COMP8601: Advanced Topics in Theoretical Computer Science
Lecture 11: Dudley's Integral
Lecturer: Hubert Chan
Date: 19 Nov 2013

These lecture notes are supplementary materials for the lectures. They are by no means substitutes for attending lectures or replacement for your own notes!

1 Upper Bound for the Rademacher Averages

Recall that given a class C of functions from $S=\left\{x_{1}, \ldots, x_{m}\right\}$ to \mathbb{R}, the Rademacher averages of C is defined as $R_{S}(C)=\mathbf{E}_{\sigma}\left[\sup _{f \in C} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} f\left(x_{i}\right)\right]$, where the σ_{i} 's are independent and uniform random variables taken from $\{-1,+1\}$. In this lecture we give an upper bound for $R_{S}(C)$ that is diminishing as m increases. We denote by \mathbb{R}^{S} the collection of functions from S to \mathbb{R}.

The following lemma gives an upper bound for $R_{S}(C)$ when C is finite.
Lemma 1.1 (Massart's Lemma) Let \mathcal{V} be a finite subset of \mathbb{R}^{S} with $|S|=m$ where each member v of \mathcal{V} is denoted by $v=\left(v_{1}, \ldots, v_{m}\right)$. Let $\sigma_{1}, \ldots, \sigma_{m}$ be random variables chosen from $\{-1,+1\}$ uniformly at random such that all σ_{i} 's are independent. Let $r:=\max _{v \in \mathcal{V}} \sqrt{\sum_{i=1}^{m} v_{i}^{2}}$. Then we have

$$
\mathbf{E}\left[\max _{v \in \mathcal{V}} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} v_{i}\right] \leq \frac{r \sqrt{2 \ln |\mathcal{V}|}}{m} .
$$

When $C \subseteq\{0,1\}^{S}$ is a class of boolean functions, the size of C is at most 2^{m}, which is finite. Also we have $\max _{f \in C} \sqrt{\sum_{i=1}^{m}\left(f\left(x_{i}\right)\right)^{2}} \leq \sqrt{m}$. Then, by Massart's lemma we can give an upper bound for $R_{S}(C)$ as

$$
R_{S}(C) \leq \frac{\sqrt{m} \cdot \sqrt{2 \ln 2^{m}}}{m}=\sqrt{2 \ln 2} .
$$

However, this upper bound is a constant, which is not small enough for large m. In the next section we give a tighter upper bound for $R_{S}(C)$ using Dudley's integral.

2 Dudley's Integral

Definition 2.1 (Cover and Covering Number) For a metric space (\mathcal{A}, ρ) and a subset $C \subseteq \mathcal{A}$, we say $T \subseteq \mathcal{A}$ is an ϵ-cover of (C, ρ) if for all $f \in C$, there exists $t \in T$ such that $\rho(f, t) \leq \epsilon$. The ϵ-covering number of (C, ρ) is the minimum cardinality of ϵ-covers of (C, ρ), which we denote by $N(\epsilon, C, \rho)=\min \{|T|: T$ is an ϵ-cover of $(C, \rho)\}$.
Given $S=\left\{x_{1}, \ldots, x_{m}\right\}$, we consider the metric space $\left(\mathbb{R}^{S}, L_{2}^{S}\right)$, where the metric L_{2}^{S} is defined as for all $f, g \in \mathbb{R}^{S}$, we have $L_{2}^{S}(f, g):=\sqrt{\frac{1}{m} \sum_{i=1}^{m}\left(f\left(x_{i}\right)-g\left(x_{i}\right)\right)^{2}}$.

Theorem 2.2 (Dudley's Integral [1]) Let C be a class of functions from $S=\left\{x_{1}, \ldots, x_{m}\right\}$ to \mathbb{R}. Let h be the zero function such that $h(x)=0$ for all $x \in S$. Suppose $B:=\sup _{f \in C} L_{2}^{S}(f, h)$ is finite and $N\left(\epsilon, C, L_{2}^{S}\right)$ is the ϵ-covering number of $\left(C, L_{2}^{S}\right)$. Then, $R_{S}(C) \leq 12 \int_{0}^{B} \sqrt{\frac{\ln N\left(\epsilon, C, L_{2}^{S}\right)}{m}} d \epsilon$.
Proof: Let k be a positive integer. For all $0 \leq j \leq k$, define $\epsilon_{j}:=B \cdot 2^{-j}$ and let T_{j} be a minimum ϵ_{j}-cover of $\left(C, L_{2}^{S}\right)$. It follows that $\left|T_{j}\right|=N\left(\epsilon_{j}, C, L_{2}^{S}\right)$. We let $T_{0}:=\{h\}$ since $L_{2}^{S}(f, h) \leq B=\epsilon_{0}$ for all $f \in C$. Note that $N\left(\epsilon, C, L_{2}^{S}\right)$ is non-increasing with respect to ϵ, hence $\left|T_{j-1}\right|=N\left(\epsilon_{j-1}, C, L_{2}^{S}\right) \leq N\left(\epsilon_{j}, C, L_{2}^{S}\right)=\left|T_{j}\right|$ for $0<j \leq k$. Without loss of generality we assume T_{k} is a finite set (and hence all T_{j} 's are finite sets), since otherwise $N\left(\epsilon, C, L_{2}^{S}\right)$ is unbounded for $0 \leq \epsilon \leq \epsilon_{k}$, in which case the integral is also unbounded and the inequality is trivially true.
For each $f \in C$ and $0 \leq j \leq k$, let $f_{j} \in T_{j}$ be a function such that f_{j} covers f in T_{j}, that is, $L_{2}^{S}\left(f, f_{j}\right) \leq \epsilon_{i}$. Then we can represent each f by $f=f-f_{k}+\sum_{j=1}^{k}\left(f_{j}-f_{j-1}\right)$, where $f_{0}=h$. Then we have

$$
\begin{align*}
R_{S}(C) & =\mathbf{E}_{\sigma}\left[\sup _{f \in C} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i}\left(f\left(x_{i}\right)-f_{k}\left(x_{i}\right)+\sum_{j=1}^{k}\left(f_{j}\left(x_{i}\right)-f_{j-1}\left(x_{i}\right)\right)\right)\right] \\
& \leq \mathbf{E}_{\sigma}\left[\sup _{f \in C} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i}\left(f\left(x_{i}\right)-f_{k}\left(x_{i}\right)\right)\right]+\mathbf{E}_{\sigma}\left[\sup _{f \in C} \frac{1}{m} \sum_{j=1}^{k} \sum_{i=1}^{m} \sigma_{i}\left(f_{j}\left(x_{i}\right)-f_{j-1}\left(x_{i}\right)\right)\right] \\
& \leq \mathbf{E}_{\sigma}\left[\sup _{f \in C} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i}\left(f\left(x_{i}\right)-f_{k}\left(x_{i}\right)\right)\right]+\sum_{j=1}^{k} \mathbf{E}_{\sigma}\left[\sup _{f \in C} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i}\left(f_{j}\left(x_{i}\right)-f_{j-1}\left(x_{i}\right)\right)\right] . \tag{2.1}
\end{align*}
$$

We consider the first and second terms in the last expression respectively. For the first term, recall that the σ_{i} 's are random variables taken from $\{-1,+1\}$. Applying the Cauchy-Schwartz inequality we obtain

$$
\begin{align*}
& \mathbf{E}_{\sigma}\left[\sup _{f \in C} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i}\left(f\left(x_{i}\right)-f_{k}\left(x_{i}\right)\right)\right] \leq \mathbf{E}_{\sigma}\left[\sup _{f \in C} \frac{1}{m} \sqrt{\sum_{i=1}^{m} \sigma_{i}^{2} \sum_{i=1}^{m}\left(f\left(x_{i}\right)-f_{k}\left(x_{i}\right)\right)^{2}}\right] \\
= & \mathbf{E}_{\sigma}\left[\sup _{f \in C} \sqrt{\frac{1}{m} \sum_{i=1}^{m}\left(f\left(x_{i}\right)-f_{k}\left(x_{i}\right)\right)^{2}}\right]=\mathbf{E}_{\sigma}\left[\sup _{f \in C} L_{2}^{S}\left(f, f_{k}\right)\right] \leq \epsilon_{k} . \tag{2.2}
\end{align*}
$$

Now we consider the second term $\sum_{j=1}^{k} \mathbf{E}_{\sigma}\left[\sup _{f \in C} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i}\left(f_{j}\left(x_{i}\right)-f_{j-1}\left(x_{i}\right)\right)\right]$. We fix j, and define $g_{f}:=f_{j}-f_{j-1}$. That is, we define a new function g_{f} for each $f \in C$. Let $\mathcal{G}:=\left\{g_{f}: f \in C\right\}$ be the collection of g functions. It follows that

$$
\begin{equation*}
\mathbf{E}_{\sigma}\left[\sup _{f \in C} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i}\left(f_{j}\left(x_{i}\right)-f_{j-1}\left(x_{i}\right)\right)\right]=\mathbf{E}_{\sigma}\left[\sup _{g \in \mathcal{G}} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} g\left(x_{i}\right)\right] \tag{2.3}
\end{equation*}
$$

Since $f_{j} \in T_{j}$ and $f_{j-1} \in T_{j-1}$, we have $|\mathcal{G}| \leq\left|T_{j}\right|\left|T_{j-1}\right| \leq\left|T_{j}\right|^{2}$. Since T_{j} is finite, the set \mathcal{G} is also
finite. Also note that for each $g=g_{f} \in \mathcal{G}$ for some $f \in C$,

$$
\sqrt{\sum_{i=1}^{m} g_{f}^{2}\left(x_{i}\right)}=L_{2}^{S}\left(f_{j}, f_{j-1}\right) \sqrt{m} \leq\left(L_{2}^{S}\left(f, f_{j}\right)+L_{2}^{S}\left(f, f_{j-1}\right)\right) \sqrt{m} \leq\left(\epsilon_{j}+\epsilon_{j-1}\right) \sqrt{m}=3 \epsilon_{j} \sqrt{m}
$$

that is, $\sup _{g \in \mathcal{G}} \sqrt{\sum_{i=1}^{m}\left(g\left(x_{i}\right)\right)^{2}} \leq 3 \epsilon_{j} \sqrt{m}$. Applying Massart's Lemma to the functions \mathcal{G}, we obtain

$$
\begin{equation*}
\mathbf{E}_{\sigma}\left[\sup _{g \in \mathcal{G}} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} g\left(x_{i}\right)\right] \leq \frac{3 \epsilon_{j} \sqrt{m} \cdot \sqrt{2 \ln |\mathcal{G}|}}{m} \leq 6 \epsilon_{j} \sqrt{\frac{\ln \left|T_{j}\right|}{m}} . \tag{2.4}
\end{equation*}
$$

Combining (2.1), (2.2), (2.3) and (2.4) we get

$$
\begin{aligned}
R_{S}(C) & \leq \epsilon_{k}+6 \sum_{j=1}^{k} \epsilon_{j} \sqrt{\frac{\ln \left|T_{j}\right|}{m}} \\
& =\epsilon_{k}+12 \sum_{j=1}^{k}\left(\epsilon_{j}-\epsilon_{j+1}\right) \sqrt{\frac{\ln N\left(\epsilon_{j}, C, L_{2}^{S}\right)}{m}} \\
& =\epsilon_{k}+12 \sum_{j=1}^{k} \int_{\epsilon_{j+1}}^{\epsilon_{j}} \sqrt{\frac{\ln N\left(\epsilon_{j}, C, L_{2}^{S}\right)}{m}} d \epsilon \\
& \leq \epsilon_{k}+12 \sum_{j=1}^{k} \int_{\epsilon_{j+1}}^{\epsilon_{j}} \sqrt{\frac{\ln N\left(\epsilon, C, L_{2}^{S}\right)}{m}} d \epsilon \\
& =\epsilon_{k}+12 \int_{\epsilon_{k+1}}^{\epsilon_{1}} \sqrt{\frac{\ln N\left(\epsilon, C, L_{2}^{S}\right)}{m}} d \epsilon
\end{aligned}
$$

where the second inequality follows from $N\left(\epsilon, C, L_{2}^{S}\right) \geq N\left(\epsilon_{j}, C, L_{2}^{S}\right)$ for all $\epsilon_{j+1} \leq \epsilon \leq \epsilon_{j}$. Taking $k \rightarrow \infty$ implies $R_{S}(C) \leq 12 \int_{0}^{\frac{B}{2}} \sqrt{\frac{\ln N\left(\epsilon, C, L_{2}^{S}\right)}{m}} d \epsilon \leq 12 \int_{0}^{B} \sqrt{\frac{\ln N\left(\epsilon, C, L_{2}^{S}\right)}{m}} d \epsilon$.
Note that Lemma 1.5 in notes 9 holds as a special case of Theorem 2.2. Also, if we can further give an upper bound for $N\left(\epsilon, C, L_{2}^{S}\right)$ that is independent of m, then the bound for $R_{S}(C)$ is diminishing with respect to m. In the next lecture we give an upper bound for $N\left(\epsilon, C, L_{2}^{S}\right)$ independent of m.

3 Homework Preview

Massart's Lemma. Let \mathcal{V} be a finite subset of \mathbb{R}^{S} with $|S|=m$ where each member v of \mathcal{V} is denoted by $v=\left(v_{1}, \ldots, v_{m}\right)$. Let $\sigma_{1}, \ldots, \sigma_{m}$ be random variables chosen from $\{-1,+1\}$ uniformly at random such that all σ_{i} 's are independent.
(a) Jensen's Inequality. Suppose X is a random variable and $f: \mathbb{R} \mapsto \mathbb{R}$ is a differentiable convex function. Prove that $\mathbf{E}[f(X)] \geq f(\mathbf{E}[X])$.
(Hint: A differentiable function $f: \mathbb{R} \mapsto \mathbb{R}$ is convex if and only if for all $x, y \in \mathbb{R}$, it holds that $f(x) \geq f(y)+f^{\prime}(y)(x-y)$.)
(b) Let $\mu:=\mathbf{E}\left[\max _{v \in \mathcal{V}} \sum_{i=1}^{m} \sigma_{i} v_{i}\right]$. Suppose $\lambda>0$ is some constant. Prove that $e^{\lambda \mu} \leq \sum_{v \in \mathcal{V}} \prod_{i=1}^{m} \mathbf{E}\left[e^{\lambda \sigma_{i} v_{i}}\right]$.
(Hint: The function $f(x):=e^{\lambda x}$ is convex.)
(c) Let $r:=\max _{v \in \mathcal{V}} \sqrt{\sum_{i=1}^{m} v_{i}^{2}}$. Prove that $\mu \leq r \sqrt{2 \ln |\mathcal{V}|}$.
(Hint: For $x \in \mathbb{R}$, it holds that $\frac{e^{x}+e^{-x}}{2} \leq e^{\frac{x^{2}}{2}}$.)

References

[1] R.M Dudley. The sizes of compact subsets of hilbert space and continuity of gaussian processes. Journal of Functional Analysis, 1(3):290-330, 1967.

