

The University of Hong Kong

Faculty of Engineering

Department of Computer Science

CSIS7702 4-Module Project

Deploying Enterprise Web Services by DJVM
Approach

Submitted in partial fulfillment of the requirements for the admission
to the degree of Master of Science in Computer Science

By
Lam King Tin
1998029183

Supervisor’s title and name: Associate Professor Dr. C. L. Wang

Date of submission: 5 Sep 2006

Deploying Enterprise Web Services by DJVM Approach

Declarations

I hereby declare that the dissertation entitled “Deploying Enterprise Web Services by
DJVM Approach” represents my own work and has not been previously submitted to
this or any other institution for a degree, diploma and other qualifications.

————————
Lam King Tin
2006

2

Deploying Enterprise Web Services by DJVM Approach

Acknowledgements

Give thanks to the LORD, for he is good; his love endures forever. The LORD is my
shepherd, I shall not be in want … Even though I walk through the valley of the
shadow of death, I will fear no evil, for you are with me … Surely goodness and love
will follow me all the days of my life, and I will dwell in the house of the LORD
forever. (Pslam 23 and 107)

Originally, this dissertation work was not quite successful - the software items were
far from stable and speedup was poor despite long time of efforts. It was really the
same experience in the quote: “I walk through the valley of the shadow of death.”
However, deep thanks to my Lord God Almighty for his wonderful grace, I have got
the valley through! For God helps me with his mighty hand. It was an unforgettable
moment to work out useful data in this project which is seemingly impossible to me.
Throughout the past three years of my master study, I have been holding this key
verse in the bible to live by faith: “But seek first his kingdom and his righteousness,
and all these things will be given to you as well.” (Matthew 6:33) When I decided to
follow Jesus and preach the gospel, God has been faithfully giving me “all these
things” including this dissertation sponsored by my kind professor and supported by
my research fellows! I believe all these helps are truly prepared by my Lord. ☺ May
He be glorified.

I would like to thank my supervisor, Dr. Cho-Li Wang for his endless support, patient
guidance, encouragement, many invaluable advices and financial support throughout
this project. His professional teaching and genuine attitude in researching a problem
has inspired me a lot during my master study. I also want to thank my second
examiner, Dr. Anthony Tam for his precious comments in my presentation and his
help on inspecting this report.

Special thanks to Dr. Zhu Wenzhang, James Luo and Alan Li for their expertise and
assistance in fixing JESSICA2 issues. They have been very supportive and patient to
me. I am full of gratitude to their help and useful suggestions.

I would also thank Benny Cheung and Roy Ho for their assistance in securing the
Ostrich cluster environment for my development and experimental work.

Next is to thank my brothers and sisters in our church. Without their earnest prayer
and care, it would not have been possible for me to complete this study.

Finally, I want to express my deepest gratitude to my wife and my parents. My wife
has offered me her full support in whatever she can do – she always pray and cook for
me ☺. And my parents also do. They are my truly beloved ones.

3

Deploying Enterprise Web Services by DJVM Approach

Abstract
Cluster has been commonly employed to support high-performance web server
applications. However most existing server-side clustering software tools fall short in
transparency and scalability. Recent advances in distributed Java virtual machine
(DJVM) researches could help to provide more transparent and scalable clustering.
This dissertation explores the applicability of DJVM to speedup application servers by
clustering at the JVM-level. To account for the effectiveness of this approach, we
ported a version of Apache Tomcat, a popular web application server, onto our DJVM
prototype JESSICA2. During the integration process of Tomcat and JESSICA2, we
identified and addressed various compatibility and performance issues which are
insightful to how application server and DJVM should interface in an effective way.
We successively modified both systems accordingly and evaluated the performance of
the integrated server with several application benchmarks. Experimental results have
showed that this approach can give a much better speedup and scalability than web
server-based dispatching in relatively compute-intensive web applications. We have
done a ground-breaking work in DJVM systems by extending their practical use to the
web application domain.

4

Deploying Enterprise Web Services by DJVM Approach

Table of Content

Chapter 1. Introduction..8
1.1 Background ..8
1.2 General Approaches of Server Clustering ...8

1.2.1 Load Balancing ..9
1.2.2 High Availability ...9

1.3 Our Approach...9
1.3.1 Distributed Java Virtual Machine (DJVM)....................................9
1.3.2 Advantages of Using DJVM..10
1.3.3 This Dissertation Work ..11

1.4 Organization of this Dissertation ...11
Chapter 2. Related Work ...12

2.1 Tomcat Clustering..12
2.1.1 Load Balancing ..12
2.1.2 In-memory Session Replication...12

2.2 Related Clustered JVMs ..14
2.2.1 Terracotta Clustered JVM..14
2.2.2 cJVM..16

Chapter 3. System Analysis and Integration ...17
3.1 Apache Tomcat ..17

3.1.1 Overview..17
3.1.2 System Architecture...17
3.1.3 Flow of Operations ..18
3.1.4 System Characteristics ...19

3.2 JESSICA2 ..21
3.2.1 Overview..21
3.2.2 System Architecture...22
3.2.3 Main Features...23

3.3 System Integration ...26
3.3.1 Tomcat-on-JESSICA2 Architecture ..26
3.3.2 Cluster-wide Tomcat Operations ...27
3.3.3 Problems of Direct Integration...29
3.3.4 Summary of Tomcat-JESSICA2 Overheads................................30

Chapter 4. Implementation ..31
4.1 Porting Methodology ...31
4.2 JESSICA2 Fixes and Modifications ..31

4.2.1 Error Fixes ...31
4.2.2 Modifications ...32

4.3 Tomcat Modifications..33
4.3.1 Threadpool Restructuring ..33
4.3.2 Dissolve Intensively Shared Object Pools34
4.3.3 Add a JSP Compiler Plug-in ..34
4.3.4 Tomcat Startup Script ..34

Chapter 5. Performance Evaluation...35
5.1 Performance Metrics..35
5.2 Experimental Platform...35

5

Deploying Enterprise Web Services by DJVM Approach

5.3 Application Benchmarks..36
5.3.1 TPC-W Bookstore..36
5.3.2 Online Bible Quote/Search Tool..37
5.3.3 Stock Price Data Feed Service...38
5.3.4 SOAP Purchase Order Processing ...38

5.4 Experimental Results ...38
5.4.1 Scalability Study ..38
5.4.2 Evaluation of Tomcat Modifications ...40
5.4.3 GOS Overhead Study...41
5.4.4 GIO Overhead Study..48
5.4.5 Thread Migration and Initial Placement48
5.4.6 Comparison with Web Server-Based Dispatching50

Chapter 6. Discussion ..52
6.1 Poor Speedup in Fine-grained Work..52
6.2 Call for Better Consistency Model ..52
6.3 Effectiveness of Object Home Migration ..52
6.4 Dynamic Thread Migration..53
6.5 Array Checking Overhead ...53
6.6 Lack of High Availability Support ..53
6.7 Need of Porting ..53

Chapter 7. Conclusions and Future Work ...54
7.1 Conclusions..54
7.2 Future Work ...54

7.2.1 On the Application Server Layer ...54
7.2.2 High-Availability Tomcat on JESSICA2.....................................55
7.2.3 Wish List of New JESSICA2 Implementations...........................55

References..57
Appendices...59

Major Components of Tomcat 3 Servlet Engine ...59
Tomcat-JESSICA2 Error Logs ..61

6

Deploying Enterprise Web Services by DJVM Approach

List of Figures
Figure 2-1: Architecture of Tomcat 4 clustering solution by JavaSpaces13
Figure 2-2: Architecture of Terracotta Cluster JVM ...14
Figure 3-1: Architecture of Tomcat 3 Application Server...17
Figure 3-2: Memory footprint of Tomcat 3 in a single-node JVM..............................20
Figure 3-3: Architecture of JESSICA2 ..22
Figure 3-4: Overview of the GOS distributed object heap ..24
Figure 3-5: Internal data structures of cache area in the GOS.....................................24
Figure 3-6: Cluster-wide Java Memory Model (JMM) ...25
Figure 3-7: Architecture of Tomcat-on-JESSICA2 application server........................26
Figure 3-9: Source code snippet of TcpWorkerThread Runnable27
Figure 3-10: Session clustering via the GOS...28
Figure 3-11: Socket handling via global I/O redirection ...29
Figure 4-1: Architecture of modified Tomcat-on-JESSICA2......................................33
Figure 5-1: Home page of TPC-W benchmark..37
Figure 5-2: Scalability curve of various application benchmarks39
Figure 5-3: Relation between speedup and amount of data processing.......................40
Figure 5-4: Comparison of speedup between the original and modified Tomcat........41
Figure 5-5: Cache heap size variation..42
Figure 5-6: Average GOS traffic rate of the original and modified Tomcat43
Figure 5-7: GOS traffic volume distribution over nodes ...43
Figure 5-8: Inter-node communication distribution in the original Tomcat44
Figure 5-9: GOS Traffic breakdowns of request types (in master node).....................44
Figure 5-10: GOS Traffic breakdowns of request types (in worker node)45
Figure 5-11: Top-ten hot objects packed over GOS in the original Tomcat46
Figure 5-12 Top-ten hot objects packed over GOS in the modified Tomcat...............46
Figure 5-13: Effectiveness of object pushing optimization ...47
Figure 5-14: Breakdowns of I/O redirection overhead ..48
Figure 5-15: Speedup comparison of thread initial placement and thread migration..49
Figure 5-16: Comparison of speedup by Tomcat-JESSICA2 and Apache mod_jk.....50
Figure 5-17: CPU usage distribution of Tomcat-JESSICA2 and Apache mod_jk......51

7

Deploying Enterprise Web Services by DJVM Approach

Chapter 1. Introduction

1.1 Background
In the recent decade, many advances in server-side technologies have revolutionized
the nature of web applications in terms of their sophistication. The scope of services
that can be supported online is ever widening – shopping, stock trading, bill payment
and businesses can all be done online. However, the workload demands on servers
also grow drastically with service needs. Web requests are no longer simple webpage
retrieval but tend to be increasingly resource-intensive. A single request may trigger a
database search, a transaction, a complex business program and also dynamic content
generation. The server bottleneck hence becomes more critical than the network
bottleneck and limits the scalability of servers in processing large numbers of
simultaneous requests. Researches on Internet performance also show almost 40%
client latency is causing on the server side [7]. Therefore high-performance servers
are vital to service providers for presenting services of excellence to clients.

Clustering has became a common approach to solve the server bottleneck problem.
Google, the most popular Internet search engine portal, employs a cluster of over
8000 machines to cope with the enormous daily search requests [8]. Their choice of
using clusters instead of powerful mainframes is motivated by lower cost along with
greater I/O device bandwidth and better scalability for ever surging demands.

However, without a scalable software support, the goal of high performance is still
impossible no matter how many machines are being used. Therefore, introducing
scalable clustering support to server systems has become a hot research topic. The
cluster computing community takes an active look at Java. With the power of “write
once run anywhere”, Java is among a top choice for web application development.
Many Java application servers like IBM WebSphere, BEA Weblogic, JRun, JBoss
and Apache Tomcat had emerged quickly in the market and attracted many
enterprises as their clients. With the abovementioned performance concern, they are
progressively built or upgraded with clustering ability.

Clustering a web application means two things: request load balancing and service
availability maintenance. It can be done at different levels of the system hierarchy,
ranging from the operating system to the application itself. In this dissertation, we
would propose clustering at a middleware level; more exactly, it is at the Java virtual
machine (JVM) level that is below the server. The title “DJVM approach” may sound
new to many web developers. Indeed, we apply a distributed Java virtual machine
(DJVM) to cluster an application server to speed up performance. Clustering at the
JVM level rather than at the application or at the server layer has a number of
advantages to be explained in section 1.3 to follow.

1.2 General Approaches of Server Clustering
Clustering helps to balance the workload on all servers in the cluster and maintains
service availability even if any one server suffers from failure. We would summarize
the common approaches to accomplish both the functions below.

8

Deploying Enterprise Web Services by DJVM Approach

1.2.1 Load Balancing
As a cluster is generally with a single entry point, the load balancing mechanism is
naturally done at the entrance by request dispatching. Typically, a switch or a web
server is situated at front-end to dispatch incoming requests to server instances based
on some scheduling policies like round-robin. Switch-based dispatching works at
TCP/IP level and is said to be content-blind (OSI layer-4 service). On the other hand,
dispatching by a web server is content-aware (OSI layer-7 service): the server can
look at the requested URL, cookie header, etc to determine where the request should
be dispatched, thus attaining better web content cache affinity. Therefore, this is a
more popular option. Server-based dispatching is usually done by web server
connectors (e.g. mod_jk and mod_proxy) which have built-in scheduling algorithms
to distribute requests evenly. Of course, load balancing can also be done by using
distributed computing models like Java RMI, CORBA and Servlet’s forward ability.
However, the problem is that most application servers just support them and leave the
usage of these instruments to application developers who need to master these
technologies rather than working on their business logic programming.

1.2.2 High Availability
Service availability is more difficult to achieve as it needs to consider the different
scenarios that could be resulted when a server failure does occur. We may need to
take care of data integrity issues if a client session is broken at the meantime. Some
mechanisms periodically save active client session objects to a shared database or file
system to let other server instances take up the request when one of them crashes. A
more direct approach is to replicate session data of every request to the memory of
one or more servers by some messaging services. However, scalability will be a great
concern here because replicating sessions may involve intensive object serializations.

We will go through the existing clustering solutions with more technical details in
Chapter 2. The major drawbacks of most of the general approaches are limited
scalability, lack of transparency and sometimes interoperability.

1.3 Our Approach
1.3.1 Distributed Java Virtual Machine (DJVM)
A Distributed Java Virtual Machine (DJVM) is a cluster-wide virtual machine (i.e. a
group of cooperative JVMs) that supports the parallel execution of threads inside a
multithreaded Java application with single-system image (SSI) illusion on clusters [3].
In this way, the multithreaded Java application runs on a cluster as if it ran on a single
machine with improved computation power. A DJVM inherits Java’s portability and
hence provides a more portable and more user-friendly parallel environment than
many other existing parallel programming languages such as MPI.

Our approach makes use of the multithreading feature of a Java application server to
perform load balancing. Threads inside the server are distributed to the JVMs over the
cluster in a direction to balance the workload due to the incoming requests.

9

Deploying Enterprise Web Services by DJVM Approach

1.3.2 Advantages of Using DJVM
DJVM is a novel approach in server-side load balancing. Depending on the DJVM
design, a number of possible advantages can be offered:

1. Transparent Clustering:

DJVM has already taken care of the clustering aspect so that web developers can
cluster their applications with virtually no coding or setup effort. In contrast,
many clustering facilities shipped with application servers require complicated
setup, configuration and performance tuning to achieve a targeted scalability.

Also, DJVM can allow JVM instances to join at runtime to scale up performance
without reconfiguration and service interruption. In mission-critical applications,
one-minute down time can lead to very serious impacts. General approaches,
however, usually require change of configuration files and server restart which
could be risky to service availability.

DJVM is basically a shared memory programming paradigm. Therefore session
data objects can be shared transparently among all server instances. If one cluster
node fails, other nodes can use their cached copies to serve subsequent requests
belonging to the same session.

2. Better Speedup and Scalability:

DJVM is by nature a good infrastructure to scalability. First, clustering at JVM
level should be faster than at server level or application level using technologies
like RMI and CORBA because it is closer to the machine code level.

Secondly, DJVM could achieve more dynamic load balancing in the following
sense. Consider the case of round-robin web server connectors. If the processing
time of each request is largely uneven, then some nodes could be overloaded
with long running threads while some are idle for their threads have finished
processing the assigned short-lived requests. There is no way to retune the
workload after requests have been dispatch. However, this unbalanced situation
can be avoided by DJVM. If the DJVM has dynamic thread migration ability like
the case of our JESSICA2, then workload can be readjusted by moving out some
intensive threads to the idle nodes. Besides resulting in better speedup, this also
suggests that DJVM can provide a more suitable runtime environment to support
irregularly structured applications on server platforms.

3. Cooperative Caching Support:

Cooperative caching makes use of the remote memory of other cluster nodes to
avoid excessive disk accesses. Consider the current overhead ratio of over 10:1
for a 4-KB page fetch via disk access and via Fast Ethernet; the cached objects in
a DJVM can be utilized to maximize web content affinity and greatly improve
server performance.

10

Deploying Enterprise Web Services by DJVM Approach

1.3.3 This Dissertation Work
To testify the benefits of the DJVM approach, we made a great effort to port the
popular application server Apache Tomcat (version 3.2.4) onto our DJVM prototype
called JESSICA2. In effect, we arrive at a Java application server clustered at the
JVM level. Application benchmarking and performance analyses were carried out to
investigate the scalability and the possible bottlenecks in the overall system. Finally,
we tried to compare the speedups obtained by web server dispatching and our system.

Our work is important because a successful outcome will not only help to solve web
application server scalability problems in a transparent manner but also motivate the
public acceptance of DJVM systems in wider application areas. However, we have
been facing great technical challenges. Porting a full-fledged application server onto a
DJVM prototype is highly difficult because of the huge rift in their design goals and
software robustness. JESSICA2 DJVM was designed to support compute-intensive
applications mostly in the scientific area. Its implementation was not optimized for
I/O intensive server-side applications. Therefore careful analyses and modifications
are necessary to address the system-wide conflicts between the two kinds of systems.

1.4 Organization of this Dissertation
The rest of this dissertation is organized as follows. Chapter 2 reviews the previous
work related to Tomcat clustering and other DJVM systems which can support web
applications. Chapter 3 gives a study on the architecture and characteristics of Tomcat
and JESSICA2, followed by their integration. Chapter 4 explains the implementation
details of how the two systems are integrated and enhanced. Chapter 5 presents the
experimental results obtained from performance evaluation on our system. Chapter 6
discusses the various issues with the DJVM approach. Finally, in Chapter 7, we would
draw a few conclusions from our findings and suggest possible future work.

11

Deploying Enterprise Web Services by DJVM Approach

Chapter 2. Related Work
In this chapter, we will first have an overview on existing Tomcat clustering solutions.
Secondly, we will also review a few clustered JVM systems that have been used to
run server-side applications.

2.1 Tomcat Clustering
2.1.1 Load Balancing
Tomcat and Apache web server are usual coworkers to support load balancing for a
web site. Actually, the load balancing function is not handled by Apache itself but by
the server connectors pluggable to it. There are many connector implementations such
as mod_proxy, mod_jk, mod_rewrite and mod_backhand. Besides basic scheduling
algorithms, some of them can support “sticky sessions” which means they can
memorize which node a request was dispatched to and subsequent requests belonging
to the same session will be assigned to the same node for attaining session affinity and
hence a good cache hit rate.

2.1.2 In-memory Session Replication
Service availability in Tomcat is achieved by session replication. There are many
implementations of session replication. It can be done by using a shared database or
shared file system to make sessions available to other server instances. However this
approach is not scalable. A more popular and better alternative is to use in-memory
session replication which relies on a specific messaging protocol or a distributed
shared memory for sharing session objects across the cluster. Several implementations
of this approach are introduced as follows.

2.1.2.1 Tomcat Clustering by JavaGroups
JavaGroups is a Java-based toolkit for reliable group communication. It can ensure
each group member receives the same sequence of messages in the same well-defined
order. [15] built an in-memory session replication plug-in for Tomcat 4 based on
JavaGroups. However, in order for the replication to work correctly, any attribute
value that is stored in the session has to implement the java.io.Serializable interface.
Object serialization poses great impact on the scalability in this kind of system.

2.1.2.2 Tomcat Clustering by JavaSpaces
JavaSpaces is a core Jini service and can be used to design a clustering solution in the
distributed shared memory model. [12] proposed a space paradigm approach by which
a request is fulfilled by having an object move from one machine to another, carrying
with it the present state of execution and everything else needed, including the
bytecode, if needed, using an associative, distributed, shared memory. Figure 2.1
shows the architecture of such a system. The Cluster Server Connector receives the
requests from the clients, and the Cluster Server Processor encapsulates the requests
into RequestEntry objects and writes them into the JavaSpace. The Cluster Worker
Connector then takes these requests from the space and passes to the Cluster Worker
Processor to fulfill them. Load balancing, request-level and session-level failovers are

12

Deploying Enterprise Web Services by DJVM Approach

naturally supported by this approach. In fact, this architecture has some similarity
with our final-version system in that wrapped request objects are passed to workers
through a shared memory space. However, their work is modified on Tomcat 4 and
there is no experimental results published, so we cannot compare with this system.

JavaSpaces R1R2

Cluster Worker
Connector

Cluster Worker
Connector

Cluster Server
Connector

HTTP Requests

Cluster Worker
Processor

S1

Cluster Server
Processor

Cluster Worker
Processor

writewrite

taketake

take

write

Figure 2-1: Architecture of Tomcat 4 clustering solution by JavaSpaces

2.1.2.3 Tomcat 5 Built-in Clustering
Starting from Tomcat 5 series, built-in clustering is provided by a proprietary protocol.
Developers can use the SimpleTcpCluster and SimpleTcpClusterManager classes that
are shipped with Tomcat 5 installation. Session replication in the current version is an
all-to-all replication of session state, meaning the session attributes are propagated to
all cluster members all the time. This algorithm is only efficient when the clusters are
small. For large clusters, the next Tomcat release will support primary-secondary
session replication, where the session will only be stored at one or maybe two backup
servers.

13

Deploying Enterprise Web Services by DJVM Approach

2.2 Related Clustered JVMs
There are a number of DJVM or clustered JVM projects pioneered by different
institutes and universities. Below is a list of these works including our JESSICA2.

z Java/DSM, Rice, 1997
z JavaParty, University of Karlsruhe, 1997
z cJVM, IBM Haifa, 1999
z Jackal, Vrije University, 2000
z Hyperion, ENS Lyon, U. New Hampshire, 2000
z JSDM, Tokyo Institute of Technology, 2001
z Kaffemik, Trinity College, Dublin, INRIA, 2001
z J/Orchestra, Georgia Tech, 2002
z JESSICA2, University of Hong Kong, 2002
z dJVM, Australian National University, 2002
z JavaSplit, IBM Haifa, Israel Inst. of Tech, 2003
z Terracotta Clustered JVM, Terracotta, Inc., 2006

However, most of these JVM systems are still at the research stage and far from being
applied to support server-side applications except Terracotta Clustered JVM which
will be discussed below. Another work which may be relevant to ours is cJVM which
has successfully run a Java server application benchmark with proven scalability. We
will review these two JVM systems and try to compare them with JESSICA2.

2.2.1 Terracotta Clustered JVM
Terracotta Clustered JVM has emerged on the market not far ago as of this writing. It
is believed to be the only one production-ready clustered JVM up to now that can
support realistic application servers like Weblogic and Tomcat. It ships with several
packages namely Terracotta DSO, JDBC and Sessions for clustering web applications.
Figure 2.2 depicts their system architecture. Terracotta relies on a centralized server
connected to all the clustered JVMs to replicate state across application servers.

Terracotta Server

JVM

DSO
Class Loader

Ordinary
Java

Classes

Config

Instrumented
Classes

JVM JVM

App
Server

App
Server

App
Server

Figure 2-2: Architecture of Terracotta Cluster JVM

14

Deploying Enterprise Web Services by DJVM Approach

Terracotta DSO (Distributed Shared Objects)

Terracotta DSO is the core technology for clustering JVMs. It works by bytecode
instrumentation of application classes [17]. Hooks are injected to the bytecode when
Java classes are loaded in the JVM. These hooks detect at runtime field changes on
object instances of the wanted classes (by user configuration) and generate messages
to central server to update the replicated state of the object. Likewise, the hooks may
receive asynchronous but transactional notifications from the server when other nodes
perform update to the shared objects.

Terracotta is doing exactly what we present in this dissertation - JVM-level clustering
approach that can help web developers to transparently cluster their web applications.
However, complete transparency is still not fully supported in some cases. For
example, nested lock cannot be used.

We could compare Terracotta with JESSICA2 in some aspects:
z Terracotta replicates and ensures consistency of only those user-specified objects.

On the other hand, JESSICA2 applies the consistency protocol to all objects
which are accessed and cached remotely. Thus, in terms of clustering efficiency,
JESSICA2 could lag behind. However, in terms of transparency, we do better
since we do not require users to configure the concurrency control semantics in
the distributed context as in Terracotta.

z Terracotta uses bytecode instrumentation at the time of class loading to insert
hooks to check and synchronize object states. JESSICA2 uses JIT compiler to
generate native code for object state checks; also object header is extended to
distinguish master/cached copies and to maintain the state of object.

z Both systems employed weak Java Memory Model (JMM) that resembles lazy
release consistency, write updates only propagate at memory boundaries, i.e.
lock/unlock. So both systems should run practically fast. However, JESSICA2
implemented various adaptive optimization techniques that can save or aggregate
messages further.

z Terracotta does not provide load balancing solutions while JESSICA2 achieves
dynamic load balancing by thread migration.

z Terracotta is not fully SSI-compliant (e.g. it does not have a global I/O space);
JESSICA2 implements SSI extensively (e.g. it has I/O redirection features).

z Terracotta uses a centralized approach for memory consistency while JESSICA2
does it in a more distributed manner. For example, the Terracotta Server is
always the lock manager of all concerned objects for enforcing concurrency
restrictions and it communicates with hooks in the shared objects. In JESSICA2,
the lock manager of an object is the JVM that owns the master copy of the object.
Likewise, updates are flushed to the centralized server in Terracotta while in
JESSICA2, updates are flushed to the object homes which can be different
machines. Theoretically, JESSICA2 should see less bottleneck issues.

z Class library of Terracotta is already JDK 1.5; however JESSICA2 is still mainly
of JDK 1.1 (and some 1.2 classes). Therefore, JESSICA2 supports up to Tomcat
3.2.4 only but Terracotta can run Tomcat 5 and other application servers.

15

Deploying Enterprise Web Services by DJVM Approach

2.2.2 cJVM
cJVM is a quite early clustered JVM project held by the IBM Haifa Research Labs. Its
purpose is to enable large multithreaded Java server applications such as Jigsaw to run
transparently on a cluster and to leverage the full power of a cluster, attaining high
scalability [9].

First of all, threads are distributed in a load balancing direction over the cluster nodes
when they are created. This will offer the application with enlarged computing power.
Secondly, cJVM applies a master-proxy object model and a technique called method
shipping to support transparent object accesses by the distributed threads. In cJVM,
when an object is created in a node, the object is called the master object. Other nodes
can remotely access the object via a proxy object which is created in their own heaps.
Field access and method invocation of the proxy object will be shipped to the node
where the master object resides for execution. In effect, all heaps cooperate to present
a universal heap to the threads and no cache consistency issue is involved.

cJVM achieves about 80% efficiency on 4 nodes connected by Myrinet for the pBOB
application benchmark (its modified version was adopted as SPECjbb2000). However,
this cannot fully reflect the scalability. SPECjbb2000 tends to be much simpler than a
full-fledged application server like Tomcat. Also it does not support JIT compilation
mode, limiting its practical use in high performance server applications.

We could compare cJVM with JESSICA2 in certain aspects below:
z Both cJVM and JESSICA2 support thread initial placement. cJVM places

threads by a dynamic load balancing function while JESSICA2 simply does it in
a round-robin manner.

z JESSICA2 supports JIT compilation, dynamic thread migration and single I/O
space support which are all absent in cJVM’s implementation.

z cJVM’s master-proxy model fixes the location of the master objects while
JESSICA2 uses an adaptive object home migration protocol.

16

Deploying Enterprise Web Services by DJVM Approach

Chapter 3. System Analysis and Integration
In order to cluster Tomcat over our JESSICA2 DJVM in an effective way, we must
correctly recognize their system architectures and runtime characteristics, followed by
proper fixes on their possible misfits in the integrated system. In this chapter, we will
first give a detailed study on Tomcat and JESSICA2. Then we will illustrate how their
integrated version operates in a cluster-wide JVM environment.

3.1 Apache Tomcat
3.1.1 Overview
Apache Tomcat is the official reference implementation for the Java Servlet and
JavaServer Page (JSP) technologies [18]. Various surveys reveal Tomcat is the most
widely used open-source servlet engine and has been downloaded more than 10
million times [19], showing its popularity in the web community. Tomcat currently
has three version series from 3 to 5. Tomcat 4 has switched to a new servlet engine
core, namely Catalina, which has a very different architecture and threadpool design
from version 3. We can only support up to Tomcat 3.2.4 due to limited class library of
JESSICA2. Also, Tomcat is 100% pure Java which is a crucial requirement for us to
realize its Java thread migration using JESSICA2.

Tomcat itself is a multithreaded application. Multithreading helps filling up processor
idle time in the event of I/O blocking and is suitable for I/O intensive applications like
Tomcat. When the current thread blocks on I/O, another thread can be scheduled to
process other requests at a little cost of thread context switching.

3.1.2 System Architecture
The overall architecture of Tomcat 3.2.4 is depicted in Figure 3.1 below.

Tomcat Application
Server

Servlet Engine (Core)

Port
8080

Interceptors

Context

Servlet

PoolTcp
Connector

Adapter

Logger

JSP

Threadpool

Context Manager

Container

Requests

Http
Connection

Handler

Java
Compiler

Jasper Engine

Logger

Jasper
Loader

Working Dir

Servlet

Java Virtual Machine

Native threads

Tomcat Application
Server

Jasper Engine

heap

Servlet Engine (Core)

Port
8080

Interceptors

Context

ServletServlet

PoolTcp
Connector
PoolTcp

Connector

Adapter

LoggerLogger

JSPJSP

ThreadpoolThreadpool

Context Manager

Container

Requests Jasper
Loader
Jasper
Loader

LoggerLogger

Http
Connection

Handler

Http
Connection

Handler

Java
Compiler

Java
Compiler

ServletServlet

Working Dir

Java Virtual Machine

Native threads
heap

Figure 3-1: Architecture of Tomcat 3 Application Server

17

Deploying Enterprise Web Services by DJVM Approach

Tomcat consists of two major subsystems:

1. Servlet Engine: This is the main subsystem of Tomcat implementing the core

semantics for servlet handling. It consists of many well-defined components
responsible for different internal tasks which include locating the servlet context,
loading servlet classes and calling the servlet’s service() method to fulfill an
incoming servlet request.

2. Jasper Engine: This part is the implementation of the JSP specification. A JSP

is an HTML page with embedded java code, which can be compiled on demand
when the page is requested. In short, Jasper engine is responsible for parsing the
body of the page (through the Jasper loader) and compiling it into a servlet class.
Then the execution follows as if a normal servlet request is received. The
compilation cost is one-off, only happening at the first visit of the page. So JSP
technology generally runs faster over interpreter languages like Perl.

Inside Tomcat, a threadpool is created for serving requests. The use of threadpool has
two great advantages: (1) it effectively reduces the expensive cost of spawning a new
Java thread for each request which might be short-lived; (2) it puts a control on the
system resources so that the system will not be overloaded by too many simultaneous
requests. Each thread in the pool is listening to a common socket. When a connection
arrives, a thread will wake up from blocked state and call an handler to start the
servlet processing inside the context manager. When there are simultaneous requests
more than the number of threads in the pool, a new thread can be created. If the
maximum number of threads defined in Tomcat is reached, no more connections will
be accepted and are lined up in the backlog queue.

For a deeper account on the major components and their functionalities in Tomcat 3
servlet engine, please refer to Table A.1 in the Appendices. Our focus here is on the
Tomcat runtime behavior so that we can think of tailoring to support it on JESSICA2.

3.1.3 Flow of Operations
We would present some more low-level description on what has happened inside
Tomcat when a request is being processed (Table A.1 may be useful here). Tomcat
serves the incoming requests in a multithreaded manner as follows:

• When a socket connection is accepted (done inside the PoolTcpEndpoint object),

the processConnection() method of HttpConnectionHandler will be called.
• Depending on the “reuse” flag, the processConnection call will either create a

new HttpRequestAdapter object or arbitrarily take a previously created object
from the HttpRequestAdapter pool, for wrapping up the socket connection. A
HttpResponseAdapter will be created in a similar manner for this request.

• Then the readNextRequest() method of the HttpRequestAdapter object is called
to read the HTTP request line and HTTP headers. The request URL is parsed
accordingly.

• Next, the service() method of the ContextManger will be called with the pair of
HttpRequestAdapter and HttpResponseAdapter passed to it.

18

Deploying Enterprise Web Services by DJVM Approach

• The context manager will go through a chain of interceptors (hooks) such as
AccessInterceptor, SimpleMapper1 and SessionInterceptor on the request which
perform functions like authentication, context mapping and session handling.

• Then the request will enter the core of the servlet engine. A ServletWrapper will
be called to locate the requested servlet. The servlet class will be loaded and
initialized (at the first time).

• Then the doService() inside the ServletWrapper will be called, which invokes
the requested servlet’s service() method

• The doGet() or doPost() method implemented by the application servlet is called
accordingly.

• The application servlet’s business logic now executes, it may call getParameter(),
getSession(), getAttribute(), etc to read the data in the request and the session, if
any. It can also call setAttribute() to write data to the session.

• When the servlet business logic completes, any result could be written to the
output stream of the HttpServletResponse which is bound to the accepted socket.

The processing flow presented here looks complicated already but indeed it has been
much simplified from the actual details. The request processing calls to the inner core
layer by layer passing through connector, handler, context manager, interceptors,
container, context and lastly reaching the servlet. Therefore, we could expect the stack
of Tomcat threads will not be small. Many java frames are put on the stack because of
this interceptor-based (or hook-based) design of Tomcat.

3.1.4 System Characteristics
In this section, we would highlight some runtime characteristics of Tomcat. Later, we
will see all these could have serious impacts on compatibility and performance when
running on top of JESSICA2.

3.2.3.1 Synchronized Blocks in Tomcat
Tomcat’s internal has quite many synchronized blocks of code. This is mainly
because Tomcat will need to access various shared objects in each request processing
cycle. We summarize below three critical sections in Tomcat’s processing.

Threadpool Entering

Before a connection can be accepted, Tomcat needs to acquire an idle thread from the
shared threadpool. Being more specific, it needs to get a ControlRunnable object from
the ThreadPool vector via some synchronized methods. ControlRunnable is linked to
a Thread object which has started the run() method but is waiting for notification to be
up to service. Threadpool synchronization overhead is on per-request basis.

Session Management

If a servlet application needs to use sessions, the following methods will be called:
• In StandardManager: findSessions(), getNewSession()
• In SessionIdGenerator: getIdentifier(), generateID()

19

Deploying Enterprise Web Services by DJVM Approach

These methods are also synchronized because Tomcat uses a single hash table to store
session objects which is shared by all threads. Depending on the web application,
session handling can be a per-request cost.

Extensive Use of Object Pooling

Tomcat applies the object pooling technique to minimize the overhead of creating
short-lived objects and result in less garbage collections. Below is a list of some
frequently accessed object pools in Tomcat 3:

• Connection cache: a pool of TcpConnection objects used by PoolTcpEndpoint
• HttpRequestAdapter pool: used by HttpConnectionHandler
• Recycled sessions vector: a pool caching expired session objects which can be

reused by the StandardManager for saving new session creations.

Object pools are again shared and accessed by all threads via pool locking and
unlocking. In a single JVM runtime, synchronization cost is not apparent. Tomcat can
enjoy great performance speedup from object pooling which is indeed a common
server optimization technique.

3.2.3.2 Large Number of Objects
Figure 3.2 shows the startup memory footprint of Tomcat provided by GNU project
debugger. It can be seen that there were over 200 thousands objects created in the
heap when Tomcat is just brought up. This number appears to be huge to us. But it is
in fact very common in enterprise-scale application servers. Some of them, e.g. IBM
WebSphere have an even larger memory footprint that require a high-configuration
machine for smooth running. Tomcat belongs to a kind of server on enterprise scale.

We can imagine when threads in Tomcat are distributed over the cluster, there will be
large amount of remote object accesses requested from workers because most of the
objects have been created in the master JVM. Also object state checking overhead
would become enormous. This is a pressed challenge to our JESSICA2 prototype.

Memory statistics

 j.l.String: Nr 15648 Mem 733K other-nowalk: Nr 66 Mem 30K
 obj-no-final: Nr 143372 Mem 5626K 8999 Mem 582K

3907 Mem 877K 464 Mem 72K
prim-arrays: Nr

 ref-arrays: Nr j.l.Class: Nr
 obj-final: Nr 249 Mem 10K java-bytecode: Nr 3051 Mem 180K
 exc-table: Nr 277 Mem 17K jitcode: Nr 1468 Mem 975K
 static-data: Nr 147 Mem 4K constants: Nr 429 Mem 328K
 other-fixed: Nr 22015 Mem 1613K dtable: Nr 398 Mem 33K
 methods: Nr 425 Mem 544K fields: Nr 270 Mem 31K
 utf8consts: Nr 7114 Mem 366K interfaces: Nr 199 Mem 3K
 locks: Nr 0 Mem 0K thread-ctxts: Nr 74 Mem 1114K
 gc-refs: Nr 573 Mem 13K jit-temp-data: Nr 12 Mem 379K

Figure 3-2: Memory footprint of Tomcat 3 in a single-node JVM

20

Deploying Enterprise Web Services by DJVM Approach

3.2.3.3 Routine Daemon Threads
In Tomcat, besides the threads for request handling, there are also daemon threads for
some routine tasks. These threads are scheduled to wake up from sleep regularly at a
predefined interval. Below are the examples describing their natures.

• LogDaemon (Flusher)

TomcatLogger is a component responsible for logging server runtime information
such as failed requests. LogDaemon is a thread running the TomcatLogger class to
look into a queue and will writes out everything of there to the sink (e.g. log file).

• MonitorRunnable Daemon

This daemon monitors and cleans up the threadpool from too many spare threads at
regular interval (default per minute). If the idle thread count in the pool is greater then
the defined maximum spare thread count, then the excessive threads which were
spawned at high server load will be terminated.

• StandardManger Demaons

Tomcat gives each context (i.e. web application) a StandardManager daemon for
session management. These background threads will reap old session data (or put
them to the recycling vector) from the shared hash table.

3.2 JESSICA2
3.2.1 Overview
JESSICA2 (Java-Enabled Single-System-Image Computing Architecture version 2) is
a distributed Java Virtual Machine (DJVM) developed at the University of Hong Kong.
It is designed to support parallel execution of multithreaded Java applications over a
cluster. With JESSICA2, a single Java program can span over multiple machines, and
enjoy the combined computing power, memory and I/O capacity, as if it is running on
a single powerful machine.

JESSICA2 is the first DJVM featuring a lightweight Java thread migration mechanism
operating at Just-in-time (JIT) compilation mode. By this sound feature, Java threads
can freely move across node boundaries to make better use of computing resources.
JESSICA2 also offers user-friendly transparent clustering that requires no source code
modification and bytecode preprocessing. It will automatically take care of data
consistency of the shared objects, thread distribution and I/O redirection so that the
program will see a single-system image (SSI).

JESSICA2 was developed from Kaffe JVM 1.0.6 (class library JDK 1.1 to 1.2). It is a
proven successful implementation that achieves scalable speedup in most scientific
benchmarking experiments. The success is attributable to the many advanced features
and optimizations all over the system that are to be explained.

21

Deploying Enterprise Web Services by DJVM Approach

In the coming sections, we will review the system architecture and main features of
JESSICA2. We will try to make it concise here since our focus is to explore its useful
aspects and possible limitations for supporting Tomcat.

3.2.2 System Architecture
The overall architecture of JESSICA2 is depicted in Figure 3.3 below.

Portable Java
Frames

Migration

Communication Network

OS

Hardware
...

OS

Hardware

Master JVM

OS

Hardware

worker JVM

Migration

Host
Manager

JITEE

th
re

ad
s

Host
Manager

JITEE
th

re
ad

s

Host
Manager

JITEE

th
re

ad
s

Global Object Space (GOS)

Migration

worker JVM

Figure 3-3: Architecture of JESSICA2

In JESSICA2, the node where the application starts is called the master node. All the
other nodes in the cluster can join as worker nodes by starting JVM processes which
connect to the port open at the master JVM. In effect, a number of nodes participate in
the execution of a Java application. The Java threads in the application will be initially
placed among the nodes in a round-robin manner. Threads can also be dynamically
migrated from one node to another if a thread scheduler receives an migration request
from the load monitoring daemon in the JVM.

Each thread of the application runs in a JIT execution engine (JITEE) which is
extended to instrument the Java thread stacks on request for migration, and also to add
checking code for maintaining global object accesses.

The Global Object Space (GOS) layer is embedded inside the JVM to make the
shared objects created by the Java application visible to all the threads running on
different machines. There is also an I/O server daemon resided in the master JVM for
processing I/O redirection requests sent from the workers.

The host manager is a daemon running inside each JVM that manages the cluster
nodes and provides TCP-based communication supports for the GOS layer and I/O
redirections.

22

Deploying Enterprise Web Services by DJVM Approach

3.2.3 Main Features
3.2.3.1 Transparent Java Thread Migration
To support thread migration, we need some mechanisms to capture the thread’s
execution state and restore it onto the target machine. In an JIT-enabled environment,
Java threads are running in a native context, we call it a raw thread context (RTC),
which is usually unrecognizable an another machine. JESSICA2 designs a bytecode-
oriented thread context (BTC) for portable thread migration. BTC is derived from the
RTC of a suspended thread for migration and is sent to the target machine to aid the
thread state restoration. BTC-RTC transformation however faces two challenges: (1)
the native PC in the RTC may situate at the middle of the native code block compiled
from a bytecode instruction. (2) the types of the stack variables can only be known at
runtime. There are two mechanisms employed in JESSICA2 to overcome them:

• Dynamic Native Code Instrumentation (DNCI): instrument lightweight native

code to support RTC-BTC transformation when a Java method is first compiled
by the JIT compiler during execution. Migration points are added between some
bytecode boundaries chosen by heuristics, e.g. before a method call or a loop. At
these points, register and stack variable type spilling back to memory are done.

• JIT Recompilation (JITR): re-run the JIT compiler, trace the steps of the
compiler to the thread stop points, and collect the bytecode PC, the stack pointer,
the operand types and values during the recompilation. The complete process of
this mechanism consists of totally seven steps: stack walk, frame segmentation,
bytecode PC positioning, breakpoint selection, type derivation, translation, and
native code patching. Their detailed explanations can be found in [4].

JESSICA2 uses JITR by default because it charges instrumentation cost only when
migration does occur. Therefore, JESSICA2 runs at full speed most of the time during
execution. DNCI is suitable for irregular applications that make frequent migrations.

3.2.3.2 Global Object Space (GOS)
When threads move to different machines, they see different memory spaces. The
Global Object Space (GOS) layer in JESSICA2 leverages a software DSM-like service
to support remote object accesses from all threads across different nodes. Using page-
based DSM systems to support distributed object sharing in Java would suffer from
serious false-sharing, so JESSICA2 extends the heap in JVM to enforce object access
states through software checks. This design also allows the GOS to exploit the runtime
information in the JVM kernel to reduce communication costs.

Figure 3.4 below shows the overall structure of the GOS. The heap in each JVM is
logically divided into two areas, namely the master heap area and the cache heap
area. The master heap area is storing ordinary Java objects when they are first created
in the heap. When they are accessed by some remote threads, cached copies will be
left in the cache heap area in the remote JVMs to reduce unnecessary network traffic
caused by subsequent accesses. The cached object is similar to the original object (we
called it the master object) except that it has different flags like status and timestamp

23

Deploying Enterprise Web Services by DJVM Approach

in the object header for maintaining its consistency. Each thread is logically given a
private area in the cache heap and a hash table for quick lookup of its cached objects.

Global Heap

JVM

Master Heap Area Cache Heap Area

Hash
table Hash

table

JVM

Master Heap Area Cache Heap Area

Hash
table

Hash
table

Figure 3-4: Overview of the GOS distributed object heap

Figure 3.5 shows the more detailed internal data structures which are used to organize
the cached objects. When a new object is to be cached, a cache header will be created
for the object and is indexed through the hash table of the caching thread. The cache
header is shared by other threads in the node if they also want to cache the same
object. But they will keep their own private copies of the cache object. The JVM
internal representation of Java thread is also extended to carry a list of “host caches”
which is designed to speed up the search of objects for flushing.

host_cache

cache_obj

ch

0ts
INVALIDstatus

twin
1thread id

next

0id
obj

ch

0ts
INVALIDstatus

twin
1thread id

next

0id
obj

arrList
next

objList
0host id

arrList
next

objList
0host id

Thread 1 on host 1

hash table

…

ch_list

len
ch_lock

0xAaddr
elclass

next

0id
obj

ch_list

len
ch_lock

0xAaddr
elclass

next

0id
obj
cache_header

host_cache

arrList
next

objList
2host id

arrList
next

objList
2host id

cache_obj

ch

1ts
VALIDstatus

twin
2thread id

next

0id
obj

ch

1ts
VALIDstatus

twin
2thread id

next

0id
obj

Cache object Aflush

…

ch_list

len
ch_lock

0xBaddr
elclass

next

0id
obj

ch_list

len
ch_lock

0xBaddr
elclass

next

0id
obj
cache_header

Hjava_lang_Object A

Hjava_lang_Object B

cache

cache_obj

ch

0ts
VALIDstatus

twin
2thread id

next

0id
obj

ch

0ts
VALIDstatus

twin
2thread id

next

0id
obj

…

Cache object A

Cache object B

Figure 3-5: Internal data structures of cache area in the GOS

24

Deploying Enterprise Web Services by DJVM Approach

Synchronization – Cluster-wide JMM

The cache consistency protocol in the GOS is said to be a cluster-wide Java Memory
Model (JMM) which can be visualized in Figure 3.6. In JMM, a shared object access
is protected by a synchronized block. When entering a monitor (i.e. lock), it needs to
flush all objects cached by the current thread. The flush operation is to invalidate all
the cached objects and to write back diff of any dirty objects to homes. Home nodes
will apply the diff updates the master objects. Later, when the thread uses an
invalidated cached object, it will fault-in the most up-to-date copy from the home
node and the cached copy becomes valid again. After the thread completes its job and
exits the monitor (i.e. unlock), it must flush (write back diff) all dirty objects back to
the homes for update. (Note: Invalid object access can fault in the fresh copy because
we tweak the bytecode GETFIELD, GETSTATIC, AALOAD etc to call our GOS interface
function to contact the home node.)

Worker 1

Master Node

Worker 2

Thread private
cache area

Master heap

Before unlock:
write back

Use invalid:
fault-in from master

Before lock:
flush

Figure 3-6: Cluster-wide Java Memory Model (JMM)

Lastly, there are three optimization techniques implemented in the GOS to make it run
more efficiently, namely:

• Adaptive object home migration: This is a featured technique which detects a

dominant writer in the cluster on an shared object and migrates the object home
to it so as to eliminate excessive remote write backs.

• Object pushing: This is a pre-fetching technique that exploits the connectivity
of a Java object. It scans through the field definitions in an object and aggregates
also the objects it refers into one message to save communications.

• Fast object state checking: This is to use the JIT compiler to generate native
code for the object state checking instead of simply directing it to the GOS
interface functions.

25

Deploying Enterprise Web Services by DJVM Approach

3.2.3.3 Global I/O Redirection
I/O redirection provides a SSI view for Java threads all over the cluster to perform I/O
operations as if they were running on a single JVM. Java I/O library in JESSICA2 is
extended to fulfill this SSI requirement. The modifications include file and network
I/O. The internal file handle in the JVM is extended to use the first half word denotes
the host id of the machine where the file is first opened (we also call it master node).
Remote read/write operations will be redirected to the node with host id extracted
from the file handle. The I/O server daemon inside the master JVM is responsible for
handling the redirection requests. A new daemon thread will be spawn to process
socket connect, accept, read and datagram receive requests to avoid blocking.

Some strategies are used to save redirection cost. A read-only open operation of file
system I/O first checks the local disk before redirecting to the master node. Other file
I/O operations will always be redirected. For network I/O operations, connectionless
open (such as UDP) will be done locally. The other operations such as TCP open will
be redirected to the master JVM.

3.3 System Integration
In this part, we will present how Tomcat is running over JESSICA2. We will also
point out some performance issues of the integrated server due to the mismatched
runtime characteristics of both systems.

3.3.1 Tomcat-on-JESSICA2 Architecture
Figure 3.7 shows the overall architecture of the Tomcat-JESSICA2 application server.
Basically it is of no architectural difference from Tomcat running on an ordinary JVM.
But with JESSICA2, Java threads in Tomcat have been mapping to native threads
created in all the participating JVMs.

Tomcat Application
Server

Servlet Engine (Core)

Port
8080

Interceptors

Context

Servlet

PoolTcp
Connector

Adapter

Logger

JSP

Threadpool

Context Manager

Container

Requests

Http
Connection

Handler

Java
Compiler

Jasper Engine

Logger

Jasper
Loader

Working Dir

Servlet

Master Node

GOS

Worker Node 1 Worker Node 2

Tomcat Application
Server

Jasper Engine

JESSICA2

Servlet Engine (Core)

Port
8080

Interceptors

Context

ServletServlet

PoolTcp
Connector
PoolTcp

Connector

Adapter

LoggerLogger

JSPJSP

ThreadpoolThreadpool

Context Manager

Container

Requests Jasper
Loader
Jasper
Loader

Http
Connection

Handler

Http
Connection

Handler

Java
Compiler

Java
Compiler

LoggerLogger

ServletServlet

Working Dir

Master Node

GOS
JESSICA2

Worker Node 1 Worker Node 2

Figure 3-7: Architecture of Tomcat-on-JESSICA2 application server

26

Deploying Enterprise Web Services by DJVM Approach

3.3.2 Cluster-wide Tomcat Operations
Tomcat is now running in a distributed manner, utilizing the thread migration, global
object space and I/O redirection features provided by JESSICA2. We will elaborate
how these mechanisms are actually used by Tomcat below.

3.3.2.1 Distributed Thread Running
Figure 3.8 shows a typical Java thread stack of a request processing thread in Tomcat.
Since Tomcat is not linked to any native library, the whole stack of Java frames can
be migrated to worker nodes through JIT recompilation. Figure 3.9 shows the code
snippet of the TcpWorkerThread.runIt() method which calls endpoint.acceptSocket().
Therefore, after migration, the thread will accept incoming socket connections in a
remote manner via I/O redirections back to the master JVM.

TPCW_home_interaction.doGet web application servlet class
on top of stack javax.servlet.http.HttpServlet.service

javax.servlet.http.HttpServlet.service
apache.tomcat.core.ServletWrapper.doService
apache.tomcat.core.Handler.service(Handler.java:287)
apache.tomcat.core.ServletWrapper.service
apache.tomcat.core.ContextManager.internalService
apache.tomcat.core.ContextManager.service
apache.tomcat.service.http.HttpConnectionHandler.processConnection
apache.tomcat.service.TcpWorkerThread.runIt
apache.tomcat.util.ThreadPool$ControlRunnable.run
java.lang.Thread.run

Figure 3-8: A typical thread stack of a Tomcat request servicing thread

while(endpoint.running) {
Socket s = endpoint.acceptSocket();

if (null != s) {
// Continue accepting on another thread...
endpoint.tp.runIt(this);

try {

if(usePool) {
con=(TcpConnection)connectionCache.get();
if(con == null)

con = new TcpConnection();
}

con.setEndpoint(endpoint);
con.setSocket(s);
endpoint.getConnectionHandler().processConnection(con, perThrData);

} finally {
con.recycle();
if(usePool && con != null) connectionCache.put(con);

}
break;

 }
}

}

Figure 3-9: Source code snippet of TcpWorkerThread Runnable

27

Deploying Enterprise Web Services by DJVM Approach

3.3.2.2 Shared Object Access via the GOS
Refer to Figure 3.9 again. We can see migrated threads will do get() and put() on the
connectionCache object remotely via the GOS. Both are synchronized methods, that
means all cached objects will be flushed at these calls, including the array used to
pool all the TcpConnection objects.

Session clustering via the GOS

In particular, the GOS can achieve the effect of session replication as in the common
Tomcat clustering approaches. Figure 3.10 shows a shopping cart example which
helps to visualize how a session is clustered among the JVMs. When a fresh request
arrives at Tomcat, a shopping cart session object will be created, say, in Master. If the
next request from the client is dispatched to another thread running on Worker 1.
Then the created session will be fetched to Worker 1 and remains in the thread’s
cache area. In this way, all cluster nodes can be able to process requests of this client
through the session. This aims to achieve high-availability and load-balanced service.

Master Worker 1

Tomcat

cachedcached

1st Req from client A

Java Threadpool

2nd Req from client A

(with cookie JSESSIONID)
ShoppingCart object

BookItem object

ShoppingCart object

BookItem object

Data from
2nd ReqData from

1st Req

Worker 2

Figure 3-10: Session clustering via the GOS

We wish also to point out a batch of sessions are actually clustered on every request
touching on a session. Tomcat uses a Java hash table to store sessions. The Hashtable
class in Kaffe implementation is just a wrapper of HashMap that uses the Entry[]
array to store the objects. In the GOS, a huge array (larger than 64K size) will not
totally cached on a node. Instead, only a range of it will be cached. The cache array
will have additional fields in its header to define the accessible range. That means
some elements in Entry[] will go to a worker at each synchronized access of the hash
table. Therefore, we are doing a coarse-grained session clustering.

3.3.2.3 Socket Read/Write via I/O Redirection
Lastly, Tomcat threads on worker nodes need to redirect most of the I/O operations
back to the master since the accepted socket is opened there. Figure 3.11 below shows
a sequence of redirections that will occur for a single request. In particular, the accept
and read redirections sent to the master will make it spawn a separate I/O daemon.

28

Deploying Enterprise Web Services by DJVM Approach

MasterClient Worker

I/O daemon

accept

write

close

read

connect

response

close

request

Thread initial placement

Redirection
Command

socket.accept()

out.print()

socket.close()

in.read()

GOS

socket object
(remote access by worker)

JITEE

Browser

MasterClient Worker

I/O daemon

acceptaccept

writewrite

closeclose

readread

connectconnect

responseresponse

closeclose

requestrequest

Thread initial placement

Redirection
Command

socket.accept()

out.print()

socket.close()

in.read()

GOS

socket object
(remote access by worker)
socket object
(remote access by worker)

JITEE

Browser

Figure 3-11: Socket handling via global I/O redirection

3.3.3 Problems of Direct Integration
After understanding the above execution manners, we may already have ideas on the
resulted performance of Tomcat over JESSICA2.

3.3.3.1 Heavy Synchronization
As we have seen, due to intensive object pooling in Tomcat, synchronized resource
accesses are frequent. This imposes serious impact to JESSICA2 because all objects
cached by a remote running thread will need to be flushed and faulted in again. If this
operation happens in each request-response cycle, then it is a large factor limiting the
speedup achievable by JESSICA2. We will see in the experimental results later this is
a true performance issue.

3.3.3.2 High Traffic in the GOS
Recall one characteristic of Tomcat is its huge number of objects. We have also seen a
typical Tomcat thread stack is not small, if all objects being referenced in all methods
on the stack need to be fetched to remote nodes, the GOS will be stressed with these
traffics. Flush operation would be slow if the cache heaps become large. Another
factor mounting up the GOS traffic is the transfer of large arrays of object pools and
byte messages.

3.3.3.3 Master Being the I/O Bottleneck
Although our I/O redirection mechanism is good to meet SSI requirements, the master
will inevitably become the I/O bottleneck. To make matter worse, intensive spawning
of I/O daemon will create another performance concern. We will see not all web
applications will hit this bottleneck but those with high data volume.

29

Deploying Enterprise Web Services by DJVM Approach

3.3.3.4 Undesirable Migration of Tomcat Daemons
Recall that Tomcat has several kinds of daemon threads for routine tasks. These
threads are touching the threadpool, session hash table and writing log files. If they
are migrated to worker nodes, they will add more remote access and synchronization
overheads to the GOS as well as more I/O redirections which are undesirable. This is
a limitation of JESSICA2 that it is not aware of the task nature of threads and has no
idea to decide which thread should not be migrated.

3.3.3.5 Loss of Session Data Locality
Although we can do session clustering via the distributed heap, this mechanism is
however not quite efficient. The primary factor is the need of transferring and
maintaining many cached portions of a possibly large hash table among all cluster
nodes. Secondly, since every thread may access a session in the table’s Entry[] in an
arbitrary or random manner, whether partial array caching can save or induce more
overhead becomes a question. Finally, compared to sticky-session clustering solutions,
we are in fact losing data locality because we dispatch a request to a thread without
memory of which of them would have the cached session. Overhead of remote access
and synchronization on the hash table will be resulted if the request is dispatched to a
thread which did not cache the required session before.

3.3.4 Summary of Tomcat-JESSICA2 Overheads
• Synchronization of threadpool and object pools
• Remote object fetching in general execution
• I/O redirections and I/O daemon spawning
• Additional GOS traffic caused by migrated Tomcat daemon threads
• Fetching initialized static data from master when a worker loads a class
• Dynamic thread migration overhead (stack capturing and restoration)
• Exchange of computing resource statistics (e.g. CPU %) among cluster nodes

Combining all the above problems and overheads, the clustered version of Tomcat
over JESSICA2 performs even poorer than a single-JVM Tomcat server. We need to
modify Tomcat and JESSICA2 to make them have a better interfacing.

30

Deploying Enterprise Web Services by DJVM Approach

Chapter 4. Implementation
In this chapter, we will go through the implementation details of this dissertation. First,
the porting methodology we adopted is briefly introduced. Next we will review some
program fixes and modifications done on JESSICA2. Finally, Tomcat modifications
will be explained in details.

4.1 Porting Methodology
• Do compatibility tests to find out the highest version of Tomcat that can run on

Kaffe JVM 1.0.6 (Tomcat 3.2.4 is found).
• Then test the Tomcat version with JESSICA2 on a single machine.
• Repeat the test over a few number of cluster nodes.
• Fix the inherent problems of JESSICA2 to support Tomcat functionally.
• Perform stress testing on Tomcat over JESSICA2 to enhance its stability.
• Do performance analysis with various application benchmarks. Then modify and

tune up Tomcat over JESSICA2.
• Do performance tests with different combinations of JESSICA2’s optimizations.
• Compare the scalability with web-server based dispatching solutions.

4.2 JESSICA2 Fixes and Modifications
4.2.1 Error Fixes
Originally, JESSICA2 was unable to run Tomcat functionally although Kaffe can do.
This was due to the inherent program bugs inside various parts of JESSICA2. Bug
fixing is the most tedious process in this work. However, with the concerted effort of
our research team members over the past 18 months, we overcome this daunting task
and see a progressively stable Tomcat running on JESSICA2.

Table A-2 in Appendices lists out all the major error logs and bug fixes done on
JESSICA2. We would highlight a couple of educative examples here to appreciate
how errors could happen in a DJVM system.

Log 7: JSP Class Loading Problem

Tomcat has its own custom classloaders such as Webapp Classloader and Common
classloader to load the applications. Different classloaders will create different name
spaces for the Java classes, i.e. classes of equal name loaded by different loaders will
be considered as different classes. But JESSICA2 does not support namespace in the
GOS to distinguish classes loaded by different loaders, i.e. all classes will be shared
by different loaders. Since the classloader for loading certain JSP applications is
changed for some classes, worker nodes will fail to locate and load them.

This is a limitation of JESSICA2. To work around this problem, we skip the checking
of the classloader name in the class entry lookup function in JESSICA2 so that worker
JVMs can be able to look up the classes loaded by Tomcat’s custom classloaders over
the GOS.

31

Deploying Enterprise Web Services by DJVM Approach

Log 12: Throwable Packing Error

We found that JESSICA2 would suffer from segmentation fault when it tried to pack
the class signature of the inner class LogEntry of TomcatLogger. Later we found that
this happened because the GOS failed to pack a Throwable object. The root cause is
tricky. Throwable has an instance field called backtrace. The Kaffe implementation of
the Throwable class uses the buildStackTrace function to construct a C structure
called “stackinfo” and sets it to be the backtrace field. Although it is casting as a
Hjava_lang_Object pointer, it is actually not a Hjava_lang_Object structure at all and
appears as an alien memory block to the GOS. Therefore segmentation fault will
occur at packing this field.

This problem log reveals that an open-source class library may have certain parts of
implementation that has assumed to work only in a single JVM environment. Similar
problems are found in an application which uses BigInteger to do RSA encryption.
The BigInteger class in Kaffe is linked to a native GNU math library (gmp) and this
will cause segmentation fault in the GOS. Robust object packing over a distributed
heap would need an extensive regression test on the class library which is hard to
perform due to the lack of such testing tools. Our workaround for this problem is to
comment out the use of the buildStackTrace function in Exception.c and Throwable.c
and set backtrace to null so that the GOS can pack it without problem. However, if
Java Throwable is really thrown out, its back trace along the call stack will not be able
to see.

4.2.2 Modifications
Besides program fixes, we also rectify JESSICA2 to support Tomcat with better
functionality and efficiency.

4.2.2.1 Apply Patches to the Java Timezone Class
The original implementation of the Java Timezone class has some inherent problems.
When a Timezone object is created, it will open and read all time zone configuration
files in the operating system recursively and save the data into a hash map. First, this
will make Tomcat over JESSICA2 run slowly at startup because all workers need to
perform this step. Another more serious problem is that Tomcat cannot be started up
with a heap size larger than 64MB. This is because with a larger heap size, garbage
collection does not occur and the files to open exceeds 1024 which is the maximum
limit of file descriptors, fds, supported on Linux. This also results in invalid host id
error which is extracted from the first half word of the wrong fd value. To solve such
problems, we port a later Kaffe implementation of TimeZone and UNIXTimeZone
which open the necessary time zone files only on demand.

4.2.2.2 Support MySQL JDBC and Apache SOAP
Using Tomcat alone is not sufficient to support useful applications. Thus, we ported a
couple of useful Java packages - MySQL JDBC driver and Apache SOAP engine - on
the Tomcat-JESSICA2 server to make it able to support database operations and web
services. They need porting because the worker nodes failed to initialize some classes

32

Deploying Enterprise Web Services by DJVM Approach

in these packages. In JESSICA2, when a worker dynamically loads a class, it will
contact the master to load the class too and fetch the initialized static fields from the
master. However, the GOS seems unable to pack static fields with control characters
and of java.lang.Class correctly, therefore the worker JVM suffers segmentation fault.
Our workaround is to relax the protocol to let worker JVMs initialize the classes on
their own rather than fetching the master copies.

4.2.2.3 Exclude Daemons in Thread Initial Placement
As mentioned in last chapter, it is not desirable to initially place or migrate Tomcat
daemon threads to worker nodes. We modify the startThread function and make use
of the daemon flag in the Hjava_lang_Thread structure to do the tweak. For a thread
with daemon flag set on, the thread will always be started in the local JVM.

4.3 Tomcat Modifications
In this section, we will present the modifications done on Tomcat. We modify Tomcat
with the objective to make it come up to the DJVM programming paradigm, e.g.:
• Trim down the number of synchronization blocks wherever possible.
• Minimize the number of objects accessed and updated in a synchronized block.
• Let object be created locally in threads whenever possible.

4.3.1 Threadpool Restructuring
The first item we need to revamp is the threadpool design of Tomcat. The original
Threadpool class causes most of the performance issues because it is under intensive
synchronization whenever Tomcat harvests an idle thread from it, resulting in a heavy
per-request communication cost in the cluster-wide environment.

Tomcat Application
Server Servlet Engine (Core)

Port
8080

Socket
Accept

Connector pool

New Part

(bounded)

Add request
to work
queue

Master Node

GOS

Worker Node 1 Worker Node 2

JESSICA2

Worker pool

Context Manager

Process
Connection

Multiple
work queue

Tomcat Application
Server Servlet Engine (Core)

Port
8080

New Part

Socket
Accept
Socket
Accept Multiple

work queue

Connector pool (bounded)

Add request
to work
queue

Add request
to work
queue

Context Manager

Process
Connection

Process
Connection

Worker pool

Master Node

GOS
JESSICA2

Worker Node 1 Worker Node 2
Figure 4-1: Architecture of modified Tomcat-on-JESSICA2

33

Deploying Enterprise Web Services by DJVM Approach

Using Multiple Work Queues

While synchronization cannot be totally eliminated, we can reduce locking on a single
resource to minimize the waiting time of the other threads when the current thread
which gained the lock is flushing and fetching objects. Also, synchronization can be
done in a way to affect as fewer objects as possible. By these principles, we designed
a threadpool with multiple work queues as its entrance. Figure 4.1 shows the modified
architecture of Tomcat. In our design, we introduce a new threadpool called the
worker pool which allocates a private queue to each thread in it. The threads in this
pool are distributed to all the cluster nodes. The queues are for buffering up accepted
socket connections. The original threadpool is not retired but kept for accepting
connections in a multithreaded manner. The threads in this pool which we call the
connector pool are set as daemon threads so that they will not be migrated. Each
accepted socket will be dispatched to one of the queues in a round-robin schedule.
Then a worker thread will pick up the socket object, process it and execute the target
servlet. In this way, only two threads – one connector and one worker – will compete
the same lock every moment. In contrast to the original threadpool which is competed
by all threads, this implementation is more efficient. The synchronization blocks in
the new threadpool are also kept as thin as possible to minimize access faults which
cause fetching of the master objects. Any output result is still redirected to the master
node. However, we have eliminated the redirection cost of accept() since connections
are now always accepted by the connector threads bounded in the master node.

4.3.2 Dissolve Intensively Shared Object Pools
As the overhead of competing shared object pools become serious in a cluster-wide
environment, we decided to dissolve some of them, that means we would avoid their
use along the critical path. For example, we do not use the connectionCache and the
HttpRequestAdapter pool anymore. Instead, we let each thread create the objects they
need at startup. The objects will not be garbage collected until the threads end. In this
way, we are not losing the merit of object pooling. We also bypassed the use of an
intensively shared object called RecycleBufferedInputStream in the new system.

4.3.3 Add a JSP Compiler Plug-in
This modification is not related to performance but to make JSP web applications to
be able to run on JESSICA2. By default, the JSP compiler in Tomcat is the Sun Java
Compiler which is absent in JESSICA2. Our solution is to add the KjcJavaCompiler
plugin [23] to Tomcat, set it to be the default JSP compiler in the WebXmlReader
source and rebuild Tomcat.

4.3.4 Tomcat Startup Script
The Tomcat startup script is modified to start with JESSICA2. A new configuration
file called JHosts is added to let users specify the host names or IP addresses of the
worker nodes to be used. One important note is that all web application classes, third
party class libraries and the working directory for compiled JSP classes must be added
to the classpath in the script for both master and worker JVMs to locate them.

34

Deploying Enterprise Web Services by DJVM Approach

Chapter 5. Performance Evaluation
To evaluate the combined Tomcat-JESSICA2 package, a set of measurements and
experiments was conducted in a cluster environment. Besides using web applications
to assess the scalability obtained, specific overhead studies and comparisons were also
included to explore the underlying system behavior.

5.1 Performance Metrics
Recall the definition of speedup below for clarity of our measurements:

1

1

W
W

T
TS p

p
p ==

where T1 is the execution time using 1 node (W1 is throughput obtained by 1 node);
Tp is the execution time using p nodes (Wp is throughput obtained by p nodes);

Note: In all the following experiments, we have taken absolute speedup - we use the
original version of Tomcat which is supposed the best-known program for measuring
the single-node performance.

A constant workload is injected to Tomcat with varying number of nodes in each test
case and the total execution time and throughput are measured. We use 8 threads for
most experiments and scale the cluster up to 8 nodes to assess the scalability.

5.2 Experimental Platform
All experiments were conducted on the HKU Ostrich Cluster with the following
configurations.

Hardware Configuration

z CPU: PIII 733 MHz
z RAM: 512MB
z Interconnect: one 8-port Gigabit Ethernet backbone + four 24-port Fast Ethernet

switches

Software Platform and Tools

z Fedora Core 1 (Linux kernel 2.4.22)
z HKU-SLIM with NFS shared file system
z MySQL database server 4.0.24
z MySQL Connector/J 3.0.16 (GA release)
z Apache web server 2.0.53 (with mod_jk connector 1.2.10)

In particular, Apache JMeter [20] is a very useful stress/volume testing tool. We used
it to simulate various levels of workload of simultaneous client requests.

35

Deploying Enterprise Web Services by DJVM Approach

5.3 Application Benchmarks
This section will describe the applications used to evaluate the performance of our
DJVM-clustered Tomcat server. DJVM researches usually evaluate the performance
by solving scientific problems such as π-calculation, Successive Over Relaxation
(SOR) and the Traveling Salesman Problem (TSP). However, these benchmarks are
rather primitive and are not common server-side applications. Therefore, they are not
suitable to benchmark our server. Worse still, there are very limited servlet-based
application benchmarks publicly available for our experiments except the TPC-W
bookstore benchmark. Therefore we need to implement by our own some more
benchmarks which should model possible and realistic web application scenarios.

We deployed totally four application benchmarks, namely:

1 TPC-W Bookstore
2 Online Bible Quote/Search Tool
3 Stock Price Data Feed Service
4 SOAP Securities Order Processing

Their characteristics and particular testing parameters will be explained as follows.

5.3.1 TPC-W Bookstore
The TPC-W benchmark [21] has been developed by the Transaction Processing
Performance Council (TPC) in response to the rise of e-commerce systems. It models
the behavior of an on-line bookstore, including many elements commonly found in e-
commerce applications: a web-site supported by a web serving component which can
present both static and dynamic web pages; a relational database which is accessed
from the web server to provide transaction processing and decision support. It also
intensively uses sessions to model the shopping cart scenario.

We will deploy the servlet version developed by ObjectWeb [22]. A MySQL database
with size of around 250 MB representing 144,000 customers and 10,000 book items is
used to simulate a business case in reality. There are also 20,000 book images
(random pixels generated by the gd graphics library) for client browsing. A screen
capture of the application homepage is shown in Figure 5.1 below for reference.

In short, this application has the following characteristics: short-lived requests, large
number of sessions and quite I/O intensive due to the download of graphic images.
We speculate the speedup obtained through JESSICA2 for this kind of application is
limited because the extra JVM-level overhead will dominate for short-lived requests.

36

Deploying Enterprise Web Services by DJVM Approach

Figure 5-1: Home page of TPC-W benchmark

5.3.2 Online Bible Quote/Search Tool
This application models web applications having frequent file accesses. It represents
many common online document retrieval applications (like government press releases,
news archives and company catalogs). It is common for these applications be with
some advanced text search facilities.

The implementation actually takes reference to BibleGateway.com which is a portal
providing online services for searching and quoting verses in the Holy Bible. Each of
66 books in the bible is saved a text file in the shared file system of the cluster. The
processing time of each request depends on the input parameter of the number of
verses in query.

With JESSICA2, this servlet application essentially acts like a parallel file server. We
expect this kind of application could attain good speedup because file accesses
become distributed or parallel. Also the requested file content is read from file line by
line, causing many string concatenations which are compute intensive although many
people may have an illusion that they are lightweight.

37

Deploying Enterprise Web Services by DJVM Approach

5.3.3 Stock Price Data Feed Service
This application is constructed to model a stock market data provider. This is an
imperative B2B (or B2C) service – securities firms, brokers, banks and general retail
customers rely on such services for real-time or historical price quotation. In B2B
scenario, data consumers are connected to such service with price feed link running
on a specific messaging protocol. In hot market seasons, price fluctuations happen to
be frequent and will cause heavy workload on the data provider server.

Due to the difficulty of implementing real-time quotation, our implementation is a
historical quote service. We follow the trend of using XML messages to deliver the
price data. When the servlet receives a request, it will randomly query one instance of
a 4-node MySQL database cluster and format the data into an XML message sending
back to the client. We prepared the database by downloading real stock price data
from Yahoo Finance website for modeling true data size. Each request carries the
parameters: stock code, start date and end date. The processing time of each request
depends on the number of days in quotation.

5.3.4 SOAP Purchase Order Processing
Lastly, we also write a SOAP-based application to test the effectiveness of running
web services over our Tomcat-JESSICA2 system. It is common in B2B sector to
exchange purchase order messages which are in batch format containing a number of
transactions. Stock Initial Public Offer (IPO) is such a scenario. SOAP protocol is
XML-based and serves as a platform for handy service invocation. XML parsing is
however an intensive operation that will burden the server when simultaneous SOAP
requests are received.

We implemented a Java class that has a method for processing a batch of orders. First
the received SOAP message is parsed by calling the methods provided by the SOAP
engine (which internally parses the XML message in DOM model). Then each order
is validated against the customer database and then updated to the transaction
database. A report listing successful and failed orders is created at the end of the
processing. In our testing, the number of orders in each request ranges from a few tens
to a few hundreds.

5.4 Experimental Results
Various performance evaluations were conducted and their results are presented as
follows.

5.4.1 Scalability Study
Figure 5.2 depicts the scalability achieved by the modified Tomcat on JESSICA2 in
each application.

38

Deploying Enterprise Web Services by DJVM Approach

Speedup Analysis

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

1 2 4 8

Number of nodes

S
pe

ed
up

Online Bible

Stock Quote

SOAP Order

TPC-W

Figure 5-2: Scalability curve of various application benchmarks

Several phenomena can be observed from this set of results. First, for the online bible
application, we obtained a very linear scalability. We even got superlinear speedup in
the 2- and 4-node cases. Such superlinear speedup is attributable to (1) the additional
computing resources (caches/memory) for doing string concentration; (2) parallel file
accesses; both are provided by JESSICA2 and are absent in the single-node setting.

Stock quote data service achieves average speedup, at around 50% efficiency. The
reason is due to the large response size. Creating XML document from the database is
resource-intensive and so this application should benefit from JESSICA2, however
the return of such long XML messages to the clients is redirected to the master node
and gets it congested. The augmented resource advantage is nearly half compensated.

SOAP order processing scales poorly due to heavy synchronization inside the SOAP
engine. The GOS traffic log revealed many objects belonging to the SOAP engine like
MessageRouterServlet, DeploymentDescriptor and SOAPMappingRegistry are being
exchanged every request-response cycle. Some of these objects are large in size as
SOAP tends to use Hashtable for mapping objects frequently. Although Tomcat has
been tuned well on JESSICA2, SOAP is not. To attain good speedup for SOAP-
enabled web services, we need another porting effort customized for SOAP, although
this case should be much simpler than Tomcat. This also suggests whenever a new
application library is added on top of Tomcat, it may not scale well without
performance tuning. The servlet application itself should also follow certain rules (e.g.
doing less synchronization) which make it favor on the DJVM paradigm.

Finally, TPC-W attains negative speedup, confirming our speculation. This
application is merely I/O intensive; it does not take advantage of the resources
augmented by JESSICA2 to do computation. And because of its short-lived request

39

Deploying Enterprise Web Services by DJVM Approach

characteristics, the per-request GOS traffic and I/O redirection overhead become
dominating, hence having a negative effect to this kind of application.

The next study supplements the above discussion. We aim to find out the dependence
of speedup on the average request processing amount. The application used in this
experiment is the online bible benchmark. Data size means the average number of
bytes returned in the response which depends on the requested number of verses, and
is proportional to the number of compute cycles in this application. We wish to clarify
larger response size may not necessarily mean more processing but in this application
this is true. Figure 5.3 shows the scalability curves corresponding to three different
data sizes – small (< 4KB), medium (~ 12KB) and large (~ 30KB). It is clear that the
larger the data size, the better the scalability. The reason is that larger data size
requires more compute cycles which make effective use of the CPU cycles offered by
JESSICA2, thus pushing up the whole system’s efficiency.

Relation between Speedup and Requested Data Size

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

1 2 4 8

Number of nodes

Sp
ee

du
p

Small data size (< 4KB)

Medium data size (~ 12KB)

Large data size (~ 30KB)

Online bible benchmark

Figure 5-3: Relation between speedup and amount of data processing

5.4.2 Evaluation of Tomcat Modifications
Next, we will evaluate the effectiveness of the modifications applied to Tomcat.
Unless specified otherwise, all comparison experiments and overhead studies in the
context below is using the online bible benchmark (we skip other benchmarks for
there is not much difference in the result in most cases).

First, we compare their scalability attained. The result is depicted in Figure 5.4. In all
node combinations, the modified version attains a throughput over the double of the
original version. Such an improvement is mainly caused by successful reduction of
synchronizations and hence saving a lot of GOS traffic. Another reason, but less

40

Deploying Enterprise Web Services by DJVM Approach

significant, is the modified Tomcat accepts sockets locally at the master; this avoids
one unit of I/O redirection overhead per request-response cycle. More overhead
comparisons between both versions will be presented in the sections to come.

Comparison of Speedup Obtained by using Original
and Modified Tomcat

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

1 2 4 8

Number of nodes

Sp
ee

du
p

Modif ied Tomcat
Original Tomcat

Online bible benchmark

Figure 5-4: Comparison of speedup between the original and modified Tomcat

5.4.3 GOS Overhead Study
In this section, we will present several insightful figures about the running condition
of the Global Object Space.

5.4.3.1 Cache Heap Size
As mentioned before, Tomcat has a large memory footprint with over 200 thousands
objects. In this study, we aim to investigate how large the cache heap would be and its
size variation along the execution. We use the average number of cached objects to
represent the heap size for easier experimental tracking. Figure 5.5 shows the average
number of cached objects of a thread in the original and modified Tomcat along with
different lengths of execution time.

First, we can see the average per-thread cache area is not too big, around hundreds of
objects. That means the number of objects that are being used for serving requests
during a typical thread execution in Tomcat is limited. So this is supportable on
JESSICA2.

Secondly, we can notice the size of per-thread cache area in original version is several
times larger than the modified. The original one scales around several hundreds of
objects. When using 8 threads, the total cache heap size will be several thousands.
Synchronization on such a big cache heap will generate a high GOS traffic rate and

41

Deploying Enterprise Web Services by DJVM Approach

slow flushing over the space. This is a dominant factor limiting its scalability. On the
other hand, the new version cached less objects and suffer less synchronizations due
to rectified flow of execution. This contributes to its scalability rise as we have seen.

However, we can also observe that the cached heap size in the new version increases
with the length of execution linearly while the original tends to saturate over a period
of time. This an undesirable property in a server system and could be caused by lack
of proper garbage collection over the cached heap area in current JESSICA2. More
future analysis and enhancement would be needed to solve this problem.

Cache Heap Size Variation over Execution Time

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7

Normalized execution time unit

N
um

be
r o

f p
er

-th
re

ad
 c

ac
he

d
ob

je
ct

s

Modified
Original

Figure 5-5: Cache heap size variation

5.4.3.2 GOS Traffic
Figure 5.6 shows the number of objects exchanged over GOS is huge in the original
Tomcat – an average rate of over 7,000 GOS requests per second is recorded in the 8-
node case for the online bible benchmark. Indeed in all the benchmarks, a huge figure
is observed. The root cause for this high traffic volume is due to synchronizations
which happen at each request processing. In contrast, the GOS traffic in the modified
version is much smaller. Such enormous saving of the communication overhead
reflects effectiveness of using multiple-work-queue threadpool which avoids several
synchronization blocks that happen in the original threadpool coding. Skipping the
use of some shared object pools in the HTTP request handler also contributes to this
success because of less locking. This result shows that our modification is quite
effective though it is slight (less than 2% source code change).

Figure 5.7 shows the distribution of GOS traffic over the cluster in the 8-node case.
We can see in both versions the master node is loaded with most of the GOS requests.
This is expected because most objects were created on it and worker nodes need to
fetch them remotely. In the original version, objects are flushed back to the master

42

Deploying Enterprise Web Services by DJVM Approach

node or to other workers for object state consistency according to the JMM. We can
see from Figure 5.8 that the inter-worker communication in the original version is
intensive exactly due to this reason. In the modified version, this situation is much
improved – we can revisit Figure 5.7 to see there are basically no GOS requests sent
to worker nodes for object fetching. Our code restructuring lets workers create objects
locally and effectively bypasses synchronizations; this saves workers from the need to
send back updates to remote object homes as in the original version.

GOS Traffic Rate vs. Number of Nodes

0

2000

4000

6000

8000

2 4 8
Number of Nodes

G
O

S
 T

ra
ffi

c
R

at
e

(R
eq

/s
ec

) Original

Modified

Figure 5-6: Average GOS traffic rate of the original and modified Tomcat

GOS Traffic Volume

0

40000

80000

120000

160000

200000

1 2 3 4 5 6 7 8

Node ID

N
um

be
r o

f G
O

S
 R

eq
ue

st
s

Original
Modified

Figure 5-7: GOS traffic volume distribution over nodes

43

Deploying Enterprise Web Services by DJVM Approach

Inter-node Communication Pattern in Original
Tomcat

0%

20%

40%

60%

80%

100%

1 2 3 4

Node ID

R
el

at
iv

e
G

O
S

Tr
af

fic
 % Node 4

Node 3
Node 2
Node 1

Figure 5-8: Inter-node communication distribution in the original Tomcat

5.4.3.3 GOS Traffic Breakdown
Next, we will take a closer view on the breakdown of the GOS requests. Figure 5.9
below shows GOS request type distribution on the master. We can see remote object
fetching (GetObj) is the most frequent operation; second is remote object locking;
followed by array fetching and then flush operation. Remote object locking is severe
in the original Tomcat but is much alleviated in the modified version.

GOS Traffic Breakdown in Master Node

0 10000 20000 30000 40000 50000 60000

LoadClass

LockObject

GetStatic

GetClassOw ner

GetObj

GetArr

Flush

io

GetHostAddr

Number of GOS Requests

Original

Modif ied

Figure 5-9: GOS Traffic breakdowns of request types (in master node)

44

Deploying Enterprise Web Services by DJVM Approach

Figure 5.10 below shows the average breakdown of GOS requests on workers. As
explained before, in the modified version has no demand at all except sending back
lock acknowledgements on the work queue object to the master.

GOS Traffic Breakdown in Worker Node

0 5000 10000 15000 20000 25000 30000 35000

LockAck

LockObject

GetObj

GetArr

Flush

Number of GOS Requests

Original

Modif ied

Figure 5-10: GOS Traffic breakdowns of request types (in worker node)

5.4.3.4 Hot Objects
This section presents and compares the top ten frequently accessed objects via GOS in
the original and modified version. This study facilitates design of right optimization
strategies in Tomcat or JESSICA2 enhancements. As we can see in Figure 5.11, the
most frequently packed object in original Tomcat is RecycleBufferedInputStream
which was designed to save garbage collections by reusing the stream object.
However, when Tomcat runs in DJVM environment, this simply causes severe
contention of this single resource. Figure 5.12 shows the modified Tomcat has a more
diverse distribution on the objects to pack and eases possible contentions. We can also
see Tomcat uses vector classes quite intensively. We can devise specific optimization
techniques at the DJVM level in future enhancements.

45

Deploying Enterprise Web Services by DJVM Approach

Top Ten Object Types Packed in GOS in Original Tomcat

java/text/Simple
DateFormat

3%

java/util/Gregorian
Calendar

3%

org/apache/tomcat/
core/Context

Manager
6%

org/apache/tomcat/
service/http/Http
RequestAdapter

14%

java/util/Vector
9%

org/apache/tomcat/
core/Context

2%

org/apache/tomcat/
util/Recycle

BufferedInput
Stream
26%

org/apache/tomcat/
core/Buffered
ServletOutput

Stream
2%

java/util/HashMap
2%

Misc
33%

Figure 5-11: Top-ten hot objects packed over GOS in the original Tomcat

Top Ten Object Types Packed in GOS in Modified Tomcat

java/util/Vector
15%

Misc
31%

java/text/Simple
DateFormat

7%

java/net/Plain
SocketImpl

8%

java/util/Gregorian
Calendar

7%org/apache/tomcat/
core/Context

5%

java/io/File
Descriptor

5%

org/apache/tomcat/
core/Container

4%

kaffe/util/UNIXTime
Zone
4%

org/apache/tomcat/
core/Context

Manager
14%

Figure 5-12 Top-ten hot objects packed over GOS in the modified Tomcat

5.4.3.5 GOS Optimization Effects
We would evaluate the effectiveness of two GOS optimization techniques – object
home migration and object pushing in this section.

Object Home Migration

For the original Tomcat, this feature was disabled in our experiments due to the
resulted instability. It was found that after migration of some byte arrays (which
belong to the RecycleBufferedInputStream object) from the master, later update on
the arrays performed by the requesting worker will fail and dump the JVM.

46

Deploying Enterprise Web Services by DJVM Approach

However, in the modified version, this error was not encountered. This is because we
does not have such byte arrays being actively written by worker nodes and therefore
their migrations do not occur throughout the execution. In the online bible benchmark,
there is virtually no migration occurred except one or two migrations of the
java.util.GregorianCalendar object from the master node to a worker. However, after
this migration, the object needs to be successively packed back to the master node
which is still referring it. Therefore, one object migration resulted in more remote
object accesses, violating the original goal of this optimization. In the SOAP order
processing benchmark, there are frequent migrations of java.io.FileDescriptor objects
from the master to all workers. However, the measured throughput with and without
home migration has no noticeable difference. The benefits offered by home migration
here tend to be offset by some other limiting factors in the application such as packing
of large-size arrays and hash maps in the SOAP engine.

In Tomcat, single-writer pattern seems to be seldom because every worker threads are
having equal chance in reading and writing a shared object like a pool. Enabling home
migration in this kind of application may even have a negative effect to cause object
homes bouncing back and forth. Therefore, this posterior pattern adaptation strategy
does not help under the roughly random access dynamics in Tomcat

Object Pushing (Pre-fetching)

By default, the object pushing optimization is enabled in JESSICA2. This option can
be switched off by running JESSICA2 with the –Jnoprefetch option. In Figure 5.13,
we can see enabling object pushing causes a slight decrease in speedup. The reason
for this can be explained by the strong ramification among objects in Tomcat - one
object has many cross-references to other objects. For example, a HttpRequestAdapter
object has many fields like Socket, HttpServletRequest, Response, Hashtable, Context,
Container, ContextManager and many string objects. However not of them are needed
in serving a request. With this tangled field-referencing nature of Tomcat, object
pushing will transfer more unnecessary objects and lead to a poorer speedup.

Effect of Object Pushing

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

1 2 4 8
Number of nodes

Sp
ee

du
p

Object Pushing Off
Object Pushing On

Figure 5-13: Effectiveness of object pushing optimization

47

Deploying Enterprise Web Services by DJVM Approach

5.4.4 GIO Overhead Study
Figure 5.14 below shows the breakdown of the types of I/O redirection requests in
both the original and modified versions. Socket write predominates here simply
because the online bible benchmark returns lengthy data to clients. The significance
here is that I/O daemon spawning overhead in modified Tomcat is lowered by half
because it is restructured to accept sockets locally at the master node.

Comparison and Breakdown of I/O Redirection Overhead

0 200 400 600 800 1000

1

2

3

4

5

6

Original

Modif iedPlainSocketImpl_socketAccept

PlainSocketImpl_socketAvailable

PlainSocketImpl_socketClose

PlainSocketImpl_socketRead

PlainSocketImpl_socketWrite

I/O daemon spaw ned

Figure 5-14: Breakdowns of I/O redirection overhead

5.4.5 Thread Migration and Initial Placement
This study aims to investigate the load balancing effectiveness of thread migration
and initial placement.

Thread Migration

No. of node Execution Time
(mm:ss)

Throughput
(req/min)

Speedup Migrated
Threads

1 05:20.4 46.7 1.00 0
4 02:32.2 97.5 2.11 3
8 02:32.8 97.3 2.10 6

Table 5-1: Performance results of dynamic thread migration

Thread Initial Placement

No. of node Execution Time
(mm:ss)

Throughput
(req/min)

Speedup

1 05:20.8 46.7 1.00
4 01:00.8 243 5.27
8 00:41.8 345.7 7.68

Table 5-2: Performance results of thread initial placement

48

Deploying Enterprise Web Services by DJVM Approach

Thread Initial Placement vs. Migration

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

1 4 8
Number of Nodes

S
pe

ed
up

Thread Migration

Initial Placement

Figure 5-15: Speedup comparison of thread initial placement and thread migration

Figure 5.15 shows that thread initial placement outperforms dynamic thread migration
several times. This phenomenon is quite the contrary to the case of irregular
multithreaded applications.

The reason for the poor speedup achieved by dynamic thread migration is multi-
folded: (1) We use 8 threads in Tomcat but only 6 of them were migrated. There is
hence one idle machine. (2) Some threads are migrated near the end of the stress
testing. Experiments show that it usually takes 3/4 to half of the testing interval for all
threads to be migrated out to each worker. Thus the additional computing resources
provided by the worker processors are indeed largely out of reach from the application.
This could imply either the thread scheduler has some intrinsic problems or the
current work stealing load balancing mechanism in JESSICA2 is too slow to react to
dynamic workload changes in the server. (3) After migration completes, it is also
found that the throughput immediately drops by around 15% to 20% followed by a
rise again. This is because the migrated thread is busying the master node for fetching
all its referenced objects created at the master. On the other hand, thread initial
placement does not suffer from this overhead because all workers have fetched most
of the necessary objects at startup; the “working set” of the threads is also smaller. (4)
Finally, we would point out the parameter -JDelay which is used to control the time
interval of resource statistics exchange between the master and the workers. Since
dynamic thread migration is found to be too inactive, we are forced to shorten this
parameter to 1 second in order to see reasonable thread migrations. Such frequent
statistics exchange overhead limits the scalability of the overall cluster.

Combining all above, the speedup that can be offered by thread migration is much
lower than that offered by thread initial placement.

49

Deploying Enterprise Web Services by DJVM Approach

5.4.6 Comparison with Web Server-Based Dispatching
In this final experiment, we would compare our DJVM approach with a web server-
based dispatching solution. Apache server with mod_jk connector is a very common
option in server load balancing. Therefore, we choose it in this experiment.

First, we tried the TPC-W benchmark but our system gives negative speedup. Apache
with mod_jk achieved an average speedup but the scalability is far from linear. The
possible reason is that the bottleneck happens at the single-node database tier. Scaling
out Tomcat instances hence does not help much on the overall performance. In this
kind of application, DJVM approach is not as effective as common solutions.

Then, we performed the study using the online bible benchmark and obtained the
result in Figure 5.16 below. Clustering by JESSICA2 achieved twice the performance
obtained by mod_jk.

The reasons for better performance are mainly due to the more load balanced state
maintained by JESSICA2 in the cluster. Figure 5.17 shows the distribution of average
CPU utilization of all the cluster nodes during the test. It can be seen that mod_jk
failed to provide a load balanced situation: node 3 and 8 are much more loaded than
node 4. There could be possible internal problems in mod_jk connector so that it
cannot achieve a fair round-robin scheduling. On the other hand, JESSICA2 levels off
the load more evenly via thread scheduling at the JVM level.

Comparison of Speedup Obtained by using JESSICA2
vs. Apache Web Server + mod_jk Connector

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

1 2 4 8

Number of nodes

S
pe

ed
up

Jessica2
Apache Web + mod_jk

Online bible benchmark

Figure 5-16: Comparison of speedup by Tomcat-JESSICA2 and Apache mod_jk

50

Deploying Enterprise Web Services by DJVM Approach

Comparison of CPU % Distribution of JESSICA2 vs. Apache
+ mod_jk

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8

Node ID

C
PU

 %
Apache + mod_jk
Jessica2

Figure 5-17: CPU usage distribution of Tomcat-JESSICA2 and Apache mod_jk

51

Deploying Enterprise Web Services by DJVM Approach

Chapter 6. Discussion
In this chapter, we will discuss various issues of the DJVM approach proposed by this
dissertation. In particular, we would account for the limitations of current JESSICA2
implementation in supporting application servers.

6.1 Poor Speedup in Fine-grained Work
From our experiments, we can see that the computation/communication ratio is the
dominant factor which limits the scalability of multithreaded Java server running on
DJVM. This confirms with the finding in [1]. Better design and implementation of the
GOS layer is vital to reduce the communication cost and hence to allow a wider scope
of applications with smaller computation/communication ratio.

6.2 Call for Better Consistency Model
The major limiting factor in our scalability is caused by intensive GOS traffic for
maintaining cached object consistency. Although we have adopted lazy release
consistency at memory boundaries, the GOS traffic is still high due to large number of
objects in cache heap areas resulted from typical enterprise-scale servers.

Our GOS implementation is following the original JMM. However, a more efficient
implementation should be viable but is currently lacking. For example, there should
be no need to check and flush immutable objects (marked with Java keyword final)
in the cache heap because these objects are read-only. So their state should always be
kept valid and we can save the cost of enforcing our consistency protocol on these
objects. However, our current handling is to invalidate all cached objects and compare
timestamps between the master copy and cached copy. Perhaps, we can allocate a
partition in the cache heap area to hold read-only objects which will not be affected
during synchronization.

Furthermore, the JMM is currently undergoing revision through the Java Community
Process (JCP) as some researchers argue that the original JMM is not well designed
and prohibits some common compiler optimizations. Hopefully, a future version of
JESSICA2 can implement a better designed JMM efficiently.

6.3 Effectiveness of Object Home Migration
General advice in the web developer community is to avoid storing large objects and
to limit the number of objects saved in a HTTP session for reducing the impact on the
system’s available memory and the cost of object serialization. Therefore, the
effectiveness of our home migration protocol is being challenged by web applications
in which single-writer patterns are rarely detected. However, we could argue that with
object home migration, we can support more and larger objects in a HTTP session.
For example, in a B2B application scenario, a session can be used to accumulate a list
of transactions which are successively processed by a single writer in a loop. Then
home migration will be activated and reduce the number of remote updates.

52

Deploying Enterprise Web Services by DJVM Approach

6.4 Dynamic Thread Migration
We have seen from the experimental result that the good feature of dynamic thread
migration is greatly hampered when it is used in server domain due to the various
issues we explained. However, if more embarrassingly parallel threads in Tomcat and
more reactive migrations can be achieved, this mechanism will be capable to provide
some very useful aspects we mentioned in Chapter one – e.g. server resources can be
integrated in a zero-downtime fashion by plugging worker JVMs, web applications of
irregular workload can enjoy more speedup from thread migrations.

6.5 Array Checking Overhead
Originally, the stock price data feed benchmark has implemented DES encryption that
can be enabled for secure service. However, after testing, we found that a negative
speedup was resulted and we need to disable this feature. The reason is due to heavy
array accessing in the encryption algorithm, causing a lot of array checking overhead.
This result also confirms with the slow down of the compress benchmark in [1] which
bears similar runtime nature consisting of intense array processing. To make it worse,
partially cached arrays cannot even enjoy the fast state checking optimization. We
need more advanced compiler analysis technologies for reducing array checking
overheads to support these important kinds of server-side applications.

6.6 Lack of High Availability Support
We have discussed session clustering via a JVM-level distributed heap. However, it
cannot be used to support high-availability service yet because the JVM heaps are
tightly coupled with communication messages. When one node failed, the distributed
heap will be partially corrupted. Future researches in developing fault tolerant DJVMs
could be the direction to cope with this limitation.

6.7 Need of Porting
Before a mature DJVM system exists, we still need efforts of porting the applications
onto the DJVM in order to let users enjoy transparent clustering. This is currently a
limitation forbidding DJVMs to support wider scope of web applications. However,
the maturing of DJVM systems could eventually transform the way we do clustering
in the future. This could also bring both advantages and impacts to the server-side
community. Perhaps small and medium enterprises would like the benefits provided
by DJVM systems. However, application server developers would be afraid of the
possible sale dropdown of their licenses if DJVM has done a multiplicity effect to
cluster their servers.

53

Deploying Enterprise Web Services by DJVM Approach

Chapter 7. Conclusions and Future Work

7.1 Conclusions
The goal of our proposed DJVM approach for web application clustering is to achieve
better scalability in a transparent manner. Based on our experimental results, we can
appreciate the very first success in testifying this goal.

We would make several conclusions in this dissertation below:
1. We have gained a practical experience in how to analyze the cluster-wide

runtime behavior of an application server over a DJVM system and to make
their interface be more compatible. Successful porting of Tomcat on JESSICA2
has been a breakthrough in the DJVM research community.

2. Our Tomcat-JESSICA2 server has achieved encouraging performance result in
applications of B2B service nature.

3. DJVM clustering is suitable for web applications of more compute cycles.
4. Session clustering can be done via a JVM-level distributed heap. However, it is

not efficient enough and not yet already to support high availability.
5. We spotted a number of limitations in the current version of JESSICA2. Better

implementation in the consistency protocol, dynamic thread migration and array
checking optimization are important for realizing good performance in common
web applications.

7.2 Future Work

7.2.1 On the Application Server Layer
7.2.1.1 Co-design of DJVM-tailored Application Servers
We have briefly noticed the effective programming style in the DJVM model. Indeed,
we can try to co-design an application server with thread nature, shared object access
pattern and workload scheduling all being cooperative to the DJVM layer. This could
be more flexible and promising than porting an existing server system. Of course, we
have to study and maintain the benefits of common server optimizations in our work.

7.2.1.2 Further Enhancements on Tomcat
We can further revise Tomcat’s locking granularity and its thread nature to reduce the
GOS overhead. Also, we can build stick-session scheduling inside Tomcat. This can
help increase session data locality and hence reduce the number of remote object
accesses. This scheduling should be however done at thread level rather than node
level as in the common solutions because threads could have migrated and offset the
chance of obtaining data locality.

54

Deploying Enterprise Web Services by DJVM Approach

7.2.1.3 Support for EJB Containers
Nowadays, enterprises tend to use the Enterprise JavaBeans (EJB) technology to
program their business logic rather than using Java servlets. Therefore the heavy
workload should have concentrated on the EJB container which is also multithreaded.
When a higher version of JESSICA2 is ready, we can try this kind of porting.

7.2.2 High-Availability Tomcat on JESSICA2
As discussed, to support high availability, we must implement some fault tolerant
mechanisms in a distributed shared heap to prevent a single node failure from
collapsing the whole server. However, this is a very challenging DSM research in that
the server events may not be replayed, performance will also be much degraded due to
any extra backup action of heap areas. Software transactional memory solutions [10]
may give us a hint to develop this kind of DSM layer for future JESSICA2.

7.2.3 Wish List of New JESSICA2 Implementations
z Upgrade to Latest GNU Classpath: This is a necessary step to support later

versions of Tomcat, EJB containers and many common Java packages.

z Fast Checking for Arrays: Currently we can partially cache a large array, but

fast inline object checking would be disabled, causing great slowdown for data-
intensive applications. This limitation can be solved by integrating array index
bound checking and cache range checking.

z Debugging Thread Migration: Current JESSICA2 has a limitation that forbids

debugging on migrated threads and makes development hard. Thread migration
will see unexpected errors if GNU project debugger (GDB) is enabled. There is
assertion in the setupFrame and pack_frame functions in the migration module
for double checking the stack content inferred by JIT recompilation. When the
stack states are inconsistent, the assertions will fail. As GDB may insert dummy
frames onto the program stack during debugging, this will make frame packing
being confused during thread migration. We may need to study how to solve this
problem in later JESSICA2 implementation.

z Inter-Worker Thread Migration: Due to some reasons, thread migration from

a worker to another worker is currently disabled. We may need to study the
problems behind and resume this feature to realize free movement of threads
across node boundaries.

z More Sensitive Thread Migration: The dynamic load balancing policy should

be carefully reviewed to make more responsive migrations to happen. A more
intelligent cost model can be implemented to determine which thread should be
or should not be migrated.

55

Deploying Enterprise Web Services by DJVM Approach

z Distributed Garbage Collection (DGC): Current JESSICA2 will never garbage
collect the cached objects on the remote machines and lead to wasteful memory
consumption. Some efficient incremental DGC algorithms should be considered
in future JESSICA2 upgrades.

z Fixing Memory Leaks throughout the System: At a high server workload,

JESSICA2 would sometimes throw OutOfMemory exceptions. According to our
research team members, there should be quite many places in JESSICA2 having
memory leakages and leading to this problem. We can use some memory
checkers like Valgrind [24] to locate these subtle errors.

z More Advanced Global I/O Implementation: Instead of I/O daemon spawning,

we can revamp the global I/O redirection code to be an I/O multiplexed version
for saving thread creation cost. Furthermore, we can look at mechanisms to allow
worker nodes to deal with socket connections without going to the master. The
socket cloning mechanisms in [6] or some migrating socket solutions could give
us some ideas on how to make this transparently in the JVM layer.

z Customizable Level of SSI: So far the design of JESSICA2 has done very well

in transparency and the SSI compliance: users generally need not to configure
the JVM before usage. However customizable transparency could be attractive if
we allow users to sacrifice some transparency for better performance based on
their application needs. For example, it is usually not desirable to redirect every
System.out.print() to the master. With a NFS-enabled cluster, file write
redirections are not necessary if asynchrony is not a concern. Therefore, future
JESSICA2 should be planned with configurable SSI level. We may borrow some
ideas from Terracotta in their configurable clustering semantics.

56

Deploying Enterprise Web Services by DJVM Approach

References

[1] Wenzhang Zhu, Cho-Li Wang, and F.C.M. Lau. “JESSICA2: A Distributed Java

Virtual Machine with Transparent Thread Migration Support”. IEEE Fourth
International Conference on Cluster Computing, Chicago, September 2002.

[2] Weijian Fang, Cho-Li Wang, Francis C.M. Lau, “On the Design of Global
Object Space for Efficient Multi-threading Java Computing on Clusters”,
Special Issue on Parallel and Distributed Scientific and Engineering Computing
in the Parallel Computing, Vol.29, pp. 1563-1587, 2003.

[3] Wenzhang Zhu, Weijian Fang, Cho-Li Wang, and Francis C.M. Lau, “High

Performance Computing on Clusters : The Distributed JVM Approach”, in
High Performance Computing: Paradigm and Infrastructure, John Wiley & Sons,
Inc. 2004.

[4] Wenzhang Zhu, Weijian Fang, Cho-Li Wang, and Francis C.M. Lau, “A New

Transparent Java Thread Migration System Using Just-in-Time Recompilation”,
The 16th IASTED International Conference on Parallel and Distributed
Computing and Systems (PDCS 2004), pp. 766-771, MIT Cambridge, MA,
USA, November 9-11, 2004.

[5] Ge Chen, Francis C.M. Lau, and Cho-Li Wang, “Building a Scalable Web

Server with Global Object Space Support on Heterogeneous Clusters”, Cluster
Computing 2001, pp.313-320.

[6] Yiu-Fai Sit, Cho-Li Wang, Francis Lau, “Socket Cloning for Cluster-Based Web

Server”, IEEE Fourth International Conference on Cluster Computing
(CLUSTER 2002) Chicago, USA - September 23-26, 2002, pp. 333-340.

[7] Leszek Borzemski and Krzysztof Zatwarnicki, “A Fuzzy Adaptive Request

Distribution Algorithm for Cluster-based Web Systems”, Eleventh Euromicro
Conference on Parallel, Distributed and Network-Based Processing, February,
5-7, 2003, p.119.

[8] Athanasios E. Papathanasiou and Eric Van Hensbergen, “KNITS: Switch-based

Connection Hand-off”, Twenty-First Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings. IEEE Vol. 1, 2002, p.
332- 341.

[9] Y. Aridor, M. Factor, and A. Teperman. cJVM: a Single System Image of a

JVM on a Cluster. In Proc. of International Conference on Parallel Processing,
1999.

[10] Kaloian Manassiev, Madalin Mihailescu, Cristiana Amza, "Exploiting

distributed version concurrency in a transactional memory cluster", Proceedings
of the eleventh ACM SIGPLAN symposium on Principles and practice of
parallel programming, 2006, p.198 – 208.

57

Deploying Enterprise Web Services by DJVM Approach

[11] Greg Barish, “Building Scalable and High-Performance Java Web Applications

Using J2EE Technology”, Addison Wesley, 2001.

[12] Shyam Kumar Doddavula, “Clustering with Tomcat”, Article published on

O’Reilly ONJava.com, 2002.
URL: http://www.onjava.com/pub/a/onjava/2002/07/17/tomcluster.html

[13] Srini Penchikala, “Clustering and Load Balancing in Tomcat 5, Part 1”, Article
published on O’Reilly ONJava.com, 2004.
URL: http://www.onjava.com/pub/a/onjava/2004/03/31/clustering.html

[14] Srini Penchikala, “Clustering and Load Balancing in Tomcat 5, Part 2”, Article
published on O’Reilly ONJava.com, 2004.
URL: http://www.onjava.com/pub/a/onjava/2004/04/14/clustering.html

[15] Filip Hanik, “Clustering Technologies – In Memory Session Replication in
Tomcat 4”, Article on TheServerSide.COM, 2002.
URL: http://www.theserverside.com/tt/articles/article.tss?l=Tomcat

[16] T. Wilkinson, “Kaffe - A Free Virtual Machine to run Java Code”, 1998.
URL: http://www.kaffe.org

[17] Terracotta Clustered JVM, 2006

URL: http://www.terracottatech.com

[18] Apache Tomcat official web site.

URL: http://tomcat.apache.org/

[19] Apache Tomcat Wiki web site.

URL: http://wiki.apache.org/tomcat/PoweredBy

[20] Apache JMeter official web site.

URL: http://jakarta.apache.org/jmeter

[21] TPC-W benchmark specification, Transaction Processing Council.

URL: http://www.tpc.org/tpcw/

[22] JMOB - TPC-W Benchmark, Java Servlets version by ObjectWeb.

URL: http://jmob.objectweb.org/tpcw.html

[23] KjcJavaCompiler download web site; plug-in developed by Takashi Okamoto.

URL: http://www.koders.com (search “KjcJavaCompiler”)

[24] Valgrind memory debugging tool.

URL: http://valgrind.org

58

http://www.onjava.com/pub/a/onjava/2002/07/17/tomcluster.html
http://www.onjava.com/pub/a/onjava/2004/03/31/clustering.html
http://www.onjava.com/pub/a/onjava/2004/04/14/clustering.html
http://www.theserverside.com/tt/articles/article.tss?l=Tomcat
http://www.kaffe.org/
http://www.terracottatech.com/
http://tomcat.apache.org/
http://wiki.apache.org/tomcat/PoweredBy
http://jakarta.apache.org/jmeter
http://www.tpc.org/tpcw/
http://jmob.objectweb.org/tpcw.html
http://www.koders.com/
http://valgrind.org/

Deploying Enterprise Web Services by DJVM Approach

Appendices
Major Components of Tomcat 3 Servlet Engine
Component Description and Function Relevant Classes
Context
Manager

The main entry point for tomcat execution. It
coordinates the activity of most other
functional modules.

ContextManager

Context Represent a web application. It encapsulates
all the properties defined in the web
application descriptor (web.xml) and in the
<Context> tag in server configuration file
(server.xml). Context is associated with a
Request after the contextMap() callback
completes. By default, this mapping is done
by the SimpleMapper interceptor.

Context

Container Represent a group of URLs sharing a
common set of properties. Container is
associated with a Request after the
requestMap() hook completes. SimpleMapper
is again the core implementation of this
hook, providing support for prefix, exact and
extension mappings. Other interceptors can
provide optimized mappings for particular
subsets (like JspInterceptor) or implement
custom mapping schemes.

Container

Interceptor Represent the building blocks and extension
mechanism for Tomcat. Most of the Tomcat
functionality is implemented using modules.
Modules operate on Tomcat’s core objects
and can hook in and extend Tomcat. Using
Interceptor, one can control all aspects of
request processing - parsing, authentication,
authorization, sessions, response commit
(before headers are sent), buffer commit
(before any buffer is sent - it can be used to
support HTTP1.1 for example).

BaseInterceptor
ContextInterceptor
RequestInterceptor

Servlet
Wrapper

An object that wraps and invokes a servlet. It
is responsible for loading and creating the
servlet instance.

ServletWrapper

Standard
Manager

Responsible for session management. Active
sessions are stored in a hash table keyed by
sessions identifiers. Expired sessions will be
purged periodically.

StandardManager
StandardSession
StandardSessionInterceptor
SessionSerializer

59

Deploying Enterprise Web Services by DJVM Approach

Request and
Response

Contain all operations delegated to modules
to call for processing requests and responses.
Tomcat 3.2 exposes the internal buffers
instead of using the Stream/Writer interfaces;
core components will have direct control
over the buffering and char/byte translation.
HttpRequestAdapter / HttpResponseAdapter is
the major implementation of the Request and
Response interfaces.

Request
RequestImpl
Response
ResponseImpl
HttpRequestAdapter
HttpResponseAdapter

Connector and
End Point

Handle all the details related with TCP server
functionality - thread management, socket
accept policy, etc. As soon as it gets a socket,
it just handles the stream to a handler by
calling the handler’s processConnection
method. The major connector/endpoint is
PoolTcpEndpoint / PoolTcpConnector which
maintains a pool of threads for accepting
incoming connections.

TcpEndpoint
TcpConnection
PoolTcpEndpoint
PoolTcpConnector

Handler

Interface to enter the Context Manager for
mapping to and calling the target servlet. It
calls the readNextRequest method to read and
parse the request URL and HTTP headers.
Then it calls ContextManager.service() with a
HttpRequestAdapter / HttpResponseAdapter pair
which encapsulate the socket connection for
response writing. The major handler being
used is HttpConnectionHandler.

HttpConnectionHandler
Ajp12ConnectionHandler
Ajp13ConnectionHandler

Helper and
Utility Classes

There are many utility classes in Tomcat for
easing its development. Some of them serve
the purpose of object pooling to avoid
unwanted garbage collection overhead, e.g.
MimeHeaderField, RecycleBufferedInputStream.
The most important class in this category is
Threadpool which is used by PoolTcpEndpoint
for simultaneous socket accepting.

ByteBuffer
MimeHeaders
MimeHeaderField
MessageBytes
MessageChars
PrefixMapper
RecycleBufferedInputStream
StringManager
ThreadPool
ThreadPoolRunnable

Table A-1: Major components of Tomcat 3 servlet engine

60

Deploying Enterprise Web Services by DJVM Approach

Tomcat-JESSICA2 Error Logs

Note: The logs are presented in their chronological order and classified by severity.

Log Aspect Description

Problem: Segmentation fault will occur if JESSICA2 is compiled with gcc higher
than 2.95.3.

Severity: Low Dump: ./runj2.sh: line 44: 31848 Segmentation fault
$KAFFE $JOPT –Jport … $*

Explanation:

This problem is due to missing memory protection.

1.

Solution/
Workaround:

Workaround is to use gcc 2.95.3 to compile JESSICA2. Later Kaffe
fixes on Linux memory protection (mprotect) are applied, now it can
be compiled using gcc 3.x without causing runtime error.

Problem: Illegal monitor state exception

Severity: Critical Dump: java/lang/IllegalMonitorStateException
Kaffe: gos.c:1976: getMasterObj: Assertion
‘buf’ failed.

Explanation:

The problem is caused by the handling of Object.wait() with timeout
specified. The original JESSICA2 doesn't acquire the lock again
when the wait(timeout) is timeout. This results in an inconsistent lock
state and causes the error. Since the master will terminate after it
gets an illegal locking exception, the GetMasterObject() in the worker
node will get nothing from the socket that was closed by the master.
Then it returns wrong data and terminates too.

2.

Solution/
Workaround:

lock.c is fixed accordingly.

Problem: Zero-size array problem in GOS

Severity: Critical Dump: "Assertion `fidx < nrTypes && size 0'
failed."

Explanation:

This is caused by allocating zero size memory in gos.c for array
cache. Java accepts zero-sized array. But a mistake in handling of
zero-sized array causes this error. The original code will skip the
trailing word "-1" when it meets a zero-sized array.

3.

Solution/
Workaround:

gos.c is fixed accordingly.

Problem: Function to disable interrupts failed.

Severity: Critical Dump: Kaffe: exception.c:372: dispatchException:
Assertion `!intsDisabled()' failed.
Kaffe: gos.c:1982: getMasterObj: Assertion
`buf' failed.

Explanation:

The getMasterObj error is caused by the failure of the master node.
The first error message "initsDisabled()" is the root cause. It is
probably caused by some unmatched lock/unlock.

4.

Solution/
Workaround:

gos.c is fixed accordingly.

61

Deploying Enterprise Web Services by DJVM Approach

Problem: Garbage collector encounters invalid object pointers.

Severity: High Dump: "Kaffe: mem/gc-incremental.c:873: gcMalloc:
Assertion `fidx < nrTypes && size 0' failed."

Explanation:

The error is caused when many requests are sent to Tomcat. It is a
bug in original Kaffe which was fixed in its later version in creating
daemon threads. They assign the function pointers in some fields of
the thread object for temporary use, which GC collector assumes to
be some valid Java objects. In normal cases, the problem won't
happen since the daemon threads are not created often and the GC
collector won't happen to run in the middle of the thread creation. In
our case, when more requests arrived at tomcat, the GC will be
triggered during thread creation, which will encounter invalid object
pointers.

5.

Solution/
Workaround:

Fixes in later Kaffe version are applied to several source files – the
thread creation function is modified.

Problem: MySQL Connector/J 3.0 JDBC Driver cannot run on JESSICA2.

Severity: Low Dump: “Kaffe: gos.c:481: updateObjData: Assertion
‘class’ failed.”

Explanation:

This is because the worker node cannot locate the class files of the
JDBC driver. Explicit classpath setting has to be in place.

6.

Solution/
Workaround:

Add the driver’s JAR file to the classpath environment variable on the
worker node.

Problem: Tomcat cannot compile JSP when running on JESSICA2.

Severity: Medium Dump: java.lang.NoClassDefFoundError:
sun/tools/javac/Main

Explanation:

JSP is compiled into servlet before execution. By default, JSP
compiler in Tomcat is Sun Java Compiler. Sun Java Compiler is NOT
supported by JESSICA2.

7.

Solution/
Workaround:

Solving this problem needs upgrade of both Tomcat and JESSICA2.
We use Kjc, an open source compiler to be the JSP compiler in
Tomcat. The steps below should be followed:
• Search, download KjcJavaCompiler.java from www.koders.com.
• Put it in the folder share\org\apache\jasper\compiler.
• Modify WebXmlReader.java in share\org\apache\tomcat\context to

set Kjc compiler as the default JSP compiler.
• Rebuild Tomcat using Ant;
• Add the Kjc compiler JAR file (version: kopi-1.5B) to the classpath.

After this fix, JESSICA2 could still fail in some JSP applications due
to two more reasons. (1) JESSICA2 does not support namespace in
the GOS to distinguish classes loaded by different loaders, i.e. all
classes will be shared by different loaders. Since the classloader for
loading certain JSP applications is changed for some classes, worker
nodes will fail to locate and load them. Fix on classPool.c to bypass
classloader checking is needed to let workers load classes correctly.
(2) The classpath at worker node is not updated to include the
compiled JSP classes if the compilation takes place at another node.
This problem can be worked around by including the working
directory (usually $TOMCAT/work/localhost_8080%2f[context-
name].) which contains the compiled JSP classes.

62

http://www.koders.com/

Deploying Enterprise Web Services by DJVM Approach

Problem: When the host manager calls handleGetHostAddr, segmentation fault
will happen.

Severity: Critical Dump: Program received signal SIGSEGV,
Segmentation fault.
handleGetHostAddr (hid=1, fd=46,
buf=0xa42f5b0 "") at hostman.c:1211
1211 id = *(hid_t*)(buf+sizeof(int));

Explanation:

This is because of incorrect free up of buf in the function.

8.

Solution/
Workaround:

hostman.c is fixed.

Problem: Reported by our research teammate, SOR benchmark suffered from
slowdown of execution in remote thread by over 10 times.

Severity: Critical Dump: N/A

Explanation:

This is a small coding mistake of enableFastCheck() in gos.c.

9.

Solution/
Workaround:

Add back the mistakenly commented line in enableFastCheck():
CLR_RD_CACHE(ch->obj->cache)

Problem: Worker nodes calling updatePrimArr and updateRefArr will fail.

Severity: High Dump: Program received signal SIGSEGV,
Segmentation fault.
0x005a0827 in updateRefArr (obj=0x8,
lower=7, upper=8, ptr=0x9156c77 "",
elclass=0x85af680) at gos.c:633 assert(lower
<= upper && ca->lower <= ca->upper);

Explanation:

This problem will happen if object home migration is enabled. The
GOS may not pack byte array properly.

10.

Solution/
Workaround:

Tomcat is modified and successfully bypassed this error. Future
review on the packing functions in the GOS is needed.

Problem: The GOS failed in packing array with a null element.

Severity: Critical Dump: Program received signal SIGSEGV,
Segmentation fault.
pack_string_data (commbuf=0xaed1010,
obj=0x0) at gos.c:99
assert(!IS_CACHEOBJ(obj) &&
OBJECT_CLASS(obj) == StringClass);

Explanation:

This is due to missing protocol implementation for null string.
The pack_string_data function has not catered null representation.

11.

Solution/
Workaround:

Modify pack_string_data and unpack_string_data in gos.c.
Use "-1,$" to represent a null string over the GOS.

Problem: The GOS failed to pack TomcatLogger$LogEntry.

12.

Severity: High Dump: Program received signal SIGSEGV,
Segmentation fault.
pack_class_sig (commbuf=0xa948010,
class=0x104689ff) at gos.c:169

63

Deploying Enterprise Web Services by DJVM Approach

Explanation:

LogEntry class contains a Throwable field. So the GOS is trying to
pack a Throwable object which has an instance field called backtrace
which is constructed using Kaffe native function buildStackTrace
which returns a C structure “stackinfo”. Kaffe just casts it to be
Hjava_lang_Object but the allocated memory is not Java object at all.

Solution/
Workaround:

Comment out the use of buildStackTrace in Throwable.c and
Exception.c and set the backtrace field to null.

Problem: When Tomcat is run with a larger heap size (-ms128m -mx256m),
Tomcat cannot start up as error occurs at the method addZoneFiles
in the class Java.util.TimeZone. In some cases, invalid host id is
resulted.

Severity: Medium Dump: Program received signal SIGSEGV,
Segmentation fault.
addZoneFiles__Q34java4util8TimeZonePQ34j
ava4lang6StringPQ34java2io4File () at
TimeZone.java:97

Explanation:

This is due to the Kaffe implementation of TimeZone.java will
recursively open all the found time zone files on Linux. There are
over a thousand of such files. If we change the heap from default
64MB to a larger size, no garbage collection occurs and the
maximum 1024 fd’s that can be used will be exceeded. Wrong fd of
deliberately large value will be returned and causes invalid host id
which is extracted from the 1st half word of fd.

13.

Solution/
Workaround:

Port later Kaffe implementation of TimeZone and UNIXTimeZone to
JESSICA2.

Problem: MySQL JDBC driver failed at send buffer command.

Severity: Medium Dump: Program received signal SIGSEGV,
At MysqlIO.java:1762

Explanation:

Problem has occurs during ChartoByte conversion in MySQL. GOS
seems failed to pack a byte array in SingleByteCharsetConverter in
MySQL driver. The charToByteMap contains all ‘?’ and make SQL
statements cannot be executed.

14.

Solution/
Workaround:

Tweak the setClassOwner function in classMethod.c. If we see the
class name starts with ‘com/mysql’, then we skip remoteGetStatic.

Problem: Apache SOAP engine failed to run on Tomcat-JESSICA2.

Severity: Medium Dump: Program received signal SIGSEGV,
Segmentation fault.
0x005fd170 in utf8ConstUniLength (utf8=0x0)
at utf8const.c:295
const char *const end = ptr + strlen(utf8->data);

Explanation:

The GOS seems failed to pack java.lang.Class. The class entry
name is null and causes segmentation fault.

15.

Solution/
Workaround:

The workaround is also to Tweak the setClassOwner function in
classMethod.c. If we see ‘org/apache/soap’, ‘com/sun/activation’,
‘com/sun/mail’, ‘javax/mail’ and ‘javax/activation’, skip calling
remoteGetStatic.

64

Deploying Enterprise Web Services by DJVM Approach

Problem: Invalid fd is resulted when running Apache SOAP.

Severity: Medium Dump: Error was: java.io.IOException: Unknown error
4294967295

Explanation:

SOAP is trying to open /soap-2.3.1/webapps/soap/soap.xml which is
not present in the directory. SOAP will catch any IO Exception and
use a default configuration. The java_io_FileInputStream_open
function should raise a java.io.IOException when file cannot be
found. But this is missing in the code.

16.

Solution/
Workaround:

Fix java_io_FileInputStream_open to throw java.io.IOException if
return code, rc > 0.

Problem: When a SOAP application writes a random access file, the JVM will
be aborted due to allocation of zero memory size in heap.

Severity: Medium Dump: Program received signal SIGABRT, Aborted.
#3 0x002c12f8 in __assert_fail () from
/lib/tls/libc.so.6
#4 0x008b1e91 in gcMalloc (gcif=0x92d960,
size=0, fidx=12)
 at mem/gc-incremental.c:873
#5 0x008b27a2 in jmalloc (sz=0) at gc.c:21

Explanation:

The failed function is java_io_RandomAccessFile_writeBytes. In
some cases, zero-length byte will written and this results in allocating
a zero-size memory in the heap which is not permitted.

17.

Solution/
Workaround:

This function should check if len > 0 before executing buf =
KMALLOC(len). java_io_FileOutputStream_writeBytes is fixed alike.

Problem: High stress to Tomcat will exception related to Threadpool.

Severity: High Dump: N/A
Explanation:

Unknown

18.

Solution/
Workaround:

Tomcat is reengineered to use multiple work queue thread pool and
this stability problem is bypassed.

Problem: Thread migration is problematic in debug mode.

Severity: Medium Dump: __assert_fail () from /lib/tls/libc.so.6
pack_frame (commbuf=0xa5f6010,
btx=0xa3a8710) at migration.c:1905
start_migration () at migration.c:2029

Explanation:

GDB could contaminate the stack to migrate. Assertion failed in the
setupFrame and pack_frame functions used to double-check the
stack content inferred by JIT recompilation because the stack states
are inconsistent. This could be due to GDB may could insert dummy
frames onto the stack for debugging and confuse frame packing
during thread migration.

19.

Solution/
Workaround:

Now the only workaround is not to use debug mode when dynamic
thread migration is being used. Future support for debugging thread
migration can be considered.

Table A-2: List of Tomcat-JESSICA2 error logs

65

	Chapter 1. Introduction
	1.1 Background
	1.2 General Approaches of Server Clustering
	1.2.1 Load Balancing
	1.2.2 High Availability

	1.3 Our Approach
	1.3.1 Distributed Java Virtual Machine (DJVM)
	1.3.2 Advantages of Using DJVM
	1.3.3 This Dissertation Work

	1.4 Organization of this Dissertation
	Chapter 2. Related Work
	2.1 Tomcat Clustering
	2.1.1 Load Balancing
	2.1.2 In-memory Session Replication

	2.2 Related Clustered JVMs
	2.2.1 Terracotta Clustered JVM
	2.2.2 cJVM

	Chapter 3. System Analysis and Integration
	3.1 Apache Tomcat
	3.1.1 Overview
	3.1.2 System Architecture
	3.1.3 Flow of Operations
	3.1.4 System Characteristics

	3.2 JESSICA2
	3.2.1 Overview
	3.2.2 System Architecture
	3.2.3 Main Features

	3.3 System Integration
	3.3.1 Tomcat-on-JESSICA2 Architecture
	3.3.2 Cluster-wide Tomcat Operations
	3.3.3 Problems of Direct Integration
	3.3.4 Summary of Tomcat-JESSICA2 Overheads

	Chapter 4. Implementation
	4.1 Porting Methodology
	4.2 JESSICA2 Fixes and Modifications
	4.2.1 Error Fixes
	4.2.2 Modifications

	4.3 Tomcat Modifications
	4.3.1 Threadpool Restructuring
	4.3.2 Dissolve Intensively Shared Object Pools
	4.3.3 Add a JSP Compiler Plug-in
	4.3.4 Tomcat Startup Script

	Chapter 5. Performance Evaluation
	5.1 Performance Metrics
	5.2 Experimental Platform
	5.3 Application Benchmarks
	5.3.1 TPC-W Bookstore
	5.3.2 Online Bible Quote/Search Tool
	5.3.3 Stock Price Data Feed Service
	5.3.4 SOAP Purchase Order Processing

	5.4 Experimental Results
	5.4.1 Scalability Study
	5.4.2 Evaluation of Tomcat Modifications
	5.4.3 GOS Overhead Study
	5.4.4 GIO Overhead Study
	5.4.5 Thread Migration and Initial Placement
	5.4.6 Comparison with Web Server-Based Dispatching

	Chapter 6. Discussion
	6.1 Poor Speedup in Fine-grained Work
	6.2 Call for Better Consistency Model
	6.3 Effectiveness of Object Home Migration
	6.4 Dynamic Thread Migration
	6.5 Array Checking Overhead
	6.6 Lack of High Availability Support
	6.7 Need of Porting

	Chapter 7. Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work
	7.2.1 On the Application Server Layer
	7.2.2 High-Availability Tomcat on JESSICA2
	7.2.3 Wish List of New JESSICA2 Implementations

	 References
	 Appendices
	Major Components of Tomcat 3 Servlet Engine
	 Tomcat-JESSICA2 Error Logs

