
COMP8601: Advanced Topics in Theoretical Computer Science
Lecture 6: More on Measure Concentration: Black Box Sampling and Pollard’s Kangaroo Algo-
rithm
Instructor: Hubert Chan
Date: 26 Sep 2013

These lecture notes are supplementary materials for the lectures. They are by no means substitutes
for attending lectures or replacement for your own notes!

1 Limitation of Black Box Sampling

Consider the black box sampling problem that is described as follows. Suppose a black box contains
red balls and blue balls. The number of red balls, which can be zero, is unknown. One is allowed
to sample (with replacement) uniformly at random from the bag. Call an access to the black box
positive if one samples a red ball and negative otherwise. The goal is to estimate the probability that
an access is positive, that is, the fraction of red balls, with multiplicative error at most ε ∈ (0, 1).

We claim that without the assumption that there is at least one red ball in the black box, no
algorithm, whether deterministic or randomized, can give an estimate with multiplicative error at
most ε with failure probability at most δ ≤ 1

4 . That is, if p is the true fraction of red balls in the
black box and p̂ is the estimate given by a particular algorithm, then no algorithm can guarantee
that Pr[|p̂− p| ≥ εp] ≤ δ for ε ∈ (0, 1) and δ ∈ (0, 14].

We prove the claim by contradiction. Suppose, on the contrary, that there is an algorithm A that
can give an estimate with multiplicative error at most ε with failure probability at most δ ≤ 1

4 .

1.1 The High Failure Probability Scenario

We intend to find a case in which the algorithm fails with probability larger than 1
4 , which leads

to a contradiction. Observe that the randomness of an answer (estimate) comes from two parts:
(1) the algorithm A itself and (2) the procedure of sampling from the black box. Both parts give
a chance for the algorithm to fail.

Consider the case with some p > 0. Note that p̂ = 0 implies |p̂ − p| > εp. That is, if A returns
0, then it must fail. Intuitively, it is reasonable that A returns 0 given all accesses it makes are
negative. Also, when p is a very small positive number, it is likely that a large number of initial
accesses are all negative.

Let E1 be the event that A returns 0 and E2 the event that the first N accesses are all negative,
where N is some positive integer. Note that A fails if E1 happens in the case p > 0. Also note that
A gives an answer only based on its accesses (positive or negative), independent of p. We have

1

Pr[A fails |{p > 0}] ≥ Pr[E1|{p > 0}]
≥ Pr[E1 ∩ E2|{p > 0}]
= Pr[E1|{p > 0} ∩ E2] · Pr[E2|{p > 0}]
= Pr[E1|E2] · Pr[E2|{p > 0}]
= PaPb,

where we define Pa := Pr[E1|E2] and Pb := Pr[E2|{p > 0}]. If we can find Pa and Pb such that
PaPb >

1
4 , then we can conclude that in this case A fails with probability larger than 1

4 .

1.2 Finding Pa by Considering A’s Performance

Since the algorithm A is invisible to us, we can not guarantee that A returns 0 given the first N
accesses are all negative. It may return any real number in [0, 1]. Then how do we bound Pa?

Note that the randomness of the event E1|E2 only comes from A itself, independent of the value
of p. This broadens our choices of p to investigate Pa = Pr[E1|E2].

Consider the case that p = 0. Then any access to the black box must be negative. On the other
hand, since |p̂ − 0| ≤ ε · 0 implies p̂ = 0, the algorithm A gives a correct answer if and only if it
returns 0. Therefore A returns 0 with probability at least 1− δ ≥ 3

4 .

Note that given a positive integer N0, the first N0 accesses are not equivalent to all the accesses
that A makes. Observe that the number of accesses that A makes is unknown and may even be
a variable. However, whenever A returns an answer, it can only have made a finite number of
samples. Let qk be the probability that A stops after making k accesses and returns 0, given that
all the k accesses are negative. Then we have

∞∑
k=0

qk = Pr[A returns a correct answer if p = 0] ≥ 1− δ ≥ 0.75.

Hence, there exists a positive integer N such that
∑N

k=0 qk ≥ 0.74. This means that A returns a
correct answer with probability at least 0.74 if it makes no more than (not necessarily exactly) N
accesses. It follows that given the first N accesses are negative, A returns 0 with probability at
least 0.74, i.e., Pa ≥ 0.74.

1.3 Finding Pb by Considering Sufficiently Small p

Now we return to the case that p > 0. We want to find an appropriate p such that Pb = Pr[E2|{p >
0}] is large enough. Intuitively, if p is very small, say p� 1

N , then the expected number of positive
accesses in the first N samples is Np � 1. Then by Chernoff Bound the event E2 given p > 0
happens with constant probability.

Consider the first N accesses. Let Xi := 1 if the i-th access is positive and Xi := 0 if the i-th access
is negative. Define Y :=

∑N
i=1Xi. Then given p, we have Pb = 1− Pr[Y ≥ 1].

2

We give a bound for Pr[Y ≥ 1]. Note that Xi’s are independent. To apply Chernoff Bound, we
rewrite the probability as Pr[Y ≥ (1 + β)E[Y]], where (1 + β)E[Y] = 1 and β is a constant to be
determined later. Since E[Y] = Np is expected to be small, we choose the Chernoff Bound with
large β, say β ≥ 2. Observing that E[Y] = 1

1+β , we have

Pr[Y ≥ (1 + β)E[Y]] ≤ exp

(
−β

2E[Y]

2 + β

)
≤ exp

(
−1

2
βE[Y]

)
= exp

(
− β

2(1 + β)

)
≤ 0.65.

The last inequality holds if we set β = 10. Thereafter, it suffices to set p = 1
11N .

Hence, we have Pb = 1 − Pr[Y ≥ 1] ≥ 0.35. Recalling Pa ≥ 0.74, we conclude that in the case
p = 1

11N the failure probability of A is at least PaPb ≥ 0.74× 0.35 > 1
4 .

2 Discrete Logarithm Problem

Consider a group G = {1, . . . , p−1}, in which the operation · is the product of two elements modulo
p; that is, for a, b ∈ G, We have a · b = ab mod p. We let ab = a · b and an = a ·an−1 for all positive
integer n throughout this section. Within the group G, given two elements g and y, can one find
the logarithm of y to the base g, i.e., an element x such that gx = y?

Suppose that, in addition, one knows that x is an element in some range [a, b]. A trivial algorithm
is to try all elements in [a, b], which takes O(|b − a|) time, assuming that it takes O(1) time to
compute gc for each c ∈ [a, b]. It guarantees to find x but takes too much time. We want to find a
faster algorithm.

Formally, given g, y, a, b ∈ G and that there exists x ∈ [a, b] such that gx = y, our goal is to find x.
We want a randomized algorithm satisfying the following conditions:

(C1) With high probability, it can find x;

(C2) With high probability, it takes O(
√
|b− a|) time;

(C3) It requires O(1) memory.

We first give another form of Chernoff Bound, then introduce a randomized algorithm and finally
show that it satisfies these conditions.

2.1 Chernoff Bound with General Range

Recall that the basic Chernoff Bound only applies to {0, 1}-random variables. We introduce another
form of Chernoff Bound that allows the random variables to take real values in a general interval.

Lemma 2.1 (Chernoff Bound with General Range) Suppose X1, X2, . . . , Xn are independent
real-valued random variables, such that for each i, Xi takes values from the interval [0, R], where
R > 0. Let Y :=

∑n
i=1Xi. Then for any ε ∈ (0, 1),

Pr[|Y − E[Y]| ≥ εE[Y]] ≤ 2 exp

(
−ε

2E[Y]

3R

)
.

3

Proof: The proof is similar to that of basic Chernoff Bound. As an example we prove that

Pr[Y ≥ (1 + ε)µ] ≤ exp(− ε2µ
3R), where µ := E[Y].

Suppose t > 0. Using Markov’s Inequality, the independence of Xi’s and moment generating
function, we have

Pr[Y ≥ (1 + ε)µ] = Pr[exp(t

n∑
i=1

Xi) ≥ exp(t(1 + ε)µ)]

≤ exp(−t(1 + ε)µ)E[exp(t

n∑
i=1

Xi)]

= exp(−t(1 + ε)µ)
n∏
i=1

E[exp(tXi)].

Consider E[exp(tXi)]. Let λ := 1− Xi
R . By the convexity of the function x 7→ ex, we have

exp(tXi) = exp(λ · 0 + (1− λ) · tR) ≤ λe0 + (1− λ)etR = 1 +
(etR − 1)Xi

R
.

Then E[exp(tXi)] ≤ 1 + (etR−1)E[Xi]
R = 1 + (etR−1)µ

Rn ≤ exp
(
(etR−1)µ

Rn

)
. Thereafter we have

Pr[Y ≥ (1 + ε)µ] ≤ exp(−t(1 + ε)µ) · exp

(
(etR − 1)µ

R

)
= exp

(
µ

(
1

R
etR − (1 + ε)t− 1

R

))
.

Let g(t) := 1
Re

tR − (1 + ε)t − 1
R . Then g′(t) = etR − (1 + ε) and g′′(t) = RetR > 0. It follows

that g attains its minimum when g′(t) = 0, i.e., when t equals to t0 := 1
R ln(1 + ε) > 0. Using the

inequality (1 + ε) ln(1 + ε) ≥ ε+ ε2

3 for 0 < ε < 1, we have g(t0) = 1
R(ε− (1 + ε) ln(1 + ε)) ≤ − ε2

3R .
Therefore, we have

Pr[Y ≥ (1 + ε)µ] ≤ exp(µg(t0)) = exp

(
−ε

2µ

3R

)
.

2.2 Pollard’s Kangaroo Algorithm

Define R := |b− a| and K :=
√
R. Suppose f : G 7→ {1, 2, . . . ,K} is a function such that for each

u ∈ G the value of f(u) is chosen from {1, 2, . . . ,K} uniformly at random. Moreover, the f(u)’s
are independent. The Pollard’s Kangaroo Algorithm is described as follows.

Consider that a kangaroo’s behavior (a sequence of jumps) is measured by elements in G. In
particular, a kangaroo initially stands in a position d0 ∈ G. Then it jumps to a new position d1
such that gd1 = gf(g

d0)gd0 . Note that d1 = f(gd0) + d0. We call f(gd0) the jumping distance.

Generally, the kangaroo’s j-th jump is from dj−1 with distance f(gdj−1), and the new position is
dj = f(gdj−1) + dj−1. Note that the distance of each jump, taking values from {1, 2, . . . ,K}, only

4

depends on the kangaroo’s current position and is known once the jump is finished. Also note that
the distances of jumps in a sequence are independent.

Suppose we have two kangaroos. The first one is tamed, starting from a known position b, while
the second one is wild, starting from an unknown position x, the value of which we want to find.
Note that the starting position of the wild kangaroo is always behind that of the tamed one, with
a distance at most R. The tamed kangaroo first jumps for T steps, for some T to be determined
later; whenever the tamed kangaroo lands on a position, it lays down a “trap” to potentially catch
the wild kangaroo and stands in the position after the last jump to wait for the wild kangaroo.
Then, we let the wild kangaroo jump. Observe that the jump distance of the tamed or the wild
kangaroo only depends on its current position. Hence, if the wild kangaroo lands on one of the
traps set by the tamed kangaroo, it will follow all the steps of the tamed kangaroo afterwards and
therefore will eventually land on the final position of the tamed kangaroo.

Let {s0, s1, . . .} and {t0, t1, . . .} be the sequences of positions of the tamed and wild kangaroos,
respectively. Observe that s0 = b, si+1 = f(gsi) + si for i ∈ {0, 1, . . . , T − 1} and t0 = x,
tj+1 = f(gtj) + tj for j ≥ 0. Based on the situation when the algorithm stops, it either finds x or
fails.

(1) The wild kangaroo lands on the final position of the tamed kangaroo, i.e., gsT = gtj for some j ≥
0. Then, b+

∑T−1
k=0 f(gsk) = x+

∑j−1
l=0 f(gtl), which implies x = b+

∑T−1
k=0 f(gsk)−

∑j−1
l=0 f(gtl).

Since b and all the f(·) values are known, the algorithm finds x.

(2) The wild kangaroo jumps past the final position of the tamed kangaroo without stepping on
any of the traps, then the algorithm fails to find x. Observe this happens when

∑j−1
l=0 f(gtl) >

b +
∑T−1

k=0 f(gsk), which can be used as a stopping condition. Since the jumping distance is
finite and at least 1, the algorithm will terminate in finite time.

2.3 Checking the Three Conditions

We show that by choosing appropriate T , the Pollard’s Kangaroo Algorithm satisfies conditions
(C1), (C2) and (C3).

Checking Condition (C3). Firstly we consider the memory requirement. Observe that we just
need to maintain the sum of the jump sizes for each kangaroo. Hence, for the tamed kangaroo, one
counter is used to keep track of b+

∑i−1
k=0 f(gsk) until i reaches T and another variable for storing

the the final position α := gsT . For the wild kangaroo, another counter is used to keep track of
the sum

∑j−1
l=0 f(gtl) and the current position β = gtj . Therefore, the algorithm uses only O(1)

memory.

To check conditions (C1) and (C2), we observe that the tamed kangaroo jumps for exactly T times.
After the tamed kangaroo finishes, the wild kangaroo starts jumping. The process stops if (1) the
wild kangaroo jumps to one of the tamed kangaroo’s positions or (2) the wild kangaroo passes over
all the T positions without stepping on any of them. If the first condition happens, we say the wild
kangaroo is trapped, and there exist i ∈ {0, 1, . . . , T} and j ≥ 0 such that si = tj ; otherwise, we say
the wild kangaroo escapes, and it jumps exactly m times, where m is the smallest positive integer
such that sT < tm.

5

Checking Condition (C1). We say a jump is dangerous if it is possible that the wild kangaroo
gets trapped after that jump. That is, a jump is dangerous if it starts in a position d satisfying
that there is at least one i ∈ {0, 1, . . . , T} such that si − d ≤ K. Note that once the wild kangaroo
commits a dangerous jump, all subsequent jumps are dangerous since si+1 − si ≤ K for all i.

If the wild kangaroo starts with a dangerous jump, then each jump falls in a trap with probability
at least 1

K . Then the probability that it is not trapped after cK jumps is at most

(1− 1

K
)cK ≤ exp

(
− 1

K
cK

)
= e−c ≤ 1

4
,

where c is a constant and the last inequality holds if c ≥ ln 4. Therefore, with constant probability
the wild kangaroo will be trapped within cK dangerous jumps.

Now we want to find T such that the track of the tamed kangaroo can support cK dangerous
jumps. Let Xi be the distance of the i-th jump of the tamed kangaroo and X̂i the distance of the
i-th jump of the wild kangaroo. Observe that Xi = f(gsi−1) and X̂i = f(gti−1). Note that all the
Xi’s and X̂i’s are independent. Both Xi’s and X̂i’s take values from {1, 2, . . . ,K} uniformly at
random. Let Z :=

∑T
i=1Xi and Y :=

∑cK
i=1 X̂i. We want Z ≥ Y with high probability.

Note that E[Z] = 1
2T (K + 1) and E[Y] = 1

2cK(K + 1). Then E[Z] = 2E[Y] if we set T = 2cK.
By Chernoff Bound with general range, we have

Pr[Y ≥ 3

2
E[Y]] ≤ exp

(
−E[Y]

12K

)
= exp

(
−c(K + 1)

24

)
and

Pr[Z ≤ 3

2
E[Y]] = Pr[Z ≤ 3

4
E[Z]] ≤ exp

(
−E[Z]

48K

)
= exp

(
−c(K + 1)

48

)
.

Therefore, we have

Pr[Z ≥ Y] ≥ [Pr[Y <
3

2
E[Y]] · [Pr[Z >

3

2
E[Y]]

≥
(

1− exp

(
−c(K + 1)

24

))
·
(

1− exp

(
−c(K + 1)

48

))
= 1− exp(−Θ(K)).

In summary, if T = 2cK, where c ≥ ln 4, then the algorithm can find x with high probability.

Checking Condition (C2). Note that we have given a number of jumps of the tamed kangaroo
such that the track is long enough to trap the wild kangaroo. The length of the track can be as
large as TK = 2cK2 = 2cR. Moreover, the starting position of the wild kangaroo can be behind
that of the tamed kangaroo with a distance as large as |b− a| = R. Therefore, it takes O(R) time
for the wild kangaroo to get trapped or escape in the worst case, where it jumps unit distance each
time.

We show that with high probability the wild kangaroo gets trapped or escapes after 4cK jumps.
Recall that E[Z] = cK(K + 1). Let ε1 = K−2

2(K+1) ≥
1
8 , assuming K ≥ 3, then by Chernoff Bound

6

with general range we have

Pr[Z ≥ 3

2
cK2] = Pr[Z ≥ (1 + ε1)E[Z]] ≤ exp

(
−ε

2
1E[Z]

3K

)
≤ exp

(
−c(K + 1)

192

)
.

Define Ŷ :=
∑4cK

i=1 X̂i, where X̂i is the distance of the i-th jump of the wild kangaroo. Note that

if Ŷ ≥ Z + R, then the wild kangaroo either gets trapped or escapes after 4cK jumps, that is,
the algorithm stops in O(K) time. Observe that E[Ŷ] = 2cK(K + 1). Let ε2 = 1 − (3c+2)K

4c(K+1) ≥
1
8 ,

assuming c ≥ 4. Then by Chernoff Bound with general range we have

Pr[Ŷ ≤ (
3

2
c+ 1)K2] = Pr[Ŷ ≤ (1− ε2)E[Ŷ]] ≤ exp

(
−ε

2
2E[Ŷ]

3K

)
≤ exp

(
−c(K + 1)

96

)
.

Therefore the probability of Ŷ ≥ Z +R is bounded by

Pr[Ŷ ≥ Z +R] ≥ Pr[Z <
3

2
cK2] · Pr[Ŷ > (

3

2
c+ 1)K2]

≥
(

1− exp

(
−c(K + 1)

192

))
·
(

1− exp

(
−c(K + 1)

96

))
= 1− exp(−Θ(K)).

Hence, the algorithm can terminate in time O(K) = O(
√
|b− a|) with high probability.

To sum up, we have shown that the Pollard’s Kangaroo Algorithm can solve the discrete logarithm
problem if we set T = 2cK, where c ≥ 4 is a constant.

7

