COMP8601: Advanced Topics in Theoretical Computer Science
Lecture 2: Derandomization, More on Probabilistic Method
Instructor: Hubert Chan
Date: 5 Sept 2013

These lecture notes are supplementary materials for the lectures. They are by no means substitutes for attending lectures or replacement for your own notes!

1 Derandomization by Conditional Expectation

In the last lecture, we saw randomized algorithms for MAX CUT and MAX 3-SAT. In each of these algorithms, there is an underlying random process involving some random variables $X_{0}, X_{1}, \ldots, X_{n-1}$, and we have computed the expectation of some objective value Y, which is a function on those random variables.

We show that under some very general conditions, the randomized algorithm can be derandomized, i.e., there is some deterministic algorithm that finds values $X_{0}:=x_{0}, X_{1}:=x_{1}, \ldots, X_{n-1}:=x_{n-1}$ such that the objective value Y is at least its expectation.

1.1 Principle of Conditional Expectation

The success of the derandomization method depends on the following conditions.

Sufficient Conditions

1. The objective value Y is a function of the random variables $X_{0}, X_{1}, X_{2}, \ldots, X_{n-1}$, i.e., if the values of the random variables are known, then the value of Y is uniquely determined.
2. Given a partial assignment ${ }^{1} X_{[i]}:=x_{[i]}$ for $1 \leq i \leq n$, the conditional expectation $E\left[Y \mid X_{[i]}=\right.$ $\left.x_{[i]}\right]$ can be computed efficiently.

We show that when such conditions are met, it is possible to find values $x_{[n]}:=\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)$ for the random variables $X_{[n]}:=\left(X_{0}, X_{1}, \ldots, X_{n-1}\right)$ such that the objective value Y is at least its expectation $\mu:=E[Y]$.

1. Initialization. We begin when none of the random variables has been assigned any values, i.e. $i:=0$. We have the invariant: $E\left[Y \mid X_{[i]}=x_{[i]}\right] \geq \mu$. The left hand side is simply $E[Y]$.
2. Assigning Value to One More Random Variable X_{i}. Suppose for some $0 \leq i<n$, we already have the assignment $X_{[i]}:=x_{[i]}$ and the invariant $E\left[Y \mid X_{[i]}=x_{[i]}\right] \geq \mu$. We show the following claim.
Claim 1.1 There exists some assignment $X_{i}:=x_{i}$ such that $E\left[Y \mid X_{[i+1]}=x_{[i+1]}\right] \geq \mu$.
Proof: Conditioning on the value of X_{i}, we have

[^0]$E\left[Y \mid X_{[i]}=x_{[i]}\right]=\sum_{x} \operatorname{Pr}\left(X_{i}=x \mid X_{[i]}=x_{[i]}\right) E\left[Y \mid X_{[i]}=x_{[i]} \wedge X_{i}=x\right]$,
where the summation is over the values x that X_{i} can take. Observe that by the invariant, that the left hand side is at least μ. Hence, it follows that there exists some x_{i} such that $E\left[Y \mid X_{[i]}=x_{[i]} \wedge X_{i}=x_{i}\right] \geq \mu$.
For each x, we test if $E\left[Y \mid X_{[i]}=x_{[i]} \wedge X_{i}=x\right] \geq \mu$ and find such an x_{i}.
We assign $X_{i}:=x_{i}$.
3. This continues until $i=n$, when all random variables have received their values. In this case, we have $E\left[Y \mid X_{[n]}=x_{[n]}\right] \geq \mu$, which means that under those values, the objective value Y is at least μ.

1.2 Derandomization for MAX CUT

Given a graph $G=(V, E)$, where $V:=[n]$ is labeled by n integers. The randomized algorithm essentially assigns independently for each vertex i, a random variable X_{i} taking values uniformly in $\{0,1\}$ (each with probability $\frac{1}{2}$). The cut can be defined by $C:=\left\{i: X_{i}=1\right\}$.
The number Y of edges in the cut is a function of the random variables $X_{0}, X_{1}, \ldots, X_{n-1}$. For each edge $e=\{i, j\} \in E$, define Y_{e} to be 1 if $X_{i} \neq X_{j}$ and 0 if $X_{i}=X_{j}$. Then, $Y:=\sum_{e \in E} Y_{e}$.
It suffices to show that given a partial assignment $X_{[i]}:=x_{[i]}$, the conditional expectation $E\left[Y \mid X_{[i]}=\right.$ $\left.x_{[i]}\right]$ can be computed efficiently. By linearity of expectation, it is enough to consider, for each edge $e=\{u, v\} \in E$, the quantity $E\left[Y_{e} \mid X_{[i]}=x_{[i]}\right]$. There are 3 cases to consider.

1. If none of X_{u} or X_{v} is assigned a value yet, the conditional expectation of Y_{e} is $\frac{1}{2}$, as before.
2. If exactly one of X_{u} and X_{v} is assigned a value, check that the conditional expectation Y_{e} is also $\frac{1}{2}$.
3. If both of X_{u} and X_{v} already have been assigned values, then Y_{e} is 1 if they receive different values and 0 otherwise.

The running time of the derandomization algorithm is $O(m n)$, where m is the number of edges.

1.3 Derandomization of MAX 3-SAT

The argument is similar. The important part is given a partial assignment of variables, what is the (conditional) probability that a clause is satisfied? There are some cases to consider:

1. If the partial assignment makes the clause satisfied, then it is 1 ;
2. if there are 3 unassigned variables in the clause, then it is $\frac{7}{8}$;
3. if there are 2 unassigned variables in the clause, then it is $\frac{3}{4}$;
4. if there is 1 unassigned variable in the clause, then it is $\frac{1}{2}$;
5. if there is no more unassigned variables in the clause, then it is 0 .

One can check that for m clauses in n variables, the derandomized procedure takes time $O(m n)$.

2 Graphs with No Short Cycles: Method of Alteration

When we use the probabilistic method, after we run the experiment, sometimes we have to make minor alteration to the outcome in order to obtain a desirable solution. We demonstrate this method by considering the number of edges in a graph with no short cycles.

Definition 2.1 An undirected graph $G=(V, E)$ contains a cycle of length l if there are l vertices $v_{1}, v_{2}, \ldots, v_{l}$ such that all l edges $\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\}, \ldots\left\{v_{l-1}, v_{l}\right\},\left\{v_{l}, v_{1}\right\} \in E$ are present. The minimum length of a cycle is 3; note that there is no cycle of length 2.
Question. Suppose a graph has no cycles of length l or less. What is the maximum number of edges that it can have?
Observe that we are trying to optimize two conflicting objectives: adding more edges means eventually creating short cycles. In the extreme case, in a complete graph, every 3 points form a 3 -cycle.

Theorem 2.2 There exists an n-vertex graph with no cycles of length l or less that has at least $\Omega\left(n^{1+\frac{1}{l-1}}\right)$ edges.
We proof the special case for $l=3$. The general case will appear in a homework question.
Definition 2.3 (Random Graph $G_{n, p}$) Consider the following experiment. Let V be a set of n vertices. We form a random graph (V, E) in the following way. For each unordered pair $\{u, v\} \in$ $\binom{V}{2}$, independently add an edge between u and v with probability p, i.e., $\operatorname{Pr}(\{u, v\} \in E)=p$. The resulting graph is known as $G_{n, p}:=(V, E)$.
Note that for any graph G with index set $V, \operatorname{Pr}\left(G_{n, p}=G\right)>0$. Our candidate graph could be generated by the process. If we want more edges, then p should be large; if we do not want short cycles, then p should be small. We will find the best value of p to balance between the two requirements..

2.1 Without alteration: How lucky can we be?

Our best hope is to prove that with non-zero probability, both of the following events A and B happen. Event A is the event that $G_{n, p}$ has a large number X of edges. Event B is the event that there are no triangles in $G_{n, p}$.
Consider event B first. Group the n vertices into $\frac{n}{3}$ groups, each of size 3. (For the time being, assume n is divisible by 3.) Look at one such group. The probability that there is no triangle between 3 vertices is $\left(1-p^{3}\right)$. The probability that this holds for all $\frac{n}{3}$ groups is $\left(1-p^{3}\right)^{n / 3}$. Hence, $\operatorname{Pr}(B) \leq\left(1-p^{3}\right)^{n / 3}$, which is quite small (exponentially small with respect to n).
Note that the events A and B are not independent. If we want to use the union bound $\operatorname{Pr}(\bar{A} \cup \bar{B}) \leq$ $\operatorname{Pr}(\bar{A})+\operatorname{Pr}(\bar{B})$ to give an upper bound on the failure probability, we would need to prove something
like the failure probability $\operatorname{Pr}(\bar{A})$ is less than $\left(1-p^{3}\right)^{n / 3}$. Since this is small, it is difficult to show that the number of edges X is large using this approach.
Consider another approach. Although with high probability, there would exist a triangle, the number Y of triangles is not too big. Here is an idea. We run the experiment and form $G_{n, p}$. Let X be the number of edges and Y be the number of triangles. We pick one edge from each triangle and remove it. In the worst case, we remove Y edges from the graph.
After this alteration, the graph would have no triangles, and the number of edges in the remaining graph is at least $Z:=X-Y$. By choosing the probability p carefully, we show that with non-zero probabilitiy, Z is large.
First observe the following quantities.
Claim 2.4 We have the following.

1. $E[X]=\binom{n}{2} p$
2. $\operatorname{var}[X]=\binom{n}{2} p(1-p)$
3. $E[Y]=\binom{n}{3} p^{3}$.

Proof: The first two results follow from the fact that X has a binomial distribution with $\binom{n}{2}$ objects and probability p. The last result follows from the fact that there are $\binom{n}{3}$ ways to form a cycle in a graph, and the probability that each of them is formed is p^{3}.
We can proceed in two ways: (1) using probability or (2) using expectation.

2.2 By Probability

Suppose we can show the following:

1. For some $\alpha>0, \operatorname{Pr}(X<E[X]-\alpha)<\frac{1}{2}$.
2. For some $\beta>0, \operatorname{Pr}(Y>\beta)<\frac{1}{2}$.

Using union bound, we know that with non-zero probability neither events happen, and in that case, we have $Z:=X-Y \geq E[X]-\alpha-\beta$.
We first choose p such that $E[X] \geq 4 E[Y]$. Observe that we can choose $p:=\sqrt{\frac{3}{8 n}}$. Check that $E[X]=\Theta\left(n^{1.5}\right)$.
For the first event, observe by Chebyshev's inequality, $\operatorname{Pr}(X<E[X]-\alpha) \leq \operatorname{Pr}(|X-E[X]|>$ $\alpha)<\frac{\operatorname{var}[X]}{\alpha^{2}} \leq \frac{\binom{n}{2} p}{\alpha^{2}}$. The last quantity is at most $\frac{1}{2}$, if we set $\alpha:=\sqrt{2\binom{n}{2} p}=\Theta\left(n^{0.75}\right)$.
For the second event, by Markov's inequality, if we set $\beta:=2 E[Y]$, then $\operatorname{Pr}[Y>\beta]<\frac{1}{2}$.
Hence, it follows that with non-zero probability, we have
$Z:=X-Y \geq E[X]-\alpha-2 E[Y] \geq E[X]-\alpha-\frac{1}{2} E[X]=\frac{E[X]}{2}-\sqrt{2\binom{n}{2} p} \geq \Omega\left(n^{1.5}\right)$.

2.3 By Expectation

We choose p such that $E[X] \geq 2 E[Y]$. We can set $p:=\sqrt{\frac{3}{4 n}}$. Check that $E[X]=\Theta\left(n^{1.5}\right)$.
Then, it follows that
$E[Z]=E[X]-E[Y] \geq E[X]-\frac{E[X]}{2}=\frac{E[X]}{2}=\Omega\left(n^{1.5}\right)$.
Remark 2.5 Note that this is not the best result for triangle-free graphs. Consider a complete bipartite graph with $\frac{n}{2}$ vertices on each side. Then, the graph has no triangles and has $\Omega\left(n^{2}\right)$ edges. However, we obtain a weaker result using the probabilistic method to illustrate how a similar result could be proved for general l.

2.4 General Case

The general case would appear as a homework problem. If you would like a head start to work on the next homework, here is a preview.

1. Graphs with No Short-Cycles. In this question, we show the following result. For each $l \geq 3$, and $n \geq 2^{l+2}$, there exists a graph, with n vertices and no cycles of length l or less, that has $\Omega\left(n^{1+\frac{1}{l-1}}\right)$ edges.
(a) Consider the random graph $G_{n, p}$, where $p \geq \frac{2}{n}$. For $3 \leq i \leq l$, let Y_{i} be the number of length- i cycles in $G_{n, p}$. Compute $E\left[Y_{i}\right]$.
(b) Let $Y:=\sum_{3 \leq i \leq l} Y_{i}$. Show that $E[Y] \leq(n p)^{l}$.
(c) By choosing an appropriate value of p, prove that there exists an n-vertex graph, with no cycles of length l or less, that has $\Omega\left(n^{1+\frac{1}{l-1}}\right)$ edges.
(d) Derandomize the above procedure, i.e., give a deterministic algorithm that returns a graph with the desired properties. Analyze the running time of your algorithm.

[^0]: ${ }^{1}$ Recall we denote $[i]:=\{0,1,2, \ldots, i-1\}$, and $[0]:=\emptyset$.

