
COMP8601: Advanced Topics in Theoretical Computer Science
Homework 1 Due Date: 12 Sept 2013

Rules: Discussion of the problems is permitted, but writing the assignment together is not
(i.e. you are not allowed to see the actual pages of another student).

Please justify your arguments carefully. Unless otherwise stated, you may assume that there
is an underlying probability space (Ω,F , P r), and all random variables take discrete values.

1. (5 points) [O1] Prove the union bound: Suppose {Ai}ni=1 is a collection of events.
Then, Pr(∪ni=1Ai) ≤

∑n
i=1 Pr(Ai).

(Hint: Use induction and the fact Pr(A) + Pr(B) = Pr(A ∪B) + Pr(A ∩B).)

2. (5 points) [O1] Prove the linearity of expectation: Suppose for each 1 ≤ i ≤ n, Xi is
a random variable and ai is a real number. Then, E[

∑n
i=1 aiXi] =

∑n
i=1 aiE[Xi].

3. (10 points) [O1] Suppose X,Y : Ω → Z are independent random variables taking
integer values. In this question, we shall prove the basic result E[XY ] = E[X]E[Y ].

Prove from first principle (without using any results not proved in class) that∑
ω∈ΩX(ω)Y (ω)Pr(ω) =

∑
ω1∈ΩX(ω1)Pr(ω1)

∑
ω2∈Ω Y (ω2)Pr(ω2).

4. (30 points) [O2, O3] Max 3-SAT. Let φ be a 3-CNF formula with m clauses and n
variables. Recall the basic randomized procedure mentioned in class for maximizing
the number of satisfied clauses in the formula φ. In that procedure, each variable
takes the value TRUE independently with probability 1

2 . We showed in class that the
expected number of satisfied clauses is 7m

8 .

The point of this question is to show that the algorithm finds an assignment satisfying
a large proportion of clauses with at least a constant probability.

(a) Let Y be the random variable denoting the number of unsatisfied clauses. Com-
pute E[Y ].

(b) Find a suitable upper bound for Pr[Y > 3m
16 ], and conclude that the randomized

algorithm finds an assignment satisfying at least 13m
16 clauses with probability at

least 1
3 .

5. (50 points) [O2, O3] Max Cut. Let G = (V,E) be a graph. Recall the randomized
algorithm mentioned in class for finding a cut C ⊂ V for the graph G, namely, a point
v ∈ V is included in C independently with probability 1

2 . Assume that to make this
decision takes 1 independent random bit for each point.
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Let E(C) := {{u, v} ∈ E : u ∈ C, v ∈ V \ C} be the edges in the cut. It is shown in

class that E[|E(C)|] = |E|
2 . The goal of this question is to design another randomized

algorithm with better guarantees. Let 0 < ε < 1 and 0 < δ < 1. We shall design a
randomized algorithm that, with failure probability at most δ, returns a cut C such
that |E(C)| ≥ (1−ε

2 ) · |E|.

(a) Give an upper bound on the failure probability that the above randomized pro-
cedure returns a cut such that the number of edges |E(C)| is less than (1−ε

2 ) · |E|.
(b) Show that by repeating the above randomized procedure, it is possible to obtain

a better randomized algorithm with failure probability at most δ. Compute the
number of independent random bits used by your algorithm.

(Hint: You might find the following inequality useful: for 0 < ε < 1, 1 + ε ≥ e
ε
2 .)

6. (25pt Extra Credit) [O2, O4] Unifying Formula for Expectation. Recall that
the formula for the expectation of a random variable depends on the particular kind
of random variables. For example,

(1) If X is a continuous real-valued random variable, then E[X] =
∫
R xf(x)dx, where

f(x) := limh→0
1
h · Pr[x ≤ X ≤ x+ h] is the probability density function of X.

(2) If X is a random variable taking non-negative integers, then E[X] =
∑∞

k=0 k ·
Pr[X = k].

In this question, we investigate if it is possible to have a single formula for expectation
that works for all kinds of real-valued random variables. It can be shown that if X is a
continuous random variable taking non-negative reals, then E[X] =

∫∞
0 Pr[X ≥ t]dt.

(Try to verify this!) We show that this formula is valid for other kinds of random
variables as well.

(a) (15 pt) Suppose X is a discrete random variable that takes only a countable
number of non-negative values. Prove that E[X] =

∫∞
0 Pr[X ≥ t]dt. (If you

do not like to deal with infinite support, you may assume X only takes a finite
number of values.)

(b) (10 pt) Assume that for all non-negative random variablesX, E[X] =
∫∞

0 Pr[X ≥
t]dt. Derive a similar formula for E[X] when X is any real-valued random vari-
able.
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