
The Mutated Subsequence Problem and Locating
Conserved Genes

HL Chan �, TW Lam �, WK Sung �, Prudence WH Wong �,
SM Yiu �, X Fan �

� Department of Computer Science, University of Hong Kong, Hong Kong; supported in part by Hong Kong

RGC Grant HKU-7139/04E.
� Department of Computer Science, National University of Singapore, Singapore
� Department of Computer Science, University of Liverpool, UK

ABSTRACT
Motivation For the purpose of locating conserved genes in
a whole genome scale, this paper proposes a new struc-
tural optimization problem called the Mutated Subsequence
Problem, which gives consideration to possible mutations bet-
ween two species (in the form of reversals and transpositions)
when comparing the genomes.
Results A practical algorithm called MSA is devised to solve
this optimization problem, and it has been evaluated using
different pairs of human and mouse chromosomes, and diffe-
rent pairs of virus genomes of Baculovirdae. MSA is found to
be effective and efficient; in particular, MSA can reveal over
90% of the conserved genes of human and mouse that have
been reported in the literature. When compared to existing
software MUMmer (Delcher et al., 2002; Kurtz et al., 2004)
and MaxMinCluster (Wong et al., 2004), MSA uncovers 14%
and 7% more genes on average, respectively. Furthermore,
this paper shows a hybrid approach to integrate MUMmer or
MaxMinCluster with MSA, which has better performance and
reliability.
Availability The software is available upon request.

1 INTRODUCTION
As more and more genomes have been sequenced, there is a
great desire to study and compare related species in a whole
genome scale. Given the genomes of two related species, one
important task is to uncover and locate the conserved genes,
i.e., genes sharing similar functions (Baillie and Rose, 2000;
Schwartz et al., 2000; Vincens et al., 1998). This task is non-
trivial as most parts of a genome are non-coding areas and
the information of genes in each genome is often not availa-
ble. Alignment software developed in an early stage, e.g.,
BLAST (Altschul et al., 1990) and FASTA (Pearson and Lip-
man, 1988), are not able to accomplish this task. In this paper,
we propose an effective algorithm for identifying locations on
the genomes that correspond to conserved genes.

MUMmer-1 (Delcher et al., 1999) is one of the earliest
software that could perform genome comparisons in a whole

genome scale. Since then, several other programs have been
developed for large-scale genome comparison, for example,
ASSIRC (Vincens et al., 1998), PipMaker (Schwartz et al.,
2000), and WABA (Baillie and Rose, 2000). In the pro-
cess of uncovering conserved genes, most of these software
are based on a very useful observation made by Delcher et
al. (Delcher et al., 1999): A conserved gene rarely comprises
the same entire sequence in the two genomes, yet there are
usually a lot of short common substrings and some of these
substrings are indeed unique to this conserved gene. Thus,
the first step to locate conserved genes is to identify pairs
of matched substrings that appear uniquely in both genomes.
This can be done in linear time using a suffix tree (Delcher
et al., 1999). Such pairs of matched segments are called the
MUM pairs. However, not every MUM pair corresponds to
a conserved gene; there are often a lot of noisy MUM pairs,
originating from intergenic regions as well as from unrelated
genes. The key step is how to select the right MUM pairs.

Different approaches have been proposed to select the right
MUM pairs. MUMmer-1 (Delcher et al., 1999) simply selects
the largest subset of MUM pairs that have the same orde-
ring in both genomes. This is based on the assumption that
two related species should preserve the ordering of most con-
served genes. It is commented in a recent survey (Chain
et al., 2003) that all the software mentioned above are based
on this assumption. MUMmer-2 (Delcher et al., 2002) and
MUMmer-3 (Kurtz et al., 2004) adopt a different approach;
they select MUM pairs that are close together, i.e., forming
a cluster. Intuitively, a conserved gene should introduce a
group of MUM pairs that are close together, while noisy
MUM pairs are random in nature and tend to be separated.
In practice, MUMmer-2 and MUMmer-3 show significant
improvement over their predecessor. MaxMinCluster (Wong
et al., 2004) refines the clustering approach by allowing a
small degree of noise.

From the biological point of view, the conserved genes of
two related genomes would not occur in a random ordering in
each genome. The difference in the orderings is most likely

1

caused by the mutations that have occurred between the two
concerned species during the evolution. In other words, for
the MUM pairs introduced by the conserved genes, their dif-
ference in the orderings in the two genomes should be related
to the mutations that have occurred. For related species, the
number of such mutations would be small. Thus, one should
select those MUM pairs whose difference in orderings can be
explained by a few mutations. Using this idea, we propose a
new approach to select MUM pairs based on the structural
optimization. Our approach has been shown to be signifi-
cantly more effective than the previous ones when tested with
real data.

In modelling mutations, the random breakage model (Nadeau
and Taylor., 1984; Ohno, 1973) has been widely accepted,
which assumes a random (i.e., uniform and independent) dis-
tribution of mutations. Yet a recent conflicting result (Pevzner
and Tesler, 2003b) suggests that mutations might be depen-
dent on genomic features and are not uniformly distributed.
This new observation reiterates that uncovering conserved
genes with the presence of mutations is a non-trivial task.

In fact, the study of mutations between two related spe-
cies is not a new topic. A closely related problem is the
genome rearrangement problem (Bafna and Pevzner, 1996;
Hannenhalli and Pevzner, 1999; Kaplan et al., 1999; Bafna
and Pevzner, 1998; Gu et al., 1999; Eriksen, 2002). We con-
sider the signed version of this problem: The conserved genes
and their locations in two genomes are given in advance.
Each conserved gene is represented by a unique signed inte-
ger, and the orderings of the genes in the two genomes are
represented by two permutations of signed integers �� and
��. Given �� and ��, the problem asks for the smallest
number of mutations needed to transform �� into ��. The
genome rearrangement problem has been studied intensively.
There are several results on mutations restricted to reversals
only (e.g., Bafna and Pevzner, 1996; Hannenhalli and Pevz-
ner, 1999; Kaplan et al., 1999), while in some other studies,
transpositions and reversed-transpositions are also included
(e.g., Bafna and Pevzner, 1998; Gu et al., 1999; Eriksen,
2002). The genome rearrangement problem is solvable in
polynomial time when the only mutations are reversals (Han-
nenhalli and Pevzner, 1999). Yet when transpositions and
reversed-transpositions are also allowed, the complexity of
the problem is unknown. It is believed that the problem
is NP-hard, and approximation algorithms have been pro-
posed (Bafna and Pevzner, 1998; Eriksen, 2002; Gu et al.,
1999). As for the unsigned version of the genome rearran-
gement problem, see (Pevzner, 2000) for a more complete
discussion of the problem.

Let us switch the context back to our problem of selecting
the right MUM pairs that correspond to conserved genes. Our
problem can be regarded as a generalization of the genome
rearrangement problem. Note that a subset of MUM pairs
induces two signed permutations �� and ��, according to
the orderings of the MUM pairs in the two given genomes.

To select the right MUM pairs, we try to find a subset of
MUM pairs with maximum total length, such that the induced
permutations can be transformed to each other by a few muta-
tions. In this paper, a mutation is considered to be a reversal,
transposition or reversed transposition. We limit the number
of mutations to a small constant � because for related species,
there should only be a few mutations undertaken, leading to
the positional difference between the MUM pairs. Obviously,
if we make no restriction on the number of the mutations, all
the MUM pairs will be selected. By restricting the number
of mutations, we can effectively filter the MUM pairs that
are noise, while preserving those that correspond to conser-
ved genes. We call this problem the Mutated Subsequence
Problem. (The formal definition is given in Section 2.) The
genome rearrangement problem involving reversals, trans-
positions and reversed transpositions can be reduced to the
Mutated Subsequence Problem. As the former is believed to
be NP-hard, the Mutated Subsequence Problem is even more
likely to be NP-hard.

Main result: This paper gives an efficient algorithm called
MSA (mutated subsequence algorithm) which, given a set of
MUM pairs and an integer � � �, selects a subset of MUM
pairs such that the induced permutation �� can be transfor-
med to �� by a sequence of at most � mutations. The subset
of MUM pairs reported by this algorithm often has a total
length very close to the maximum possible length. In fact,
from a theoretical viewpoint, we are able to prove that even in
the worst case, the subset selected by MSA has a total length
at least ����� � �� times the maximum weighted subset.

Based on MSA, we have implemented two software for
locating conserved genes. The first one simply applies MSA
directly to a given set of MUM pairs. It performs very well for
species that are closely related and involve few mutations. We
have tested the software using the DNA sequences of fifteen
pairs of mouse and human chromosomes, as well as using the
translated protein sequences of Baculovirdae genomes that
are in the same genus (specifically, either pairs of Nucleopo-
lyhedrovirus genomes or pairs of Granulovirus genomes)).
The performance is compared with that of MUMmer-3 and
MaxMinCluster; the average figures are shown in the first
two columns of Table 1. It is encouraging to see that MSA
consistently achieves better coverage while preserving the
sensitivity (coverage refers to the percentage of published
genes that are reported by the software, and sensitivity refers
to the percentage of the reported MUM pairs that are known
to reside in a conserved gene; note that sensitivity is an esti-
mate as not all conserved genes have been identified). We
have also tested MSA with pairs of Baculovirdae genomes
that are not in the same genus. As one may expect, MSA does
not perform well in these cases as the number of mutations
between a pair of such viruses is big.

2

Mutated Subsequence Problem

Intra-genus Inter-genus
Mouse/Human Baculovirdae Baculovirdae

MUMmer-3 77% (27%) 66% (71%) 43% (62%)
MaxMinCluster 84% (27%) 69% (75%) 45% (59%)

MSA 91% (29%) 78% (87%) 36% (53%)

MUMmer-3 + MSA 91% (28%) 79% (75%) 48% (43%)
MaxMinCluster + MSA 91% (27%) 79% (82%) 51% (53%)

Table 1. Average coverage (and sensitivity) of different algorithms in locating conserved genes.

The second software we have developed adopts a hybrid
approach. Our aim is to obtain a software that can outper-
form the clustering algorithms and MSA alone on all kinds
of data. The hybrid approach first applies MaxMinCluster
(or MUMmer-3) to identify some clusters that are obviously
conserved genes; these clusters are each treated as an MUM
pair and processed together with the remaining MUM pairs
using MSA. For genomes that are closely related, the hybrid
approach has almost the same performance as MSA alone;
yet for genomes that are farther away, the hybrid approach
differentiates itself from MSA alone and attains a coverage
even better than MaxMinCluster and MUMmer-3. (See the
last column of Table 1.)

Organization of the paper: Section 2 gives the formal defi-
nition of the Mutated Subsequence Problem. Section 3 pres-
ents an algorithm for finding the maximum weight common
subsequence, which serves as a subroutine for the algorithm
MSA. Details of MSA is given in Section 4. In Section 5, we
present the new software for locating conserved genes, and
the results of experiments on the real data.

2 THE MUTATED SUBSEQUENCE PROBLEM
The input: Given two genomes �� and �� with � MUM
pairs, we represent the MUM pairs as two sequences of �
distinct characters, denoted � � ���� � � ��� and � �
	�	� � � � 	�, respectively, where each character represents the
matched substring of an MUM pair, and the orderings of
these � characters follow the way the corresponding sub-
strings appear in the genomes. For any � � in �, we denote
the index of the character in � that matches � � as Æ�
�, i.e.,
���� 	Æ���� represents an MUM pair. Both �� and 	Æ��� are
associated with the same weight �����, which is the length
of the corresponding substring.

Each character in � and � is given a sign as follows.
A DNA sequence is double stranded. When we extract the
MUM pairs from the two genomes, we consider MUM pairs
from two strands of the same orientation as well as those of
opposite orientations. For each character � � in �, �� has a
positive sign if the MUM pairs represented by ���� 	Æ���� are
from two strands of the same orientation, and � � has a nega-
tive sign otherwise. A character in � always has a positive
sign. Intuitively, if a certain part of�� is found to be reversed
in ��, we expect that the MUM pairs extracted from this part
have opposite orderings in � and �, and all the characters � �

of these MUM pairs carry a negative sign.

Common subsequences: A sequence � ���� � � � �� is a
subsequence of� if there exists indices
��
�� � � �
� such that

� �
� � � � � �
� and �� � ��� for � � � � �. is said to
be a maximum weight common subsequence (MWCS) of �
and � if among all subsequences common to � and �, is
the one with the maximum total weight. Note that for to be
a common subsequence of � and �, we require that all the
involved characters carry the same sign in both � and �.

Mutations: Given a sequence � � ���� � � ���, we consider
the following three types of mutations.

� A reversal ��
� ��, where � �
 � � � �, reverses the
ordering of ������ � � ��� and toggles their signs.

� A transposition ��
� �� ��, where � �
 � � � � and
� � � � � with � �� �
 � �� ��, moves the substring
������ � � ��� to the location between �� and ����. The
signs of the characters are unchanged.

� A reversed-transposition ���
� �� ��, where � �
 � � �
� and � � � � � with � �� �
� �� ��, moves the substring
������ � � ��� to the location between �� and ���� and
reverses the ordering of ������ � � ��� . The signs of the
characters are toggled.

The Mutated Subsequence Problem: Given two sequences�
and � and an integer �, we call a subsequence � of � and a
subsequence � of � a pair of �-mutated subsequences if �
can be transformed to � by at most � mutations. The Mutated
Subsequence Problem is to find a pair of �-mutated subse-
quences such that the weight is maximized. When � � �,
the problem is equivalent to finding the maximum weight
common subsequence.

Reducing genome rearrangement to Mutated Subse-
quence Problem: Given two permutations of signed integers
�� and ��, the genome rearrangement problem involving
reversals, transpositions and reversed transposition asks for
the minimum number of mutations needed to transform � �

to ��. This problem can be polynomial-time reduced to the
Mutated Subsequence Problem as follows. We associate a
weight of 1 to each integer of �� and ��. For � � �� 	� � � � , we
query the Mutated Subsequence Problem with input �� and
�� for the pair of maximum weight �-mutated subsequences.
Let �� be the smallest integer such that the pair of � �-mutated
subsequences is exactly �� and ��. �� can be transformed to
�� using �� mutations but not � � � � mutations, so �� is the
minimum number of mutations needed to transform � � to ��.

3

�� is at most the length of ��, so at most a polynomial number
of queries are made.

As the genome rearrangement problem involving reversals,
transpositions and reversed transposition is believed to be
NP-hard, the Mutated Subsequence Problem is even more
likely to be NP-hard.

3 MAXIMUM WEIGHT COMMON
SUBSEQUENCE

This section presents an ���
���� time algorithm which,
given two sequences of � distinct characters, finds the maxi-
mum weight common subsequence, or equivalently, solves
the Mutated Subsequence Problem for the special case of
� � � (i.e., no mutation is allowed). This algorithm also
serves as a subroutine for the algorithm MSA to be given in
the next section. The algorithm makes use of the techniques
in the work of Cole et al. (Cole et al., 2000) on computing the
maximum agreement subtree.

LEMMA 1. Given two sequences������������ � � � �� and
������� � 	�	� � � � 	� of � distinct characters, we can find the
maximum weight common subsequence in ���
���� time.
Furthermore, by the end of the algorithm, a data structure is
built such that for any pair of prefixes �����
� and �������,
� �
� � � �, the weight of their maximum weight common
subsequence can be retrieved in ��
�� �� time.

We denote MWCS����� as the weight of the maximum
weight common subsequence of � and �. Let ���� be
MWCS��������� ��������. ���� � � if � � � or � � �.
For other values of � and �, we have the following equation.
Recall that ����
�� is the weight of the character ��
� and
Æ�
� is the index of the character in � that matches ��
�.

���� � ��

�
������
������� � ����Æ���� �� if � � Æ���

(1)

By computing the function � for � � �� 	� � � � � incre-
mentally, we can eventually compute MWCS�����, which
equals ����. This simple approach takes ����� time.

We observe that the values in ������� are increasing, i.e.,
���� � ��	� � � � � � ����. Instead of storing the values
in � explicitly, we store only the boundaries at which the
values change. Precisely, ������� can be represented by the
pairs �
� ��
�� where ��
� � ��
 � ��. Furthermore, we
store these tuples in a binary search tree, denoted � �, which
allows us to efficiently retrieve the value of ��
� for any
.

Given � �� � � � � � ���, we can make use of Equation (1) to
compute ��Æ���� in ��
�� �� time. Then we can build � �

from � ��� as follows. Notice that ��Æ���� � ����Æ����,
so either ��Æ���� � ����Æ���� or ��Æ���� � ����Æ����.
Lemma 2 shows that in either case, all the values in the array
� can be computed easily.

LEMMA 2. (a) If ��Æ���� � ����Æ����, then ���� �
������ for all � � �� 	� � � � � �.

(b) If ��Æ���� � ����Æ����, let �� be the smallest integer
greater than Æ��� such that ��Æ���� � �������. Then, (i)
���� � ������ for all � � Æ��� and � � ��; and (ii),
���� � ��Æ���� for Æ��� � � � ��.

PROOF. Case (a). By equation (1), ���� � ������ for all
� � Æ���. As ��Æ���� � ����Æ����, we observe from Equa-
tion (1) that ����Æ���� � ������� �����Æ���� ��. For all
� � Æ���, ������ � ����Æ���� � ������������Æ������.
Thus, by Equation (1), ���� � ������ for all � � Æ���.

Case (b). If ��Æ���� � ����Æ����, we observe from Equa-
tion (1) that ��Æ���� � ������� � ����Æ��� � ��, and the
equation can be rewritten as:

���� � ��

�
������
��Æ���� if � � Æ���

Thus, for all � � Æ���, ���� � ������. Also, for all
� � ��, ������ � ������� � ��Æ����, so ���� �
���������� ��Æ����� � ������. On the other hand, for
all Æ��� � � � ��, ������ � ������� � ��Æ����, so
���� � ��Æ����.

Hence, we can build � � from � ��� as follows. If
��Æ���� � ����Æ����, then by Lemma 2(a), � � is same
as � ���. Otherwise, by Lemma 2(b), we can construct � �

from � ��� by deleting all tuples �
� ����
�� where
 � Æ���
and ����
� � ��Æ����, then followed by inserting the tuple
�Æ���� ��Æ�����. Denote �� as the number of pairs being
deleted. The time for computing � � is ����� � ��
����.

Apparently, the above method implies that � ��� is era-
sed once � � is obtained. Nonetheless, by exploiting a per-
sistent data-structure (Sarnak and Tarjan, 1986), both � �

and � ��� can coexist after the insert and delete operations,
while retaining the same time complexity for constructing
and accessing. In summary, the total time for constructing
� �� � � � � �� is ��

��
����
��� � ��
�����. As we insert at

most � pairs into these trees, we can delete at most � pairs,
and
��

��� �� � �. Hence, � �� � � � � �� can all be compu-
ted in ���
���� time. The weight of the maximum weight
common subsequence of � and � is given by ����. The
required subsequence can be found in ���
���� time using
the standard backtracking method. Also, for any pair of pre-
fixes �����
� and �������, where � �
� � � �, the weight
of their maximum weight common subsequence is given by
����, which can be accessed in ��
���� time.

4 A PRACTICAL ALGORITHM FOR
SELECTING MUM PAIRS

In this section, we present an efficient algorithm called
MSA (mutated subsequence algorithm) for finding a pair of
�-mutated subsequences with weight very close to (if not
equal to) the largest possible weight. The time complexity
is �����
�� � � ���. This algorithm has been implemented
and used in our new software for locating conserved genes.

4

Mutated Subsequence Problem

We will show in the next section that MSA performs well in
all test cases of closely related genomes.

To find a pair of �-mutated subsequences of two sequences
� and � that have a large weight, we first find the maximum
weight common subsequence (MWCS) of � and �, which
we call the backbone. Then we attempt to identify which
parts of the backbone should be replaced with other shorter
common subsequences corresponding to different mutati-
ons so as to increase the overall weight. Roughly speaking,
a good candidate should be heavy-weight common subse-
quence outside the backbone and should replace only a small
portion of the backbone. Details are as follows.
Step 1. Backbone: Find the maximum weight common sub-
sequence (MWCS) of � and �. We call this subsequence as
the backbone, based on which we want to add � subsequences
corresponding to some mutations that are likely to maximize
the overall weight.
Definition. An interval��
� ��, where
 � �, is said to be sign-
consistent at its endpoints, or simply sign-consistent, if either
both ��
� and ���� have positive signs and Æ�
� � Æ���, or
both ��
� and ���� have negative signs and Æ�
� � Æ���.
Step 2. Score of an interval: For every interval ��
� �� that
is sign-consistent, we calculate a score reflecting the gain
if ���
� ��� ��Æ�
�� Æ����� is considered to include a common
subsequence corresponding to a mutation that involves the
endpoints. More precisely, if ��
� and ���� both carry a posi-
tive sign, the gain is defined as the weight of the MWCS of
��
� �� and ��Æ�
�� Æ���� minus the total weight of characters
in the backbone that fall into ��
� �� or ��Æ�
�� Æ����. If ��
�
and ���� both carry a negative sign, we consider the reversal
of ��Æ�
�� Æ���� instead.
Step 3. Maximum score of � intervals: Among all inter-
vals ��
� �� that are sign-consistent, find � intervals that are
mutually disjoint in� and maximize the total score. This step
can be very time consuming if one simply examines every �
intervals; fortunately, we can take advantage of the structural
relationship and use dynamic programming to report the best
� pairs in only ������ time.
Step 4. Refinement: Consider any two of the � intervals
selected in Step 3, say, ��
� �� and ��
�� ���. Note that ��
� ��
and ��
�� ��� are disjoint, but ��Æ�
�� Æ���� and ��Æ�
��� Æ�����
may not be disjoint. If this is the case, we examine all possi-
ble ways to shrink the intervals��
� �� and��
�� ��� so that the
resultant intervals on � no longer overlap, and we select the
two shrunk intervals that maximize the total score to replace
��
� �� and ��
�� ���. We repeat such refinement until no more
problematic pairs of intervals are left.
Step 5. Output: We report a pair of �-mutated subsequences
���� � for� and� as follows: � can be constructed from�
by first including all characters in the backbone except those
enclosed in the � intervals reported in Step 4, and then inser-
ting, for each interval ��
� �� reported in Step 4, the MWCS

between ��
� �� and ��Æ�
�� Æ���� (or its reversal if the sign is
negative). � can be obtained similarly.

4.1 Implementation Details of MSA
Step 1 takes ���
���� time by applying the algorithm pre-
sented in Section 3. A brute-force way to implement Step
2 would require executing the MWCS algorithm �� times,
using����
���� time. The following shows how to perform
Step 2 in ����
�� �� time. First, we perform the following
preprocessing.

For all � �
 � � � �, compute the MWCS of ��
� ��
and ��Æ�
�� Æ����, as well as of ��
� �� and the reversal
of ��Æ�
�� Æ����.

To compute the above values in ����
���� time, we divide
the preprocessing into � phases; in Phase
, we apply the
MWCS algorithm to process ��
� �� and ��Æ�
�� ��; this
gives us not only the weight of the MWCS of ��
� �� and
��Æ�
�� ��, but also a data structure (precisely, a persistent
binary tree) allowing us to retrieve the weight of the MWCS
of ��
� �� and ��Æ�
�� �� for any combination of � and � in
��
�� �� time. Thus we can retrieve the weight of the MWCS
of ��
� �� and ��Æ�
�� Æ���� for all � �
 in ���
���� time.
After we have performed the ����
����-time preproces-
sing, the score of each interval ��
� �� can be computed in
���� time. Step 2 takes at most ����
���� time.

Step 3 is the most non-trivial step; it makes use of dynamic
programming so as to improve the time required. Details are
as follows.

Define ������ �� as the maximum total weight for at most
� disjoint intervals of �, subject to the requirement that all
intervals end at or before ����. Denote the score of the inter-
val ��
� �� calculated in Step 2 as ������
� ��. The dynamic
programming is based on the following recurrence.

PROPOSITION 3. If � � � or � � �, ������ �� � �.
Otherwise, ������ �� �

��

�
������ � � ��
������������������ ��
� �� � ������
� ���

Notice that ������ �� is the total weight of the � intervals
that maximize the total score. We can use a two-level for-
loop to compute ������ �� in ������ time, and recover the
positions of the � intervals in the same time complexity. Steps
4 and 5 are straightforward, using at most������ and�����
time, respectively. Thus, the overall time complexity of the
algorithm is ����
���� ����.

The space complexity (memory requirement) of this algo-
rithm is dominated by the preprocessing, which requires
����� space.

4.2 Performance Guarantee
When tested with real data, the subset of MUM pairs reported
by MSA often has a total length very close to the maximum
possible length. From a theoretical viewpoint, we are also
able to prove that even in the worst case, MSA has a bounded
performance.

5

LEMMA 4. Given two sequences � and � and an inte-
ger �, the weight of the pair of �-mutated subsequences found
by MSA is at least ����� � �� times that of any �-mutated
subsequences.

PROOF. Let�� and � � be the pair of maximum weight �-
mutated subsequences between � and �. We claim that � �

can be divided into at most ���� substrings ���� � � ������
such that � � is a permutation of these �� � � substrings (we
may reverse a substring during the permutation); precisely,
� � equals to � �

��
�

� � � ��
�

���� such that for each ��, there is
exactly one distinct � such that �� equals � �

� or the reverse of
��

� . To prove the claim, we let ���� ���� ��� � � � � ����
� �� be sequences such that �� is the sequence obtained
after
 mutations have been performed on � �. Let �� �
���� � � � �� where ��� ��� � � � � �� are characters in ��. We
call ��� � ����� a breakpoint if �� and ���� are not adjacent
at ��. A mutation can create at most 3 breakpoints and there
are at most �� breakpoints in � �. Thus, � � is a permutation
of at most �� � � substrings of � �.

Let � and � be the pair of �-mutated subsequences retur-
ned by MSA. The weight of � is at least the weight of
the maximum weight common subsequence of � and �. Its
weight is also at least the weight of the maximum weight
common subsequence of � and the reversal of �. Thus, the
weight of � is no less than the maximum weight substring
among the �� � � substrings described above.

5 EXPERIMENTAL RESULTS
In this section, we show how to exploit the algorithm MSA
to develop two software for locating conserved genes of
two given genomes. We test the software on fifteen pairs
of human and mouse chromosomes, and also on thirty six
pairs of virus genomes (from the family Baculovirdae). The
results are compared with two existing software MUMmer-
3 (Kurtz et al., 2004) and MaxMinCluster (Wong et al.,
2004). Table ?? (in Section 1) gives a summary of the com-
parison, showing that our new software are more effective.

5.1 A Simple Software
The first software we have implemented simply applies MSA
directly to find out which MUM pairs are likely part of some
conserved genes. Details are as follows.

The input is two DNA sequences. Depending on the user’s
choice, the software can generate MUM pairs from the DNA
sequences or from the translated protein sequences. By using
a suffix tree, we can identify in linear time all MUM pairs of
length at least �, where the default value of � is 20 for DNA
sequences and 7 for translated protein sequences. After gene-
rating the MUM pairs, we apply MSA directly to select the
MUM pairs that are likely to correspond to conserved genes.
MSA requires a user parameter � (i.e., the number of mutati-
ons allowed). A user can choose a particular value of � or let
the software to determine an appropriate value dynamically.

The software has been implemented on a PC with 512M
RAM and a 2.4GHz CPU. The actual running time of the
system depends on the number of MUM pairs and the input
parameter �, which range from a few to tens of minutes.

Measurement. We compared the software based on MSA
with MUMmer-3 and MaxMinCluster from two perspecti-
ves: the coverage and the sensitivity. For coverage, we count
the percentage of published conserved genes for which some
MUM pairs are reported. We note that high coverage alone
may not imply high quality in the output as one can simply
output every MUM pair to achieve the maximum coverage.
Thus, we also consider the percentage of reported MUM
pairs that actually reside in a conserved gene. This percen-
tage is referred as the sensitivity of the output. It gives us
an indicator of accuracy, yet it may underestimate the actual
accuracy as not all conserved genes have been identified. In
other words, we expect a good algorithm to select a set of
MUM pairs with high coverage and reasonable sensitivity.

5.2 Aligning DNA Sequences
We use fifteen pairs of human and mouse chromosomes as
our test cases. The size of the chromosomes ranges from 14
to 65 million nucleotides. For each pair of chromosomes, the
biological community has already identified a number of con-
served genes; details are published in GenBank1. The set of
published genes will be the reference for our evaluation.

We generate the MUM pairs of the DNA sequences and we
require that each MUM pair has length � at least 20. MUM
pairs with length less than 20 are likely to be noise (Del-
cher et al., 1999). These MUM pairs serve as input data to
our algorithm as well as MUMmer-3 and MaxMinCluster.
Details of the data sets are given in Table 2 of the appendix.
The findings: We have tested MSA using different values of
� (i.e., number of mutations allowed), and finding that � � �
is a sensible setting. Figure 1 shows the coverage and sen-
sitivity of MUMmer-3, MaxMinCluster, and MSA (� � �)
in the 15 test cases. In general, MSA, has a better cover-
age and slightly higher sensitivity than both MUMmer-3 and
MaxMinCluster. Precisely, MSA has an average coverage of
91%, which is 14% and 7% higher than that of MUMmer-
3 and MaxMinCluster, respectively. The average sensitivity
of MSA is 29%, which is higher than that of MUMmer-
3 and MaxMinCluster by about 3% and 2%, respectively.
It is also worth-mentioning that MSA has a higher average
number of MUM pairs reported for each known conserved
gene; the actual statistics are 23, 25, 28 for MUMmer-3,
MaxMinCluster, and MSA, respectively.

In summary, MSA, using a mutation sensitive approach to
select the MUM pairs, is able to locate the conserved genes
more effectively.
Different values of �: Figure 2 shows the average coverage
and sensitivity of MSA for different values of � (i.e., number

1 http://www.ncbi.nlm.nih.gov/Homology

6

Mutated Subsequence Problem

Fig. 1. Performance of MUMmer-3, MaxMinCluster and MSA for aligning mouse and human chromosomes.

Fig. 2. Average coverage and sensitivity of MSA for different values of �.

of mutations allowed). We observe that � � � seems to be a
sensible setting as it gives high coverage while preserving the
sensitivity. Biologically, it was suggested that only ���� ��
mutations have occurred between mouse and human (Nadeau
and Taylor., 1984), a more recent work (Pevzner and Tesler,
2003a) provided evidence for a larger number of mutations
(281) than previously thought. It is also known that there
are about 100 pairs of human-mouse chromosomes that are
related (Mouse Genome Informatics, 2004). The value of 4
seems to be a reasonable estimate on the number of mutations
between a pair of mouse and human chromosomes.

5.3 Aligning Translated Protein Sequences
We use pairs of virus genomes from the family Baculovirdae
as our test cases. The virus genomes are of length 100 thou-
sand to 200 thousand nucleotides and their corresponding
conserved genes have been published in the literature (Her-
niou et al., 2001). Mutations occur more frequently in virus
and their DNA sequences show much lower degree of simila-
rity than that of mouse and human. Comparing the translated
protein sequences is more useful in analyzing these distant
species.

We generate MUM pairs of length at least 3 amino acids.
These MUM pairs serves as input to MSA and also as input
to MUMmer-3 and MaxMinCluster. Details of the data sets
are given in Table 3 of the appendix.

The findings: We first use 18 pairs of Baculovirdae genomes
that are within the same genus (either Nucleopolyhedroviru-
ses or Granulovirus). As mutations are often very frequent
among viruses, we set � (the number of mutations allowed)
to a larger value and � � 	� seems to be a sensible set-
ting. Figure 3 shows the coverage and sensitivity of MSA in
these 18 test cases. MSA achieves the highest coverage in all
except one test case, and it has the highest sensitivity in all the
eighteen cases. Specifically, the average coverage of MSA is
78%, while the coverage of MaxMinCluster and MUMmer-3
are 69% and 66% respectively. The sensitivity of the three
software are 87%, 75% and 71% for MSA, MaxMinCluster
and MUMmer-3 respectively.

Next, we consider 18 pairs of Baculovirdae genomes that
are not within the same genus. As one may expect, MSA
cannot handle genomes that involve too many mutations and
the performance of MSA is significantly inferior to MaxMin-
Cluster and MUMmer-3. The average coverage of MSA is
36%, while MaxMinCluster and MUMmer-3 achieve 45%
and 43%, respectively.

5.4 A Better Software
The second software we have implemented adopts a hybrid
approach. The aim is to obtain a software that can out-
perform the clustering algorithms and MSA consistently
even for genomes that involve many mutations. The hybrid

7

Fig. 3. Performance of MUMmer-3, MaxMinCluster and MSA for aligning the translated protein sequences of 18 pairs of Baculovirdae
genomes that are in the same genus.

Fig. 4. Performance of the hybrid approach (MaxMinCluster + MSA) for aligning Baculovirdae genomes that are not in the same genus.

approach first applies MaxMinCluster to identify some clu-
sters that are obviously conserved genes; these clusters are
each treated as an MUM pair with a bigger weight and pro-
cessed together with the remaining MUM pairs using the
MSA. For species that are close, the hybrid approach has
the same performance as MSA alone; more specifically, the
average coverage is ��� for the case of human and mouse,
and ��� for the viruses. For species that might involve a
large number of mutations, the hybrid approach differentia-
tes itself from MSA alone and attains a performance even
better than MaxMinCluster and MUMmer-3. Figure 4 com-
pares the coverage and sensitivity of this hybrid approach
against other software on those pairs of Baculovirdae geno-
mes that are not in the same genus. The hybrid approach can
achieve an average coverage of 51% (MUMmer-3, MaxMin-
Cluster, and MSA alone can only attain 43%, 45%, and 36%,
respectively), while maintaining the sensitivity at a satisfac-
tory level (�53%). We have also tested the hybrid approach
based on MUMmer-3 plus MSA, the performance is slightly
worst than MaxMinCluster plus MSA, achieving an average
coverage of ���.

In conclusion, we find that the hybrid algorithm (in particu-
lar, MaxMinCluster plus MSA) is the most effective to locate
conserved genes in all cases.

REFERENCES
Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman

(1990). Basic local alignment search tool. Journal of Molecular
Biology 215, 403–410.

Bafna, V. and P. Pevzner (1996). Genome rearrangements and sor-
ting by reversals. SIAM Journal on Computing 25(2), 272–289.

Bafna, V. and P. Pevzner (1998). Sorting by transpositions. Journal
on Discrete Mathematics 11(2), 224–240.

Baillie, D. L. and A. M. Rose (2000). WABA success: A tool
for sequence comparison between large genomes. Genome
Research 10(8), 1071–1073.

Chain, P., S. Kurtz, E. Ohlebusch, and T. Slezak (2003). An
application-focused review of comaprative genomic tools: Capa-
bilities, limitations and future challenges. Briefings in Bioinfor-
matics 4(2), 105–123.

Cole, R., M. Farach-Colton, R. Hariharan, T. M. Przytycka, and
M. Thorup (2000). An ��� ��� �� algorithm for the maximum
agreement subtree problem for binary trees. SIAM Journal on
Computing 30(5), 1385–1404.

Delcher, A. L., S. Kasif, R. D. Fleischmann, J. Peterson, O. White,
and S. L. Salzberg (1999). Alignment of whole genomes. Nucleic
Acids Research 27(11), 2369–2376.

Delcher, A. L., A. Phillippy, J. Carlton, and S. L. Salzberg
(2002). Fast algorithms for large-scale genome alignment and
comparison. Nucleic Acids Research 30(11), 2478–2483.

8

Mutated Subsequence Problem

Eriksen, N. (2002). �� � ��-approximation of sorting by reversals
and transpositions. Theoretical Computer Science 289, 517–529.

Gu, Q. P., S. Peng, and H. Sudborough (1999). A 2-approximation
algorithm for genome rearrangements by reversals and transposi-
tions. Theoretical Computer Science 210, 327–339.

Hannenhalli, S. and P. Pevzner (1999). Transforming cabbage into
turnip: Polynomial algorithm for sorting signed permutations by
reversals. Journal of ACM 46(1), 1–27.

Herniou, E. A., T. Luque, X. Chen, J. M. Vlak, D. Winstanley, J. S.
Cory, and D. R. O’Reilly (2001). Use of whole genome sequence
data to infer baculovirus phylogeny. Journal of Virology 75(17),
8117–8126. http:// www.bio.ic.ac.uk/research/dor/research/eah.

Kaplan, H., R. Shamir, and R. Tarjan (1999). A faster and simpler
algorithm for sorting signed permutations by reversals. SIAM
Journal on Computing 29(3), 880–892.

Kurtz, S., A. Phillippy, A. L. Delcher, M. Smoot, M. Shumway,
C. Antonescu, and S. L. Salzberg (2004). Versatile and open
software for comparing large genomes. Genome Biology 5(2).

Mouse Genome Informatics (2004). Mammalian orthology and
comparative maps. http://www.informatics.jax.org/.

Nadeau, J. H. and B. A. Taylor. (1984). Lengths of chromosomal
segments conserved since divergence of man and mous. In Pro-
ceedings of the National Academy of Sciences USA, Volume 81,
pp. 814–818.

Ohno, S. (1973). Ancient linkage groups and frozen accidents.
Nature 244, 259–262.

Pearson, W. R. and D. J. Lipman (1988). Improved tools for bio-
logical sequence comparison. In Proceedings of the National
Academy of Sciences USA, Volume 85, pp. 2444–2448.

Pevzner, P. (2000). Computational Molecular Biology – An Algo-
rithmic Approach. The MIT Press, Cambridge.

Pevzner, P. and G. Tesler (2003a). Genome rearrangements in
mammalian evolution: Lessons from human and mouse genomic
sequences. Genome Research 13, 13–26.

Pevzner, P. and G. Tesler (2003b). Transforming men into mice:
the Nadeau-Taylor chromosal breakage model revisited. In
RECOMB, pp. 244–256.

Sarnak, N. and R. E. Tarjan (1986). Planar point location using
persistent search trees. Communications of the ACM 29(7), 669–
679.

Schwartz, S., Z. Zhang, K. A. Frazer, A. Smit, C. Riemer, J. Bouck,
R. Gibbs, R. Hardison, and W. Miller (2000). Pipmaker - a
web server for aligning two genomic dna sequences. Genome
Research 10(4), 577–586.

Vincens, P., L. Buffat, C. Andre, J. Chevrolat, J. Boisvieux, and
S. Hazout (1998). A strategy for finding regions of similarity in
complete genome sequences. Bioinformatics 14, 715–725.

Wong, P. W. H., T. W. Lam, N. Lu, H. F. Ting, and S. M. Yiu (2004).
An efficient algorithm for optimizing whole genome alignment
with noise. Bioinformatics 20(16), 2676–2684.

APPENDIX

Mouse Human # of Published # of
Exp. No. Chr. No. Chr. No. Conserved Genes MUM pairs

1 2 15 51 96,473
2 7 19 192 52,394
3 14 3 23 58,708
4 14 8 38 38,818
5 15 12 80 88,305
6 15 22 72 71,613
7 16 16 31 66,536
8 16 21 64 51,009
9 16 22 30 61,200
10 17 6 150 94,095
11 17 16 46 29,001
12 17 19 30 56,536
13 18 5 64 131,850
14 19 9 22 62,296
15 19 11 93 29,814

Table 2. Details of the data sets for mouse and human chromosomes.

of Published # of
Experiment No. Virus Virus Conserved Genes MUM pairs

1 Ac Bm 134 20,006
2 Ac Ha 98 36,630
3 Ac Ld 95 32,340
4 Ac Op 126 33,075
5 Ac Se 100 37,035
6 Bm Ha 98 35,122
7 Bm Ld 93 31,012
8 Bm Op 122 31,750
9 Bm Se 99 35,881
10 Ha Ld 92 29,156
11 Ha Op 95 28,939
12 Ha Se 101 36,527
13 Ld Op 98 38,753
14 Ld Se 102 33,854
15 Op Se 101 32,771
16 Cp Px 97 29,661
17 Cp Xc 107 40,027
18 Px Xc 99 34,889
19 Ha Px 67 30,087
20 Ha Xc 74 41,357
21 Ld Px 68 27,986
22 Ld Xc 77 35,554
23 Op Px 68 27,614
24 Op Xc 75 35,781
25 Px Se 68 31,278
26 Se Xc 76 41,718
27 Ac Cp 72 34,668
28 Ac Px 68 31,233
29 Ac Xc 78 42,680
30 Bm Cp 72 33,320
31 Bm Px 68 30,484
32 Bm Xc 75 40,887
33 Cp Ha 71 32,687
34 Cp Ld 75 31,243
35 Cp Op 76 32,273
36 Cp Se 75 34,255

Table 3. Details of the data sets for virus genomes from the family
Baculovirdae.

9

