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These lecture notes are supplementary materials for the lectures. They are by no means substitutes
for attending lectures or replacement for your own notes!

1 Upper Bound for the Rademacher Averages

Recall that given a class C' of functions from S = {z1,...,2,,} to R, the Rademacher averages of
C is defined as Rg(C) = E, [sup fec LS 0if(xi)], where the o;’s are independent and uniform
random variables taken from {—1,+1}. In this lecture we give an upper bound for Rg(C) that is
diminishing as m increases. We denote by R® the collection of functions from S to R.

The following lemma gives an upper bound for Rg(C') when C is finite.

Lemma 1.1 (Massart’s Lemma) Let V be a finite subset of R® with |S| = m where each member
v of V is denoted by v = (vi,...,vp). Let o1,...,0m be random variables chosen from {—1,+1}

uniformly at random such that all o;’s are independent. Let r := maxyey 1/ Y ieq v?. Then we have

When C C {0,1}° is a class of boolean functions, the size of C' is at most 2™, which is finite. Also

we have maxsec /Y iy (f(2:))? < v/m. Then, by Massart’s lemma we can give an upper bound
for Rg(C) as

Rs(C) < ‘/ﬁm L T

However, this upper bound is a constant, which is not small enough for large m. In the next section
we give a tighter upper bound for Rg(C') using Dudley’s integral.

2 Dudley’s Integral

Definition 2.1 (Cover and Covering Number) For a metric space (A, p) and a subset C C A,
we say T C A is an e-cover of (C,p) if for all f € C, there exists t € T such that p(f,t) <e. The
e-covering number of (C, p) is the minimum cardinality of e-covers of (C,p), which we denote by
N(e,C,p) =min{|T| : T is an e-cover of (C,p)}.

Given S = {z1,..., %}, we consider the metric space (R, L5), where the metric L5 is defined as
for all f,g € RS, we have Lg(f,g) = \/% Yo () — g(z4))2.




Theorem 2.2 (Dudley’s Integral [1]) Let C be a class of functions from S = {z1,...,zm} to
R. Let h be the zero function such that h(x) = 0 for all x € S. Suppose B := supcc L5(f, h) is

finite and N (e, C, L) is the e-covering number of (C,L5). Then, Rs(C) < 12 fOB %de.

Proof: Let k be a positive integer. For all 0 < j < k, define ¢; := B - 277 and let T; be
a minimum ej-cover of (C,L5). It follows that || = N(e;,C,L5). We let Ty := {h} since
L5(f,h) < B = ¢ for all f € C. Note that N(e,C, L5) is non-increasing with respect to €, hence
|Tj_1] = N(ej—1,C, L§) < N(ej, C, L) = |T}| for 0 < j < k. Without loss of generality we assume
T}, is a finite set (and hence all T}’s are finite sets), since otherwise N (e, C, Lg ) is unbounded for
0 < € < €, in which case the integral is also unbounded and the inequality is trivially true.

For each f € C and 0 < j < k, let f; € T be a function such that f; covers f in Tj, that is,

L5(f, ;) < & Then we can represent each f by f = f — fi + Z;?:l(fj — fj—1), where fo = h.
Then we have
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We consider the first and second terms in the last expression respectively. For the first term, recall
that the o;’s are random variables taken from {—1,+1}. Applying the Cauchy-Schwartz inequality
we obtain

E, Jgtelg — ; oi ( — fr(zi))| <E sup ; o2 ;(f(l'z) — frlxi))?
=E, |sup L D (f(@i) = falx:)?| =By |sup L5(f, fk)] < e (2.2)
fec \ m - fec

Now we consider the second term Z§:1 Eq [supfeo = Yoy oi (fi(xi) — fi—1(xi))]. We fix j, and
define gy := f; — fj—1. That is, we define a new function g; for each f € C. Let G := {gs : f € C}
be the collection of g functions. It follows that

= 0.

fec m = geg m

E, [sup— > o0 (@) — fi-1(ws)
=1

sup — Z oig(x; ] (2.3)

Since f; € T; and fj_1 € Tj_1, we have |G| < |Tj||Tj—1| < |Tj|>. Since Tj is finite, the set G is also



finite. Also note that for each g = gy € G for some f € C,
St 93 (@) = LE(f, fi—)vm < (L3 (f, f3) + LE(f, fi—1))vm < (€ + €j—1)y/m = 3ej/m,

that is, sup,eg Vit (g(z4))? < 3ej/m. Applying Massart’s Lemma to the functions G, we obtain
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Combining (2.1), (2.2), (2.3) and (2.4) we get
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where the second inequality follows from N (e, C, L5) > N(e;, C, L5) for all €j+1 < € < ¢j. Taking

B
k — oo implies Rg(C) <12 [;* 1/ %de <12 fOB \/ %de. |

Note that Lemma 1.5 in notes 9 holds as a special case of Theorem 2.2. Also, if we can further give
an upper bound for N (e, C, L5) that is independent, of m, then the bound for Rg(C) is diminishing
with respect to m. In the next lecture we give an upper bound for N (e, C, Lg ) independent of m.

3 Homework Preview

Massart’s Lemma. Let V be a finite subset of R® with |S| = m where each member v of V is
denoted by v = (v1,...,vm). Let 01,...,0., be random variables chosen from {—1,41} uniformly
at random such that all ;’s are independent.

(a) Jensen’s Inequality. Suppose X is a random variable and f : R — R is a differentiable
convex function. Prove that E[f(X)] > f(E[X]).

(Hint: A differentiable function f : R — R is convex if and only if for all z,y € R, it holds
that f(z) > f(y) + f'(y)(z — y).)



b) Let p:= E[max,cy > v, o;v;]. Suppose A > 0 is some constant. Prove that
=1
M <Y, ey [T E [&om]'

(Hint: The function f(z) := e is convex.)

(c) Let r:= maxyey /> ivq v2. Prove that u <ry/2In|V)|.

z2

(Hint: For x € R, it holds that ££— < e’z .)
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