEA Group

4) Runtime
synthesis of
connectors

3) Modelling, reasoning about,
and composing dynamically
connector behaviours, both
functional & non-functional

To CONNECTed

Emergent
connectors

at semantic level
for eternal
connectivity

1) Modelling and
reasoning about
peer functionalities

2) Learning
connector behaviours

Synthesis of application-layer conversation protoco ls

» To support the automated construction of application-
layer connector models

- 1: identifying the conditions on the networked
applications interaction and composition that enable run-
time connector synthesis
> SA and connector patterns

50

SEA Group

> SA and connector patterns

- 2: the synthesis process is seen as a behavioral model
unification process
> ontologies

> modeling notations

> unifying know and unknown information

» The challenge

- compositionality and evolution

synthesis process steps

ontology
desc.

ontology
desc.

Env
model Env

model

connector model

51

SEA Group

ontology
desc.

ontology
desc.

Env
model

Env
model

synthesis process steps

ontology
desc.

ontology
desc.

connector model

52

SEA Group

ontology
desc.

ontology
desc.

Foundations for the automated mediation of heteroge neous protocols

» Modeling notation used to abstract the behavior of the
protocols to be bridged

- finite state machines

» Matching relationship between the protocol models

- necessary (but non-sufficient) conditions for protocol
interoperability

53

SEA Group

interoperability
> e.g., “sharing the same intent”

- data and functional mediations are assumed to be provided

» Mapping algorithm for the matching protocol models

- sufficient (and “most permissive”) conditions for protocol
interoperability
> e.g., “talking, at least partly, a common language”

- a concrete mediator as final output

53

The instant messaging example
do they “share the same
intent"?

54

SEA Group54

Application Level (AL) Interoperability

Assumptions:

» Two applications with known interaction protocols, i.e. visible
behavior

» Two known ontologies + ontology mapping

55

SEA Group

» A specification of what is the purpose of the conversation
(initial and final states)

- Notion of coordination policies

» Protocol compatibility expressed via equivalence on the
coordination policies

55

OP OQ

Interoperability problem: An example

P Q

56

SEA Group

LP={message,ack,…}

LQ={msg,…}

Protocol

Interoperability problem: The proposed solution

QP C

57

SEA Group

AP AQ

OP OQ

?☺☺☺☺
Abstracted

Formalization of the solution (1/4)

Protocol

P

58

SEA Group

OP

To build the abstracted…
Formalization of the solution (2/4)

Protocol

P

59

SEA Group

AP

OP

Abstracted

Formalization of the solution (3/4)

60

SEA Group

Abstracted AP AQ

equivalent?

Do they share common conversations?

Formalization of the solution (4/4)

Protocol QP C

|| || ||

61

SEA Group

||

Discussion on the mismatches coverage

§ Extra send mismatch

§ Extra receive mismatch

§ One send - many receive mismatches

62

SEA Group

§ Many send - one receive mismatch

§ Signature mismatch

§ Ordering mismatch

� Mismatch coverage: all the 6 + combinations (e.g., mismatch
5 combined with the remaining mismatches)

62

The four Ws: Connect

* the four Ws:

- Why there is the need to change?

> To allow communication between incompatible protocols

- What does (not) change ?

63

SEA Group

- What does (not) change ?

> The overall interaction behavior and the architecture

- When does the change happen?

> At run time

- What/Who how is the change managed?

> An external entity: Connect enablers

Summarizing

» Synthesis: fixed SA with connector(s) allows the correct
assembly of component-based systems

» PFM: fixed SA structure – preplanned re-configurations-
choice of the right one at run time

64

SEA Group

» Chamaleon: fixed SA structure – arbitrary re-
configurations depending on the adaptation alternatives
– choice of the right one at deployment time

» Connect: Fixed SA pattern, a.k.a. Mediator, correctly
synthesized on the fly at run time.

Software Architecture and dependability

» For closed systems allows for predictive analysis:
from the SA dependability properties are deduced

» For open systems the SA may represent the
invariant with respect to the applications changes or
it my be induced by the actual system components

65

SEA Group

it my be induced by the actual system components

» Depending on the architectural change different
level of dependability can be assured by pre-
preparing the models and the verification strategies

» SA allows for implementing reusable verification
strategies.

References
P. Pelliccione, P. Inverardi, H. Muccini: CHARMY: A Framework for Designing and
Verifying Architectural Specifications. IEEE Trans. Software Eng. 35(3): 325-346
(2009)

P. Inverardi, Massimo Tivoli: The Future of Software: Adaptation and Dependabilit y.
ISSSE 2008: 1-31

Massimo Tivoli, Paola Inverardi: Failure-free coordinators synthesis for component-
based architectures. Sci. Comput. Program. 71(3): 181-212 (2008)

66

SEA Group

Marco Autili, Paola Inverardi, Alfredo Navarra, Massimo Tivoli: SYNTHESIS: A Tool for
Automatically Assembling Correct and Distributed Co mponent-Based Systems .
ICSE 2007: 784-787

Marco Autili, Leonardo Mostarda, Alfredo Navarra, Massimo Tivoli: Synthesis of
decentralized and concurrent adaptors for correctly assembling distributed
component-based systems. Journal of Systems and Software 81(12): 2210-2236
(2008)

Mauro Caporuscio, Antinisca Di Marco, Paola Inverardi Model-Based System
Reconfiguration for Dynamic Performance Management , Elsevier Journal of
Systems and Software JSS, 80(4): 455-473 (2007).

M. Autili, P. D. Benedetto, and P. Inverardi. Context-aware adaptive services: The
plastic approach. In Proc. of Fundamental Approaches to Software Enginneering
(FASE'09), volume 5503 of LNCS, pages 124-139. Springer, 2009.

M. Autili, P. Di Benedetto, P. Inverardi, D. A. Tamburri. Towards self-evolving
context-aware services. In Proc. of Context-aware A daptation Mechanisms for
Pervasive and Ubiquitous Services DisCoTec'08, volume 11, 2008.
http://eceasst.cs.tu berlin.de/index.php/eceasst/issue/view/18.

M. Autili, P. di Benedetto,, P. Inverardi A Programming Model for Adaptable Java

67

SEA Group

M. Autili, P. di Benedetto,, P. Inverardi A Programming Model for Adaptable Java
Applications , to appear in PPPJ 2010: 8th International Conference on the
Principles and Practice of Programming in Java

R. Spalazzese, P. Inverardi, and V. Issarny. Towards a formalization of mediating
connectors for on the fly interoperability . In Proceedings WICSA/ECSA 2009,
pages 345-348, 2009.

R. Spalazzese, P. Inverardi, Mediating Connector Patterns for Components
Interoperability. To appear Proc. ECSA 2010, LNCS.

