
COMP8601: Advanced Topics in Theoretical Computer Science
Homework 4 Due Date: 5 Dec 2013

Rules: Discussion of the problems is permitted, but writing the assignment together is not
(i.e. you are not allowed to see the actual pages of another student).

This homework has 125 points, of which 25 points are extra credit.

1. (20 points) Using ε-Nets for Learning. Suppose X is a set with some underlying
distribution D and C is a class of boolean functions on X, and the VC-dimension of
(X,C) is d. Moreover, suppose there is some function f0 ∈ C that corresponds to
some classifier that we wish to learn. The model we have is that we can sample a
random x ∈ X and ask for the value f0(x). After seeing m such samples S in X, we
pick a function f1 ∈ C that agrees with f0 on S. The hope is that f1 and f0 would
agree on most points in X (according to distribution D).

(a) Define another class C ′ of boolean functions on X such that if S is an ε-net
under C ′, and f ∈ C is a function that disagrees with f0 on more than ε fraction
(weighted according to D) of points in X, then there exists some x ∈ S such that
f(x) 6= f0(x). Prove the VC-dimension of (X,C ′) for the class C ′ that you have
constructed.

(b) How many samples are enough such that with probability at least 1 − δ the
function f1 returned disagrees with f0 on at most ε weighted fraction of points
in X?

2. (10 points) Integral for Square Root of Logarithm. Prove that for any constant
c ≥ 1, we have

∫ 1
0

√
log c

xdx = Θ(1).

3. (40 points) McDiarmid’s Inequality. LetO be a set of objects. LetX1, X2, . . . , Xm

be independent random objects taken from O. Let h : Om 7→ R be a function that
satisfies the “ci-Lipschitz” property: for all i ∈ [m] and objects x1, x2, . . . , xm, x

′
i ∈ O,

|h(x1, . . . , xi−1, xi, xi+1, . . . , xm)− h(x1, . . . , xi−1, x
′
i, xi+1, . . . , xm)| ≤ ci.

(a) (10 points) Let Y be a real random variable with E[Y ] = 0 such that a ≤ Y ≤ b.
Let λ ∈ R. We prove that E

[
eλY

]
≤ e

λ2(b−a)2
8 .

i. Suppose a < b and p := − a
b−a . Define function L(z) := −pz+ ln(1−p+pez)

for z ∈ R. Prove that E
[
eλY

]
≤ eL(λ(b−a)).

(Hint: The function eλz with respect to z is convex.)

ii. Prove that L(λ(b− a)) ≤ λ2(b−a)2
8 .

(Hint: If a function L is twice differentiable in R, then for y ∈ R we have

L(y) = L(0) + L′(0)y + L′′(z)
2 y2 for some z between 0 and y.)
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(b) (15 points) For i ∈ {0, 1, . . . ,m} define X(i) := (X1, . . . , Xi), where X(0) can
be considered as a random object independent of X1, . . . , Xm. Let X := X(m).

Define Zi := E
[
h(X)|X(i)

]
. Let t > 0. Prove that E

[
et(Zi−Zi−1)|X(i−1)] ≤ e

t2c2i
8

for 1 ≤ i ≤ m.

(Hint: Consider the random variable (Zi − Zi−1)|X(i−1). What is

E
[
Zi − Zi−1|X(i−1)]?

Find a and b such that a ≤ (Zi − Zi−1)|X(i−1) ≤ b and that b− a ≤ ci. Try
a = infx∈O(E

[
h(X)|X(i−1), Xi = x

]
−E

[
h(X)|X(i−1)]) and

b = supx∈O(E
[
h(X)|X(i−1), Xi = x

]
−E

[
h(X)|X(i−1)]).)

(c) (5 points) Prove that for 1 ≤ i ≤ m, we have E
[
et(Zi−Z0)

]
≤ e

t2c2i
8 E

[
et(Zi−1−Z0)

]
.

(Hint: For arbitrary functions f and g, we have E
[
E
[
f(X(i−1))g(X(i))|X(i−1)]] =

E
[
f(X(i−1))E

[
g(X(i))|X(i−1)]].)

(d) (10 points) Prove that for ε > 0, we have Pr(h(X)−E[h(X)] > ε) ≤ exp
(
− 2ε2∑m

i=1 c
2
i

)
.

4. (15 points) 1
m-Lipschitz Property. In this question we give some details on the

proof of Lemma 1.4 in Lecture 9. Recall that given a set X of points and a class C of
boolean functions on X, we denote by S = (x1, . . . , xm) a bag of points sampled from
X. Let M(S) := supf∈C(AvgS [f ]−EX [f ]), where AvgS [f ] is the fraction of points in S

that takes value 1 under function f . Also let RS(C) := Eσ
[
supf∈C

1
m

∑m
i=1 σif(xi)

]
,

where σ = (σ1, . . . , σm) and each σi is sampled independently and uniformly at random
from {−1, 1}.

(a) Prove that M(S) satisfies the 1
m -Lipschitz property on all m coordinates.

(b) Prove that RS(C) as a function of S satisfies the 1
m -Lipschitz property on all m

coordinates.

5. (15 points) Massart’s Lemma. Let V be a finite subset of RS with |S| = m where
each member v of V is denoted by v = (v1, . . . , vm). Let σ1, . . . , σm be random vari-
ables chosen from {−1,+1} uniformly at random such that all σi’s are independent.

(a) Jensen’s Inequality. Suppose X is a random variable and f : R 7→ R is a
differentiable convex function. Prove that E[f(X)] ≥ f(E[X]).

(Hint: A differentiable function f : R 7→ R is convex if and only if for all x, y ∈ R,
it holds that f(x) ≥ f(y) + f ′(y)(x− y).)

(b) Let µ := E[maxv∈V
∑m

i=1 σivi]. Suppose λ > 0 is some constant. Prove that
eλµ ≤

∑
v∈V

∏m
i=1E

[
eλσivi

]
.

(Hint: The function f(x) := eλx is convex.)

(c) Let r := maxv∈V

√∑m
i=1 v

2
i . Prove that µ ≤ r

√
2 ln |V|.

(Hint: For x ∈ R, it holds that ex+e−x

2 ≤ e
x2

2 .)
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6. (10 points) Alternative Proof of Sauer’s Lemma. Suppose C is a class of
boolean functions on X and the VC-dimension of (X,C) is at most d. Recall the
following shifting procedure. We represent points in C as rows in a table, where each
row corresponds to a point in C and each column corresponds to a coordinate in S.
In each round, we select an arbitrary column that has not been selected, and then
repeatedly change 1’s into 0’s if the changing does not lead to a row that is already
in the table.

Use the shifting procedure to prove Sauer’s Lemma: for every subset S of X such that
|S| = m, the cardinality of the projection C(S) is at most

(
m
≤d
)
.

(Hint: You can use any results about the shifting procedure proved in class.)

7. (15 points) Alternative Proof for the 1-inclusion Graph. Let S be a set of
size m. Let C ⊆ {0, 1}S be a collection of points with VC-dimension d. Suppose E
is the set of edges in the 1-inclusion graph of (S,C). We have proved in class that
|E| ≤ d · |C| using the shifting procedure. In this question, we prove the same result
by induction on d and m, which is similar to the proof of Sauer’s Lemma shown in
Lecture 8.

(a) Prove that |E| ≤ d · |C| is true for the base cases d = 0 or m = 1.

(b) Suppose d ≥ 1 and m > 1. Let x ∈ S and S′ := S \ {x}. Let C1 := C|S′ be the
projection of C on S′. Let C2 ⊆ C1 be the set of points f in C1 such that there
exist f1, f2 ∈ C, where f1 and f2 disagree on x and f1 |S′= f2 |S′= f . Let E1 be
the set of edges in the 1-inclusion graph G of (S′, C1), and E2 ⊆ E1 the set of
edges in the induced subgraph G[C2].

i. Give upper bounds for |E1| and |E2| in terms of d, |C1| and |C2|.
(Hint: Use the induction hypothesis.)

ii. Prove that |E| ≤ |E1|+ |E2|+ |C2|.
iii. Prove that |E| ≤ d · |C|.
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