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These lecture notes are supplementary materials for the lectures. They are by no means substitutes
for attending lectures or replacement for your own notes!

1 Better Result for ε-Sample

Recall that we have a set X with some distribution D, and C is a class of boolean functions on X
such that the VC-dimension is d. The ε-sample is defined as follows.

Definition 1.1 An ε-sample S for a set X with distribution D under a class C of boolean functions
on X is a bag (multi-set) of points from X that satisfies ∀f ∈ C, |EX [f ]− AvgS [f ]| ≤ ε.
We draw m independent samples from X to form a random multi-set S, and we wish to find out
how large m has to be in order for S to be an ε-sample with high probability. The following is the
result we proved last time.

Theorem 1.2 Suppose (X,C) has VC-dimension at most d. Moroever, suppose S is a bag of
points in X obtained by sampling from X under distribution D independently m times. If m ≥
Ω( 1

ε2
(d log 1

ε + log 1
δ )), then with probability at least 1− δ, S is an ε-sample.

In this lecture, we are going to prove a better result for ε-sample using the concept of Rademacher
averages. In particular, we show the following result.

Theorem 1.3 Suppose (X,C) has VC-dimension at most d. Then, suppose S is a bag of points
in X obtained by sampling from X under distribution D independently m times. If m ≥ Ω( 1

ε2
(d+

log 1
δ )), then with probability at least 1− δ, S is an ε-sample.

Remark. Notice that this result improves the former one by eliminating a factor of log 1
ε . We see

that more advanced techniques are required to prove this stronger result.

Proof Skeleton. Before presenting the detailed proof of Theorem 1.3, we first present some useful
lemmas, whose combinations prove Theorem 1.3. Using the same notation C and S as above,
we denote the Rademacher average of C on S by RS(C), which will be defined later. It will be
convenient to view S ∈ Xm as a vector with m coordinates by imposing an arbitrary order on the
elements in S.

Lemma 1.4 (Measure Concentration via Rademacher Averages) Suppose (X,C) has VC-
dimension at most d. Then, suppose S is a bag of points in X obtained by sampling from X under
distribution D independently m times. With probability 1 − δ, for any function f ∈ C, we have

|AvgS [f ]− EX [f ]| ≤ 2RS(C) + 3
√

1
2m ln 4

δ .

For a metric space (C, ρ) and a constant ε ≥ 0, let N(ε, C, ρ) be the ε-covering number of C, which
will be defined later. Let LS2 be a metric space on C with respect to S = (x1, x2, . . . , xm) such that

for all f, g ∈ C, LS2 (f, g) =
√

1
m

∑m
i=1(f(xi)− g(xi))2. The following two lemmas upper bounds

1



the Rademacher averages.

Lemma 1.5 (Dudley’s Integral) For any class C of functions from X to {0, 1} and m points

x1, x2, . . . , xm ∈ X, let S = (x1, x2, . . . , xm), we have RS(C) ≤ 12
∫ 1
0

√
logN(ε,C,LS2 )

m dε.

Lemma 1.6 (Haussler’s Theorem) There exists a constant c > 1 such that the following holds.
For any class C of functions from X to {0, 1} and m points x1, x2, . . . , xm ∈ X, suppose S =
{x1, x2, . . . , xm} and (X,C) has VC-dimension at most d, we have N(ε, C, LS2 ) ≤ ( cε )

2d.

Before proceeding to prove those lemmas, we combine them to give a proof of Theorem 1.3.

Proof of Theorem 1.3: By Lemmas 1.5 and 1.6, we can upper bound the Rademacher averages:

RS(C) ≤ 12
∫ 1
0

√
2d log( c

ε
)

m dε = 12
√

2d
m

∫ 1
0

√
log c

εdε = c′
√

d
m , for some constant c′ depending on c.

Hence according to lemma 1.4, if |S| = m, we have, with probability 1− δ, for all f ∈ C,

|AvgS [f ]− EX [f ]| ≤ 2RS(C) + 3
√

1
2m ln 4

δ ≤ 2c′
√

d
m + 3

√
1
2m ln 4

δ .

By setting m ≥ max(16c
′2d
ε2

, 18
ε2

ln 4
δ ) = Θ( 1

ε2
(d + log 1

δ )), we have, with probability at least 1 − δ,

for all f ∈ C, |AvgS [f ] − EX [f ]| ≤ 2c′
√

d
m + 3

√
1
2m ln 4

δ ≤
ε
2 + ε

2 = ε , which means that S is an

ε-sample of X, by definition.

2 ε-Sample and Rademacher Averages

We prove in this section Lemma 1.4, which upper bounds the difference between the fraction of 1’s
in the bag of sampled points and that in the whole set, using the Rademacher averages of the class
C of functions on X.

Definition 2.1 (Rademacher Averages) For a class C of functions from X to R and S =
(x1, x2, . . . , xm) ∈ Xm, define the Rademacher average of C with respect to S as

RS(C) = Eσ[sup
f∈C

1

m

m∑
i=0

(σif(xi))],

where σ = (σ1, σ2, . . . , σm), and each σi is sampled independently and uniformly at random from
{−1, 1}.
The following measure concentration result from McDiarmid is useful for the proof of lemma 1.4.

Lemma 2.2 (McDiarmid’s Inequality) Let x1, x2, . . . , xm be independent random objects and
let h(x1, x2, . . . , xm) be a function on (x1, x2, . . . , xm) that satisfies the “ci-Lipschitz” property:

∀i,∀x1, x2, . . . , xm, x′i, |h(x1, . . . , xi, . . . , xm)− h(x1, . . . , x
′
i, . . . , xm)| ≤ ci,

then for any ε > 0, we have Pr[h− E[h] > ε] ≤ exp( −2ε2∑m
i=1 c

2
i
)

Remark. Observe that if we consider the function (−h), then we can show that:

Pr[|h− E[h]| > ε] ≤ 2 exp( −2ε2∑m
i=1 c

2
i
)
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Proof of Lemma 1.4: We only prove one side of the inequality: with probability 1− δ
2 , for any

function f in C, AvgS [f ]−EX [f ] ≤ 2RS(C) + 3
√

1
2m ln 4

δ . The other side can be proved similarly.

Define M(S) = supf∈C(AvgS [f ] − EX [f ]) to be the maximum difference of fractions among all

functions in C. Notice that M(S) satisfies the 1
m -Lipschitz property on all m coordinates and

hence by McDiarmid’s Inequality, Pr[M(S)− E[M(S)] >
√

1
2m ln 4

δ ] ≤ exp(−2· 1
2m

ln 4
δ

m( 1
m
)2

) = δ
4 .

Hence with probability at least 1− δ
4 , M(S) ≤ E[M(S)] +

√
1
2m ln 4

δ .

Consider −RS(C) as a function of S, we can see that it also satisfies 1
m -Lipschitz property on all

m coordinates and hence by McDiarmid’s Inequality, with probability at least 1− δ
4 , ES [RS(C)] ≤

RS(C) +
√

1
2m ln 4

δ .

Thus it suffices to show that ES [M(S)] ≤ 2ES [RS(C)], which implies that with probability 1− δ
2 , for

any function f ∈ C, AvgS [f ]−EX [f ] ≤M(S) ≤ E[M(S)] +
√

1
2m ln 4

δ ≤ 2ES [RS(C)] +
√

1
2m ln 4

δ ≤

2RS(C) + 3
√

1
2m ln 4

δ .

Suppose we make another m samples independently and form S′ = (x′1, x
′
2, . . . , x

′
m), and observe

that EX [f ] = ES′ [AvgS′ [f ]]. Hence we have

ES [M(S)] = ES [supf∈C(AvgS [f ]− EX [f ])] ≤ ES,S′ [supf∈C(AvgS [f ]− AvgS′ [f ])].

The inequality holds since for any collection of random variables Uj ’s, supj(E[Uj ]) ≤ E
[
supj(Uj)

]
.

By the definition of AvgS [f ], we have that

ES,S′ [sup
f∈C

(AvgS [f ]− AvgS′ [f ])] = ES,S′ [sup
f∈C

(
1

m

m∑
i=1

f(xi)−
1

m

m∑
i=1

f(x′i))]

= ES,S′ [sup
f∈C

(
1

m

m∑
i=1

(f(xi)− f(x′i)))]

= ES,S′,σ[sup
f∈C

(
1

m

m∑
i=1

σi(f(xi)− f(x′i)))],

where σ = (σ1, σ2, . . . , σm) and each σi is independently uniformly distributed in {−1, 1}. The last
equality holds since it does not affect the expectation if we flip fair coins independently to decide
whether we swap xi and x′i in the ith coordinate when sampling S and S′. Notice that

ES,S′,σ[sup
f∈C

(
1

m

m∑
i=1

σi(f(xi)− f(x′i)))] ≤ ES,σ[sup
f∈C

(
1

m

m∑
i=1

σif(xi))] + ES′,σ[sup
f∈C

(
1

m

m∑
i=1

(−σi)f(x′i))]

= 2ES,σ[sup
f∈C

(
1

m

m∑
i=1

σif(xi))] = 2ES [RS(C)].

The inequality holds since the right hand side allows us to choose different functions in C to
maximize each sum and the first equality holds by the symmetry of σi.
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Combining all the equalities and inequalities, we have ES [M(S)] ≤ 2ES,σ[supf∈C( 1
m

∑m
i=1 σif(xi))] =

2ESEσ[supf∈C( 1
m

∑m
i=1 σif(xi))] = 2ES [RS(C)], which according to the analysis above, implies one

side of Lemma 1.4.

3 Homework Preview

1. Details in the Proof of Theorem 1.3. Prove that for any constant c ≥ 1, we have∫ 1
0

√
log c

xdx = Θ(1).

2. McDiarmid’s Inequality. Let O be a set of objects. Let X1, X2, . . . , Xm be independent
random objects taken from O. Let h : Om 7→ R be a function that satisfies the “ci-Lipschitz”
property: for all i ∈ [m] and objects x1, x2, . . . , xm, x

′
i ∈ O,

|h(x1, . . . , xi−1, xi, xi+1, . . . , xm)− h(x1, . . . , xi−1, x
′
i, xi+1, . . . , xm)| ≤ ci.

(a) Let Y be a real random variable with E[Y ] = 0 such that a ≤ Y ≤ b. Let λ ∈ R. We

prove that E
[
eλY

]
≤ e

λ2(b−a)2
8 .

i. Suppose a < b and p := − a
b−a . Define function L(z) := −pz + ln(1 − p + pez) for

z ∈ R. Prove that E
[
eλY

]
≤ eL(λ(b−a)).

(Hint: The function eλz with respect to z is convex.)

ii. Prove that L(λ(b− a)) ≤ λ2(b−a)2
8 .

(Hint: If a function L is twice differentiable in R, then for y ∈ R we have L(y) =

L(0) + L′(0)y + L′′(z)
2 y2 for some z between 0 and y.)

(b) For i ∈ {0, 1, . . . ,m} define X(i) := (X1, . . . , Xi), where X(0) can be considered as a
random object independent of X1, . . . , Xm. Let X := X(m). Define Zi := E

[
h(X)|X(i)

]
.

Let t > 0. Prove that E
[
et(Zi−Zi−1)|X(i−1)] ≤ e t2c2i8 for 1 ≤ i ≤ m.

(Hint: Consider the random variable (Zi −Zi−1)|X(i−1). What is E
[
Zi − Zi−1|X(i−1)]?

Find a and b such that a ≤ (Zi − Zi−1)|X(i−1) ≤ b and that b− a ≤ ci. Try
a = infx∈O(E

[
h(X)|X(i−1), Xi = x

]
−E

[
h(X)|X(i−1)]) and

b = supx∈O(E
[
h(X)|X(i−1), Xi = x

]
−E

[
h(X)|X(i−1)]).)

(c) Prove that for 1 ≤ i ≤ m, we have E
[
et(Zi−Z0)

]
≤ e

t2c2i
8 E

[
et(Zi−1−Z0)

]
.

(Hint: For arbitrary functions f and g, we have E
[
E
[
f(X(i−1))g(X(i))|X(i−1)]] =

E
[
f(X(i−1))E

[
g(X(i))|X(i−1)]].)

(d) Prove that for ε > 0, we have Pr(h(X)−E[h(X)] > ε) ≤ exp
(
− 2ε2∑m

i=1 c
2
i

)
.

3. 1
m-Lipschitz Property. In this question we give some details on the proof of Lemma 1.4.
Recall that given a set X of points and a class C of boolean functions on X, we denote by
S = (x1, . . . , xm) a bag of points sampled from X. Let M(S) := supf∈C(AvgS [f ] − EX [f ]),
where AvgS [f ] is the fraction of points in S that takes value 1 under function f . Also
let RS(C) := Eσ[supf∈C

1
m

∑m
i=1 σif(xi)], where σ = (σ1, . . . , σm) and each σi is sampled

independently and uniformly at random from {−1, 1}.
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(a) Prove that M(S) satisfies the 1
m -Lipschitz property on all m coordinates.

(b) Prove that RS(C) as a function of S satisfies the 1
m -Lipschitz property on all m coordi-

nates.
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