COMP8601: Advanced Topics in Theoretical Computer Science

Lecture 8: ϵ-Nets, VC-dimension
Lecturer: Hubert Chan
Date: 29 Oct 2013

These lecture notes are supplementary materials for the lectures. They are by no means substitutes for attending lectures or replacement for your own notes!

1ϵ-Net

Suppose X is a set with some distribution D, and C is a class of boolean functions, each of which has the form $f: X \rightarrow\{0,1\}$. We can think of each function f as a concept, labelling each point in X as positive (1) or negative (0). The goal is to obtain a small subset $S \subset X$ such that for each function $f \in C$, if a large fraction (weighted according to distribution D) of points in X are marked as positive under f, then there exists at least one point in S that is also marked positive under f. We use $E_{X}[f]:=E_{x \in D(X)}[f(x)]$ to denote the expectation of $f(x)$, where x is a point drawn from X with distribution D.

Definition 1.1 (ϵ-Net) An ϵ-net S for a set X with distribution D under a class C of boolean functions on X is a subset satisfying the following:
For each $f \in C$, if $E_{X}[f] \geq \epsilon$, then there exists $x \in S$ such that $f(x)=1$.
Trivially, we could take $S:=X$ as an ϵ-net. However, we would want the cardinality of S to be small, even though X or C might be infinite.

We assume that we are able to sample points independently from X under distribution D. The straightforward way to construct a net is to sample an enough number of points.

For $0<\epsilon \leq 1$, we define $C_{\epsilon}:=\left\{f \in C: E_{X}[f] \geq \epsilon\right\}$.

Example

Suppose X are points in the plane \mathbb{R}^{2} with some distribution, and C is the class of functions, each of which corresponds to an axis-aligned rectangle that marks the points inside 1 and 0 otherwise. We would later see that for every $0<\epsilon \leq 1$, there is some finite sized ϵ-net S_{ϵ}, i.e., if a rectangle contains more than ϵ (weighted) fraction of points in X, then it must contain a point in S_{ϵ}.

1.1 Simple Case: When C is finite

Theorem 1.2 Suppose C is finite and S is a subset obtained by sampling from X independently m times. (There could be repeats, and so S could have size smaller than m.) If $m \geq \frac{1}{\epsilon}\left(\ln |C|+\ln \frac{1}{\delta}\right)$, then with probability at least $1-\delta, S$ is an ϵ-net.

Proof: Observe that S is an ϵ-net, if for all $f \in C_{\epsilon}$, there is some point $x \in S$ such that $f(x)=1$. Fix any $f \in C_{\epsilon}$, the probability that a point sampled from X would be labelled 1 is at least ϵ. Hence, the failure probability that all points in S are labelled 0 under f is at most $(1-\epsilon)^{m} \leq e^{-\epsilon m}$.

Using union bound, the probability that the set S fails for some $f \in C_{\epsilon}$ is at most $\left|C_{\epsilon}\right| e^{-\epsilon m} \leq$ $|C| e^{-\epsilon m}$, which is at most δ, when $m \geq \frac{1}{\epsilon}\left(\ln |C|+\ln \frac{1}{\delta}\right)$.

1.2 Extending to Infinite C

Observe that for a fixed subset S in X, if two functions f and f^{\prime} agree on every point in S, then essentially they are the same from the viewpoint of S. Hence, for every fixed set S of size m, there are effectively only 2^{m} boolean functions. However, there are still some issues.

1. There are still too many functions. Recall in the proof, we used the union bound to analyze the failure probability $|C| \cdot e^{-\epsilon m} \leq 2^{m} \cdot e^{-\epsilon m}$. However, this is not useful as the last quantity is larger than 1 .
2. After we fix some S, there is no more randomness. Hence, we cannot even argue that the probability that S is bad for even one f is at most $(1-\epsilon)^{m}$.

For the first issue, we would add more assumptions to the class C of functions to obtain a better guarantee. The second issue is technical and can be resolved by using the technique of conditional probability and expectation.

2 VC-Dimension: Limiting the Number of Boolean Functions on a Subset

Definition 2.1 Given a set X and a class C of boolean function on X, a subset $S \subseteq X$ is said to be shattered by C, if for all subsets U of S, there exists $f \in C$ such that for all $x \in U, f(x)=1$ and for all $x \in S \backslash U, f(x)=0$.
The VC-dimension of (X, C) is the maximum cardinality of a subset $S \subseteq X$ that is shattered by C. In other words, the $V C$-dimension of (X, C) is at least d if there exists $S \subseteq X$, where $|S|=d$, such that S is shattered by C.

Example. Consider $X=\mathbb{R}^{2}$ and C is the class where each function corresponds to an axis-aligned rectangle that labels each points inside it 1 and otherwise 0 . Observer that $S=\{(1,0),(-1,0),(0,1)$, $(0,-1)\}$ can be shattered by C. However, one can show that no 5 points on the plane can be shattered by C.
Definition 2.2 Suppose $S \subseteq X$ and $f: X \rightarrow\{0,1\}$. Then, the projection of f on S is the boolean function $\left.f\right|_{S}: S \rightarrow\{0,1\}$ such that for all $x \in S,\left.f\right|_{S}(x)=f(x)$. Given a class C of boolean functions, the projection $C(S)$ of C on S is the class $C(S):=\left\{\left.f\right|_{S}: f \in C\right\}$.
Given non-negative integers m and d, we denote $\binom{m}{\leq d}:=\sum_{i=0}^{d}\binom{m}{i}$.
Theorem 2.3 (Sauer's Lemma [1]) Suppose C is a class of boolean functions on X and the $V C$-dimension of (X, C) is at most d. Let S be a subset of X of size m. Then, the cardinality of the projection $C(S)$ is at most $\binom{m}{\leq d}$. In particular, when $m \geq d \geq 1$, this is at most $\left(\frac{e m}{d}\right)^{d}$.
Proof: We prove by induction on d and m. For the base cases $d=0$ or $m=1$, we leave it to the readers to verify the claim. Suppose we have S, where $|S|=m>1$, and the VC-dimension of
(X, C) is $d \geq 1$. We give an upper bound on $|C(S)|$.
Let $x \in S$ and define $S^{\prime}:=S \backslash\{x\}$. Define $C\left(S^{\prime}\right)^{\dagger} \subseteq C\left(S^{\prime}\right)$ to be the set of functions f in $C\left(S^{\prime}\right)$ such that there exists $f_{1}, f_{2} \in C(S)$, where f_{1} and f_{2} disagree on x and $\left.f_{1}\right|_{S^{\prime}}=\left.f_{2}\right|_{S^{\prime}}=f$.
Consider the projection of C on S^{\prime}. It follows that each function in $C\left(S^{\prime}\right)^{\dagger}$ can be viewed as a "merge" of 2 functions in $C\left(S^{\prime}\right)$. Hence, it follows that $|C(S)|=\left|C\left(S^{\prime}\right)\right|+\left|C\left(S^{\prime}\right)^{\dagger}\right|$.
By induction hypothesis, we immediately have $\left|C\left(S^{\prime}\right)\right| \leq\binom{ m-1}{\leq d}$.
We next show that the VC-dimension of $\left(S^{\prime}, C\left(S^{\prime}\right)^{\dagger}\right) \leq d-1$. Suppose $C\left(S^{\prime}\right)^{\dagger}$ shatters a subset $U \subseteq S^{\prime}$. Then, it follows immediately that $C(S)$ shatters $U \cup\{x\}$, which has size at most d, since the VC-dimension of (X, C) is at most d. It follows $|U| \leq d-1$. Hence, by induction hypothesis $\left|C\left(S^{\prime}\right)^{\dagger}\right| \leq\binom{ m-1}{\leq d-1}$.
By observing that $\binom{m}{i}=\binom{m-1}{i}+\binom{m-1}{i-1}$, we conclude that $|C(S)| \leq\binom{ m-1}{\leq d}+\binom{m-1}{\leq d-1}=\binom{m}{\leq d}$.
Since $0<\frac{d}{m} \leq 1$, we have $|C| \leq \sum_{i=0}^{d}\binom{m}{i} \leq\left(\frac{m}{d}\right)^{d} \sum_{i=0}^{d}\binom{m}{i}\left(\frac{d}{m}\right)^{i} \leq\left(\frac{m}{d}\right)^{d} \sum_{i=0}^{m}\binom{m}{i}\left(\frac{d}{m}\right)^{i}=$ $\left(\frac{m}{d}\right)^{d}\left(1+\frac{d}{m}\right)^{m} \leq\left(\frac{e m}{d}\right)^{d}$, where the last inequality follows from $1+x \leq e^{x}$ for $x \in \mathbb{R}$.
Here is the result relating VC-dimension of (X, C) and the number of independent samples that is sufficient to form an ϵ-net for X under C.

Theorem 2.4 (Number of Samples for Class with Bounded VC-Dimension) Suppose (X, C) has $V C$-dimension at most d. Then, suppose S is a subset obtained by sampling from X independently m times (and removing repeated points). If $m \geq \max \left\{\frac{4}{\epsilon} \log \frac{2}{\delta}, \frac{8 d}{\epsilon} \log \frac{16 e}{\epsilon}\right\}$, then with probability at least $1-\delta, S$ is an ϵ-net.
Intuition. Observe that $|C(S)| \leq\binom{ m}{\leq d} \leq\left(\frac{e m}{d}\right)^{d}$, for $m \geq d \geq 2$. Hence, if we use the "bogus" union bound, the failure probability would be at most $|C(S)| \cdot e^{-\epsilon m} \leq\left(\frac{e m}{d}\right)^{d} \cdot e^{-\epsilon m}$. When m is large enough as specified, this quantity is less than δ.

3 Conditional Probability and Expectation as Random Variables

We see that if (X, C) has VC-dimension d, then the projection of C on some subset $S \subseteq X$ with $|S|=m$ has size $|C(S)| \leq\left(\frac{e m}{d}\right)^{d}$. When we sample a subset S, we would like to analyze the size of $C(S)$, conditioned on the fact that S is sampled. We need some formal notation to analyze this.

Definition 3.1 (Random Object) Suppose $\mathcal{P}=(\Omega, \mathcal{F}, \operatorname{Pr})$ is a probability space. A random object W taking values in some set \mathcal{U} is a function $W: \Omega \rightarrow \mathcal{U}$. For $u \in \mathcal{U},\{W=u\}$ is the event $\{\omega \in \Omega: W(\omega)=u\}$.
Example.

1. A $\{0,1\}$-random variable is a special case when $\mathcal{U}=\{0,1\}$.
2. Suppose we flip a fair coin repeatedly, and W is the outcome of the first 2 flips. In this case, $\mathcal{U}=\{H, T\}^{2}$.

Definition 3.2 (Conditional Probability as a Random Variable) Suppose $\mathcal{P}=(\Omega, \mathcal{F}, \operatorname{Pr})$
is a probability space, and $A \in \mathcal{F}$ is an event. Let $W: \Omega \rightarrow \mathcal{U}$ be a random object. Then, the conditional probability $\operatorname{Pr}[A \mid W]$ can be interpreted in two ways:

1. $\operatorname{Pr}[A \mid W]: \mathcal{U} \rightarrow[0,1]$ is a function such that for $u \in \mathcal{U}, \operatorname{Pr}[A \mid W](u):=\operatorname{Pr}[A \mid W=u]$.
2. $\operatorname{Pr}[A \mid W]: \Omega \rightarrow[0,1]$ is a random variable defined by $\operatorname{Pr}[A \mid W](\omega):=\operatorname{Pr}\left[A \mid W_{\omega}\right]$, where $W_{\omega}:=\left\{\omega^{\prime} \in \Omega: W\left(\omega^{\prime}\right)=W(\omega)\right\}$ is the event that W equals to $W(\omega) \in \mathcal{U}$.

Definition 3.3 (Conditional Expectation as a Random Variable) Suppose $\mathcal{P}=(\Omega, \mathcal{F}, \operatorname{Pr})$ is a probability space, and $Y: \Omega \rightarrow \mathbb{R}$ is a random variable. Let $W: \Omega \rightarrow \mathcal{U}$ be a random object. Then, the conditional expectation $E[Y \mid W]$ can be interpreted in two ways:

1. $E[Y \mid W]: \mathcal{U} \rightarrow \mathbb{R}$ is a function such that for $u \in \mathcal{U}, E[Y \mid W](u):=E[Y \mid W=u]$.
2. $E[Y \mid W]: \Omega \rightarrow \mathbb{R}$ is a random variable defined by $E[Y \mid W](\omega):=E\left[Y \mid W_{\omega}\right]$, where $W_{\omega}:=$ $\left\{\omega^{\prime} \in \Omega: W\left(\omega^{\prime}\right)=W(\omega)\right\}$ is the event that W equals to $W(\omega) \in \mathcal{U}$.

Since the conditional probability $\operatorname{Pr}[A \mid W]$ and the conditional expectation $E[Y \mid W]$ are random variables themselves, we can take expectation of them.

Fact 3.4 Let the event A, the random variable Y and the random object W be defined as above. Then, $E[\operatorname{Pr}[A \mid W]]=\operatorname{Pr}[A]$ and $E[E[Y \mid W]]=E[Y]$.

Example. Consider the probability space associated with flipping a fair coin repeatedly. Let W be the outcome of the first 2 flips, and Y be the number of flips that a head first appears. As before, we have $\mathcal{U}=\{H, T\}^{2}$. Consider the conditional expectation $E[Y \mid W]$.

1. We have $E[Y \mid W=\{H, H\}]=1, E[Y \mid W=\{H, T\}]=1, E[Y \mid W=\{T, H\}]=2$. Finally, $E[Y \mid\{T, T\}]=2+E[Y]=4$.
2. Hence, $E[E[Y \mid W]]=\frac{1}{4}(1+1+2+4)=2=E[Y]$.

3.1 Using Conditional Probability to Bound Failure Probability

Recall that we are drawing independent samples from X to form a subset S of size m in the hope that S would be an ϵ-net for the class C of functions. Suppose further that (X, C) has VC-dimension d.

Let A be the event that S is not an ϵ-net under C. In particular, let A_{f} be the event that for all $x \in S, f(x)=0$. Recall that $C_{\epsilon}:=\left\{f \in C: E_{X}[f] \geq \epsilon\right\}$. We wish to find a good upper bound for $\operatorname{Pr}[A]=\operatorname{Pr}\left[\cup_{f \in C_{\epsilon}} A_{f}\right]$.
Using conditional probability, we have $\operatorname{Pr}[A]=E[\operatorname{Pr}[A \mid S]]$. Observe that if we fix S, then the set S fails for the function $f \in C$ iff S fails for $f^{\prime}:=\left.f\right|_{S} \in C(S)$. Hence, $\operatorname{Pr}[A \mid S]=\operatorname{Pr}\left[\cup_{f \in C_{\epsilon}} A_{f} \mid S\right]=$ $\operatorname{Pr}\left[\cup_{f^{\prime} \in C_{\epsilon}(S)} A_{f^{\prime}} \mid S\right] \leq \sum_{f^{\prime} \in C_{\epsilon}(S)} \operatorname{Pr}\left[A_{f^{\prime}} \mid S\right]$.
Observe that the summation contains at most $\left|C_{\epsilon}(S)\right| \leq|C(S)| \leq\left(\frac{e m}{d}\right)^{d}$ terms. Hence, it suffices to give a good upper bound on $p^{*}:=\max _{f^{\prime} \in C_{\epsilon}(S)} \operatorname{Pr}\left[A_{f^{\prime}} \mid S\right]$. However, as we mention before, if we
condition on S, there is no more randomness, since $\operatorname{Pr}\left[A_{f} \mid S\right]$ is either 0 or 1. Hence, we can have $p^{*}=1$. We shall see next time how we can resolve this by introducing extra randomness in the analysis.

4 Homework Preview

1. VC-dimension of Axis-aligned rectangles.
(a) Prove that no 5 points on the plane \mathbb{R}^{2} can be shattered by the class C of axis-aligned rectangles (that map points inside a rectangle 1 and otherwise 0).
(b) Compute the VC-dimension of the class C_{k} of k-dimensional axis-aligned rectangles in \mathbb{R}^{k}. In particular, you need to find a number d such that there exist d points in \mathbb{R}^{k} that can be shattered by the C_{k}, and prove that any $d+1$ points in \mathbb{R}^{k} cannot be shattered by C_{k}.
2. Conditional Expectation. Suppose $Y: \Omega \rightarrow \mathbb{R}$ is a random variable and $W: \Omega \rightarrow \mathcal{U}$ is a random object defined on the same probability space $(\Omega, \mathcal{F}, \operatorname{Pr})$. Prove that $E[Y]=$ $E[E[Y \mid W]]$. You may assume that both Ω and \mathcal{U} are finite.

References

[1] N Sauer. On the density of families of sets. Journal of Combinatorial Theory, Series A, 13(1):145-147, 1972.

