Probability Review

Random Variable

Random Variables

In many cases, we associate a numeric value with each outcome of an experiment.
For instance,
consider the experiment of flipping a coin 10 times, each outcome can be associated with

- the number of heads,
- the difference between heads \& tails, etc.

Each quantity above is called a random variable; note that its value depends on the outcome of the experiment and is not fixed in advance.

Formally speaking

With respect to an experiment, a random variable is a function

- from the set of possible outcomes Ω
- to the set of real numbers.

NB. A random variable is characterised by the sample space of an experiment.

Example: Let X be the sum of the numbers obtained by rolling a pair of fair dice.
There are 36 possible outcomes, each defines
a value of X (in the range from 2 to 12).

Random variables and events

A more intuitive way to look at the random variable X is to examine the probability of each possible value of X.
E.g., consider the previous example:

- Let $\mathrm{p}(X=3)$ be the probability of the event that the sum of the two dice is 3 .
This event comprises two outcomes, $(1,2)$ and (2,1).
- $\mathrm{p}(X=3)=2 / 36$.

Random variables and events

In general, for any random variable X, $p(X=i)=$ the sum of the probability of all the outcomes y such that $X(y)=\mathrm{i}$.
$\sum_{i \in \text { the range of } x} \mathrm{p}(X=i)=1$

Expected value

In the previous example, what is the expected value (average value) of X ?

Out of the 36 outcomes,
(1,1): X=2
$(1,2),(2,1): X=3$
$(1,3),(2,2),(3,1): X=4$
(1,4), (2,3), (3,2), (4,1): $X=5$
$(1,5),(2,4),(3,3),(4,2),(5,1): X=6$
$(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)$: $\mathrm{X}=7$
$(2,6),(3,5),(4,4),(5,3),(6,2): X=8$
(3,6), $(4,5),(5,4),(6,3): X=9$
$(4,6),(5,5),(6,4): X=10$
$(5,6),(6,5): X=11$
$(6,6): X=12$
Expected value of $X=$
$(2+3 x 2+4 x 3+5 x 4$
$+6 x 5+7 x 6+8 x 5+9 x 4$
$+10 x 3+11 \times 2+12) / 36$
$=7$

Definition

Consider an experiment with a sample space \mathbf{S}. For any outcome y in \mathbf{S}, let $\mathrm{p}(y)$ be the probability y occurs $_{x: S \rightarrow Z}$
Let X be an integer random variable over S. That is, every outcome y in S defines a value of X, denoted by $X(y)$.
We define the expected value of X to be

$$
\sum_{y \in s} \mathrm{p}(y) \mathrm{x}(y)
$$

or equivalently,

$$
\sum_{i \in Z} \mathrm{p}(\mathrm{X}=i) i
$$

Example

What is the expected number of heads in flipping a fair coin four times?

$$
\begin{aligned}
& +2 \times \underline{(4,2)(1 / 2)^{2}(1 / 2)^{2}} \\
& +3 \times \underline{(4,3)(1 / 2)^{3} 1 / 2} \\
& +4 \times \underline{(1 / 2)^{4}} \\
& =4 / 16+2 \times 6 / 16+3 \times 4 / 16+4 \times 1 / 16 \\
& =2
\end{aligned}
$$

Example: Network Protocol

```
Repeat flip a fair coin twice;
if "head + head" then send a packet to the network; until "sent"
```

What is the expected number of iterations used by the protocol?

Example

Let p be the probability of success within each trial. Let q be the probability of failure within each trial.
$\sum_{i=1}$ to $\infty($ prob of sending the packet in the i-th trial) \mathbf{i}
$=\sum_{i=1 \text { to } \infty}\left(q^{i-1} p\right) i^{i}$
$=p \sum_{i=1 \text { to } \infty}\left(q^{i-1}\right) i$
$=p /(1-q)^{2}$
$=1 / p$

Useful rules for deriving expected values

Let X and Y be random variables on a space S, then

- $X+Y$ is also a random variable on S, and
- $E(X+Y)=E(X)+E(Y)$.

Proof.

$$
\begin{aligned}
& \mathrm{E}(\mathrm{X}+\mathrm{Y})=\sum_{t \text { in } \mathrm{s}} \mathrm{p}(t)(X(t)+\mathrm{Y}(t)) \\
& =\sum_{t \text { ins }} \mathrm{p}(t)(\mathrm{X}(t))+\sum_{t \text { ins }} \mathrm{p}(t) \mathrm{Y}(t) \\
& =\mathrm{E}(\mathrm{X})+\mathrm{E}(\mathrm{Y})
\end{aligned}
$$

Example

- Use the "sum rule" to derive the expected value of the sum of the numbers when we roll a pair of fair dice (denoted by X).
- Suppose the dice are colored red \& blue.
- Let X_{1} be the number on the red dice when we roll a pair of red \& blue dice, and similarly X_{2} for the blue dice.

$$
E\left(X_{1}\right)=E\left(X_{2}\right)=?
$$

- Obviously, $X=X_{1}+X_{2}$. Thus, $E(X)=E\left(X_{1}\right)+$ $E\left(X_{2}\right)=$.

What about product?

Let X and Y be two random variables of a space S.

Is $E(X Y)=E(X) E(Y)$?

What about product?

Let X and Y be two random variables of a space S. Is $E(X Y)=E(X) E(Y)$?

Example 1: Consider tossing a coin twice. Associate "head" with 2 and "tail" with 1.
What is the expected value of the product of the numbers obtained in tossing a coin twice.

- $(1,1) \rightarrow 1 ;(1,2) \rightarrow 2 ;(2,1) \rightarrow 2 ;(2,2) \rightarrow 4$
- Expected product $=(1+2+2+4) / 4=2.25$
- Expected value of 1st flip: $(1+2) / 2=1.5$
- Expected value of 2nd flip: $(1+2) / 2=1.5$

Note that $2.25=1.5 \times 1.5$!

Counter Example

Consider the previous experiment again. Define a random variable X as follows:
$X=($ the first number) \times (the sum of the two numbers)

- $(1,1)->1 \times 2=2$
- $(1,2)->1 \times 3=3$
- $(2,1)->2 \times 3=6 \quad$ Expected value $=4.75$
- $(2,2)->2 \times 4=8$
- Expected value of 1 st number $=1.5$
- Expected sum $=(2+3+3+4) / 4=3$
$4.75 \neq 1.5 \times 3$ Why! Because the first \# \& the sum are not independent.

Counter Example

Consider the experiment of flipping a fair coin twice.

Expected (number of) heads $=1$
Expected tails = 1
Expected heads \times expected tails $=1$

Expected $($ heads \times tails $)=2 / 4=0.5$

Independent random variables

Two random variables X and Y over a sample space S are independent if
for all real numbers r_{1} and r_{2}, the events " $X=r_{1}$ " and " $Y=r_{2}$ " are independent,
i.e., $p\left(X=r_{1}\right.$ and $\left.Y=r_{2}\right)=p\left(X=r_{1}\right) \times p\left(Y=r_{2}\right)$.

Product rule.

If X and Y are independent random variables on a space S, then $E(X Y)=E(X) E(Y)$.

