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These lecture notes are supplementary materials for the lectures. They are by no means substitutes
for attending lectures or replacement for your own notes!

1 Upper Bound for the ε-covering Number

The goal of this lecture is to prove the following theorem.

Theorem 1.1 (Haussler’s Theorem [2]) Let C be a class of boolean functions from the set S =

{x1, . . . , xm} to {0, 1}. Suppose (S,C) has VC-dimension d. Then, we have N(ε, C, LS2 ) ≤
(
c
ε

)2d
for some constant c > 1.

Interpretation: Function as a Point. A boolean function from S to {0, 1} can be viewed as
a point in {0, 1}S , and we call xi ∈ S the i-th coordinate for i ∈ [m]. To simplify notation, for a
collection C of functions in {0, 1}S , we simply say the VC-dimension of C to mean the VC-dimension
of (S,C).

Distances between Points. A metric LS2 can be defined on C such that, for f, g ∈ C, the distance

is LS2 (f, g) :=
√

1
m

∑m
i=1(f(xi)− g(xi))2.

ε-Cover. A subset Ĉ ⊆ C is an ε-cover if every point in C is at distance at most ε from some
point in Ĉ. The ε-covering number is the size of a smallest ε-cover. Hence, Haussler’s Theorem
means that if C has VC-dimension at most d, then it has an ε-cover of size at most O( 1

ε2
)d, which

is independent of m.

ε-Packing. A subset Ĉ ⊆ C is an ε-packing if every 2 distinct points in Ĉ are more than ε apart.

General Proof Strategy. Observe that a maximum ε-packing must be an ε-cover, otherwise there
must be a point that is not covered and hence can be included to get a larger ε-packing. Hence, it
suffices to show the following: any ε-packing V ⊂ C can contain at most O( 1

ε2
)d points.

Assume that V is an ε-packing. This means that the distance between any two points f, g ∈ V is√
1
m

∑m
i=1(f(xi)− g(xi))2 > ε. Observing that |f(xi)−g(xi)| is either 0 or 1, we conclude that any

distinct f, g ∈ V must differ by more than ε2m coordinates. For convenience, we write ρ := ε2.

Easy Case. If m ≤ 4d
ρ , then by Sauer’s Lemma, |C| ≤ (med )d ≤ (4eρ )d. Hence, |V | is also at most

(4eρ )d ≤ (4e
ε2

)d. Therefore, we can assume that the number m of coordinates is larger than 4d
ρ .

Setup. We assume V is an ε-packing, where M = |V |. Moreover, m > 4d
ρ . The goal is to give an

upper bound on M in terms of d and ρ = ε2 only. We first give an intuitive argument that does
not immediately work, and explain how to refine it.
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Projections. Let n :=
⌈
4d
ρ

⌉
≤ m. We sample n distinct coordinates I from [m] uniformly at

random, e.g., by sampling without replacement. For a point f ∈ V , we let f|I be the projection of
f on I, and let V|I := {f|I : f ∈ V } be the projection of V on I.

A Counting Argument. A pair {f, g} of points in V is separated by I if f|I 6= g|I . Since f and g
differ by more than ρm coordinates, the probability that they are separated is at least 1−(1−ρ)n ≥
1−e−4d. Hence, the expected number of separated pairs is at least

(
M
2

)
·(1−e−4d) ≈ M2

2 ·(1−e
−4d).

Intuitively, if M is large, then there are lots of such pairs.

On the other hand, if B = |V|I |, then we can think of distributing M items into B boxes. Since V|I
also has VC-dimension at most d, we have B ≤ (ned )d = (4eρ )d. Since there is an upper bound on B,
maybe we can argue that the number of pairs separated by different boxes is small. The number of
pairs separated by different boxes is maximized when the M items are distributed evenly, in which
case we have at most

(
B
2

)
(MB )2 ≈ M2

2 (1− 1
B ) pairs. (Observe that this very pessimistic, because we

assume that the M items are distributed totally evenly.)

Hence, comparing the two quantities, we conclude that 1 − e−4d ≤ 1 − 1
B , which gives B ≥ e4d.

However, this does not seem very useful because we only have B ≤ (4eρ )d. Although the simple
argument does not work immediately, we shall modify it so that instead of considering number of
pairs {f, g} such that f |I 6= g|I , we shall consider the number of pairs such that f |I and g|I differ
by exactly one coordinate. We present the argument given by Chazelle [1].

We next introduce the 1-inclusion graph as a useful tool.

2 The 1-Inclusion Graph

For C ⊆ {0, 1}S , the 1-inclusion graph G(C,E) of (S,C) has vertex set C and edge set E =
{{f, g} : f and g differ in exactly one coordinate}. That is, there is an edge between f and g if
and only if there exists x ∈ S such that f(x) 6= g(x) and f(x′) = g(x′) for all x′ 6= x. Suppose the
VC-dimension of (S,C) is d. Then we have the following property for 1-inclusion graph.

Lemma 2.1 Let G(C,E) be the 1-inclusion graph of (S,C), which has VC-dimension d. Then,
|E| ≤ d · |C|. In particular, since every subset C ′ ⊆ C has VC-dimension at most d, it follows that
the number of edges in the induced subgraph G[C ′] is at most d · |C ′|.
Proof: We consider a shifting procedure. We represent points in C as rows in a table, where each
row corresponds to a point in C and each column corresponds to a coordinate in S. The procedure
proceeds round by round. In each round, we select an arbitrary column that has not been selected,
and we repeatedly change 1’s into 0’s if the changing does not lead to a row that is already in the
table. Let (C∗, E∗) be the new 1-inclusion graph corresponding to the rows in the table after the
shifting operations.

Number of Edges Does Not Decrease After Shifting One Entry. Consider an operation
at row f , where we change f(xi) from 1 to 0; let f ′ be the new point, which does not exist before.
Suppose g is adjacent to f in (Ci, Ei). Then g and f differ in exactly one coordinate xk, and this
coordinate cannot be xi, i.e., k 6= 1 (since otherwise f ′ = g). Then g(xi) = 1.
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Now consider g(xi). If g(xi) can be changed from 1 to 0 and let g′ be the new point, then g′ and
f ′ become adjacent again. It follows that the edge {f, g} is replaced by a new edge {f ′, g′}.
Suppose g(xi) cannot be changed. Then there is a point h such that h(xi) = 0 and h(xj) = g(xj)
for all j 6= i. Now h and f ′ differ in exactly one coordinate xk, so there is a new edge {f ′, h} after
the operation. There is no edge between h and f before the operation, since they differ in two
coordinates. In both cases, the number of edges does not decrease.

The VC-dimension Does Not Increase After Shifting One Column. We consider the effect
of shifting a particular column in the procedure. Let (Ci, Ei) be the 1-inclusion graph corresponding
to the table at the beginning of the round when we consider the column xi, and let (C ′i, E

′
i) be the

1-inclusion graph corresponding to the table at the end of this round.

Next we show that the VC-dimension of (S,C ′i) is at most the VC-dimension of (S,Ci). In particular,
we show that if a subset T of S is shattered by C ′i, then T is also shattered by Ci. If the column xi
is not in T , then we are done. Suppose xi ∈ T . Note that T \ {xi} must be shattered by Ci. For
each f ∈ C ′i, if f(xi) = 1, then f is also in Ci. Moreover, there must exist g ∈ Ci that agrees with
f in all coordinates but xi, since otherwise f(xi) should have been changed from 1 to 0. Hence T
is also shattered by Ci.

Analyzing the Inclusion Graph after Shifting. Applying the above analysis for all columns
in the table, we conclude |E||C| ≤

|E∗|
|C∗| and that the VC-dimension of (S,C∗) is at most d.

We claim that in the final table, if there is T ⊆ S and a row h such that h(x) = 1 for all x ∈ T ,
then T must be shattered by C∗. In particular, if we let f|T be the projection of f on T , then

for every v ∈ {0, 1}T there exists f ∈ C∗ such that f|T = v. Suppose on the contrary there is at

least one v ∈ {0, 1}T such that f|T 6= v for all f ∈ C∗; let v be one such point with a maximum
number j of 1’s. Note that j < |T | since we have a row h with all 1’s at T . Suppose v(x) = 0 for
some x ∈ T . Let v′ ∈ {0, 1}T be a point that differs with v at exactly one coordinate x; that is,
v′(x) = 1. There exists f ∈ C∗ such that f|T = v′. Then f(x) should have been changed from 1 to
0, since this change cannot lead to a row already in the table. This is a contradiction.

It follows that in the final table every row has at most d 1’s. Then, every point f has at most d
neighbors with less 1’s than f . We direct each edge {f, g} of E∗ as (f, g) if f has more 1’s than
g. Let ~E∗ be the set of directed edges. Then each vertex has an out-degree at most d in (C∗, ~E∗).

Hence |E∗| = | ~E∗| ≤ d|C∗|. Then we get |E||C| ≤
|E∗|
|C∗| ≤ d.

Lemma 2.2 Suppose G = (C,E) is an undirected graph such that, for every subset C ′ ⊆ V , the
induced subgraph G[V ′] has at most d · |C ′| edges. Then, the edges in G can be directed such that
the maximum out-degree is at most d.

Proof: We will use the Hall’s theorem, which states that a class of sets V1, . . . , Vk has a set of
distinct representatives r1 ∈ V1, . . . , rk ∈ Vk if and only if for all ` ≤ k, the union of any ` of the
Vi’s contains at least ` elements.

For each vertex f ∈ C, we let f (1), . . . , f (d) be d copies of f . We can think of each copy as a
“token”. If we want to direct an edge {f, g} from f to g, then the edge must get a token from f .
Since each vertex f has at most d tokens, if each edge can obtain one token from one of its incident
vertices, then the problem is solved.
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For each edge e = {f, g} ∈ E, define a set Ve := {f (1), . . . , f (d), g(1), . . . , g(d)}. Consider the class of
sets {Ve : e ∈ E}. Every E′ ⊆ E corresponds to a subgraph (C ′, E′), where C ′ is the set of vertices
whose copies appear in the sets {Ve : e ∈ E′}.
Let (C ′, E′′) be the subgraph induced by C ′. Then E′ ⊆ E′′. Then, from hypothesis, we have
| ∪e∈E′ Ve| = d|C ′| ≥ |E′′| ≥ |E′|. By Hall’s theorem there exist distinct representatives re ∈ Ve for
all e ∈ E. For each edge e = {f, g}, we direct it as (f, g) if the representative re is in {f (1), . . . , f (d)}
and as (g, f) otherwise. Then, every edge is directed. Moreover, since the representatives are
distinct, the out-degree of a vertex is at most the number of its copies, which is exactly d.

3 Continue with Packing V and Random Projection on I

Recall that we have an ε-packing V , where |V | = M . In particular, this implies that any two points
f, g in V differ by more than ρm coordinates, where ρ = ε2. Moreover, we consider the case when

m ≥ n :=
⌈
4d
ρ

⌉
, and I is a random subset of n coordinates from [m].

Defining Weighted Inclusion Graphs. For each I ⊆ [m] and V ⊆ C, we consider a weighted
version of the 1-inclusion graph (V|I , E(V|I)). We define weight functions q = q(V, I) on the vertices,
and w = w(V, I) on the edges as follows. For each u ∈ V|I , define q(u) := |{f ∈ V : f|I = u}| as the
number of points in V whose projection on I is exactly u. Note that

∑
u∈V|I q(u) = |V |. For each

edge e = {u, v} ∈ E(V|I), define its weight as w(e) := q(u)·q(v)
q(u)+q(v) . Let W = W (V, I) be the sum of

the edge weights, i.e., W :=
∑

e∈E(V|I)
w(e). Observe that q, w and W depend on V and I.

Hence, W = W (V, I) is a random variable. We consider the expectation E[W ], which corresponds
to the number of separated pairs in our simple argument.

The lemma below is the analogue of our simple counting argument when we tried to give an upper
bound on the number of pairs separated by the B boxes.

Lemma 3.1 For all I ⊆ [m] and V ⊆ C, we have W ≤ d · |V |.
Proof: Since the VC-dimension of (I, V|I) is at most d, the 1-inclusion graph (V|I , E(V|I)) can be

directed such that every vertex has an out-degree at most d. Let (V|I , ~E(V|I)) be such a directed
graph. Using the inequality yz ≤ (y + z) min{y, z} for all y, z ≥ 0, we have

W =
∑

e∈ ~E(V|I)
w(e) =

∑
(u,v)∈ ~E(V|I)

q(u)q(v)
q(u)+q(v) ≤

∑
(u,v)∈ ~E(V|I)

min{q(u), q(v)}

≤
∑

(u,v)∈ ~E(V|I)
q(u) ≤ d

∑
u∈V|I q(u) = d|V |,

as required.

Recall that in our simple argument, we tried to argue that since each distinct pair f, g ∈ V differ by
more than ρm coordinates, the expected number of pairs separated is large. The following lemma
is its analogue.

Lemma 3.2 E[W ] ≥ 2d(M − (en/d)d).

Proof: Partition the edges of the 1-inclusion graph (V|I , E(V|I)) into n subsets E1, . . . , En,
where Ek is the set of edges whose end points differ in the ik-th coordinate, i.e., Ek = {{u, v} ∈
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E(V|I) : u(xik) 6= v(xik)}. For k ∈ [n], let Wk :=
∑

e∈Ek
w(e). Observe that W =

∑n
k=1Wk.

By symmetry we have E[Wk] = E[Wn] for all k ∈ [n]. Then by linearity of expectation we get
E[W ] =

∑n
k=1 E[Wk] = nE[Wn].

To obtain a lower bound for E[Wn], we first consider E[Wn|I−n], that is, the expectation of Wn

conditioned on I−n. Set J := I−n. Note that given J , the random variable in is uniformly
distributed in [m] \J . We partition V into |V|J | subsets {Vt : t ∈ V|J} according to V|J , that is, two
points of V are in the same subset Vt if and only if they have the same projection t on J .

For any in ∈ [m] \ J and t ∈ V|J , the set Vt can be further divided into two sets At and Bt, where
At = {f ∈ Vt : f(xin) = 1} and Bt = {f ∈ Vt : f(xin) = 0}. Let `t := |At|. For every edge e ∈ En,
since its two end points has a common projection on J , there exists t ∈ V|J such that one of the
end point corresponds to At (that is, all points in At are projected to this end point), and the other

to Bt; it follows that w(e) = `t(|Vt|−`t)
|Vt| . On the other hand, every Vt corresponds to an edge in En,

with At projected to one of the end point and Bt to the other, that has a weight `t(|Vt|−`t)
|Vt| ; in case

either At or Bt is empty, we can assume Vt corresponds to a zero-weighted edge. Note that given
J , the value of |Vt| is determined and only `t is a random variable. Then we have

E[Wn|J ] = E
[∑

e∈En
w(e)|J

]
= E

[∑
t∈V|J

`t(|Vt|−`t)
|Vt| |J

]
=
∑

t∈V|J
1
|Vt|E[`t(|Vt| − `t)|J ].

We fix t ∈ V|J and consider E[`t(|Vt| − `t)|J ]. The value `t(|Vt| − `t) is the number of unordered
pairs {f, g} with f, g ∈ Vt such that f(xin) 6= g(xin). Let Pt := {{f, g} : f 6= g and f, g ∈ Vt} be the

set of all unordered pairs of distinct functions in Vt. Then |Pt| = |Vt|(|Vt|−1)
2 . For each {f, g} ∈ Pt,

since V is an ρ-packing, f and g differ in at least ρm coordinates. Then if in is uniformly drawn
from [m] \ J , the probability that f and g differ in in is at least ρm

m−n+1 ≥ ρ. That is, every pair in
Pt contributes at least ρ to the value `t(|Vt| − `t) in expectation. It follows that

E[`t(|Vt| − `t)|J ] ≥ |Vt|(|Vt|−1)2 · ρ = ρ·|Vt|(|Vt|−1)
2 .

Now we have E[Wn|J ] =
∑

t∈V|J
1
|Vt|E[`t(|Vt| − `t)|J ] ≥

∑
t∈V|J

ρ(|Vt|−1)
2 =

ρ(M−|V|J |)
2 . Since (J, V|J)

has VC-dimension at most d, by Sauer’s lemma we have |V|J | ≤
(
e(n−1)
d

)d
≤
(
en
d

)d
. It follows that

E[Wn|J ] ≥ ρ(M−(en/d)d)
2 . Now we have

E[W ] = nE[E[Wn|J ]] ≥ ρn(M−(en/d)d)
2 ≥ 2d · (M − (en/d)d). (3.1)

Finishing the Proof. Combining Lemmas 3.1 and 3.2, we have:

2d · (M − (en/d)d) ≤ dM , which yields M ≤ 2 · ( end )d ≈ 2 · (4eρ )d = O( 1
ε2

)d, since n =
⌈
4d
ρ

⌉
. This

completes the proof.
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4 Homework Preview

1. Alternative Proof of Sauer’s Lemma. Suppose C is a class of boolean functions on X
and the VC-dimension of (X,C) is at most d. Use the shifting procedure to prove Sauer’s
Lemma: for every subset S of X such that |S| = m, the cardinality of the projection C(S) is
at most

(
m
≤d
)
.

(Hint: You can use any results about the shifting procedure proved in class.)

2. Alternative Proof for the 1-inclusion Graph. Let S be a set of size m. Let C ⊆ {0, 1}S
be a collection of points with VC-dimension d. Suppose E is the set of edges in the 1-inclusion
graph of (S,C). We have proved in class that |E| ≤ d · |C| using the shifting procedure. In
this question, we prove the same result by induction on d and m, which is similar to the proof
of Sauer’s Lemma shown in Lecture 8.

(a) Prove that |E| ≤ d · |C| is true for the base cases d = 0 or m = 1.

(b) Suppose d ≥ 1 and m > 1. Let x ∈ S and S′ := S \{x}. Let C1 := C|S′ be the projection
of C on S′. Let C2 ⊆ C1 be the set of points f in C1 such that there exist f1, f2 ∈ C,
where f1 and f2 disagree on x and f1 |S′= f2 |S′= f . Let E1 be the set of edges in the
1-inclusion graph G of (S′, C1), and E2 ⊆ E1 the set of edges in the induced subgraph
G[C2].

i. Give upper bounds for |E1| and |E2| in terms of d, |C1| and |C2|.
(Hint: Use the induction hypothesis.)

ii. Prove that |E| ≤ |E1|+ |E2|+ |C2|.
iii. Prove that |E| ≤ d · |C|.
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