
CSIS0351/CSIS8601: Randomized Algorithms
Lecture 9: Differential Privacy, Laplace Distribution
Instructor: Hubert Chan
Date: 14 Nov 2011

These lecture notes are supplementary materials for the lectures. They are by no means substitutes
for attending lectures or replacement for your own notes!

1 Differential Privacy

1.1 Motivation

A statistical database is a database used for statistical analysis. For example, a database containing
information about graduates of a certain university can answer questions like: what is the average
salary of the graduates? Statistical database are widely used due to the enormous social value
they provide: the previously mentioned database benefits the society in helping students to choose
whether to go to that university, or how funding should be distributed among universities. However,
the statistics released might cause leakage of sensitive information. Therefore, a big challenge is to
maintain individual privacy, while providing useful aggregate statistical information about a certain
group.

In 1977 the statistician Tore Dalenius gave a privacy goal for statistical databases: anything that
can be learned about a member in the statistical database, should also can be learned without access
to the database. However, as the following example illustrates, as long as the statistical database
is useful, the goal is not achievable if the adversary has auxiliary information (information not
obtained from the statistical database). Suppose we know that some student’s X salary is $10,000
more than the average, we can know his/her salary by querying about the average salary. Note
that in this case, even if X does not join the database, we can still approximately know the average
salary and hence know his/her sensitive information.

Notation. Let U be the set of possible user data points. A database of n users contains the data
points for each user and can be viewed as a vector in Un. We use D := Un to denote the collection
of all possible databases with n users. We consider whether releasing the output of some function
f : D → O will compromise an individual’s privacy.

Example. Suppose U = [0, 105] is the range of possible monthly salaries for a graduate. Given a
database X ∈ Un, suppose the function of interest is sum(X) =

∑n
i=1Xi. At first sight, it might

seem that releasing the sum does not violate an individual’s privacy, because the sum does not
directly reveal any individual’s salary. However, in reality, users’ data can be in many databases.
Suppose users 1 to n − 1 also participate in another database which also releases the sum. Then,
combining the results of the two sums, the salary of user n can be accurately calculated!

Differential privacy defines privacy in a different sense: to minimize the increased risk of the sensi-
tive information leakage due to one’s joining in the statistical database. A private mechanism that
answers queries to statistical databases can achieve this goal by introducing randomness such that
when two databases differ by only one single user, the output produced have similar distributions.
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Note that a differentially private mechanism encourages individuals to participate in statistical
databases, and thus enhancing the social benefit provided by them.

1.2 Formal Definition

Let U be the set of possible data points and D := Un be the collection of databases with n users.
Two databases X(1) ∈ D and X(2) ∈ D are called neighboring (denoted by X(1) ∼ X(2)), if they
differ by at most one coordinate.

Definition 1.1 (ε-differential privacy) A randomized mechanism (function) M : D → O pre-
serves ε-differential privacy, if for any two neighboring databases X(1) ∼ X(2), and any possible set
of output S ⊆ O, the following hold:

Pr[M(X(1)) ∈ S] ≤ exp(ε) · Pr[M(X(2)) ∈ S],

where the randomness comes from the coin flips of M.

Remark 1.2 We observe the following.

1. Since M is a randomized mechanism, M(X) is a distribution of outputs in O.

2. Interchanging the roles of X(1) and X(2), we also have:

Pr[M(X(2)) ∈ S] ≤ exp(ε) · Pr[M(X(1)) ∈ S].

3. If O is a countable set, then we can also have the inequality for each x ∈ O,

Pr[M(X(1)) = x] ≤ exp(ε) · Pr[M(X(2)) = x].

4. The inequality means that the distributions M(X(1)) and M(X(2)) are close, and hence by
observing the output, it is not possible to tell for certain whether the output comes from
database X(1) or X(2).

1.3 Properties of differentially private mechanisms

Theorem 1.3 Let M1 : D → O1 be an ε1-differentially private mechanism, and let M2 : D → O2

be an ε2-differentially private mechanism. Also suppose M1 and M2 are independent. Then, the
mechanism M : D → O1 ×O2 such that for any X ∈ D, M(X) := (M1(X),M2(X)), is (ε1 + ε2)-
differentially private.

Proof: Let X1 ∈ D and X2 ∈ D be two neighboring databases, and let S ⊂ O1 × O2 be a
measurable set. For any z ∈ O1, define Sz := {y ∈ O2 : (z, y) ∈ S}. Then, we have

Pr[M1(X1) = z ∧M2(X1) ∈ Sz] = Pr[M1(X1) = z] · Pr[M2 ∈ Sz]
≤ exp(ε1) · Pr[M1(X2) = z] · exp(ε2) · Pr[M2(X2) ∈ Sz]
= exp(ε1 + ε2) · Pr[M1(X2) = z ∧M2(X2) ∈ Sz]

Note that for any X ∈ D, the event M(X) ∈ S is the union of M1(X) = z ∧M2(X) ∈ Sz for
all z ∈ O1. Also note that for any z1 ∈ O1 and z2 ∈ O1 that are different, the event M1(X) =
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z1∧M2(X) ∈ Sz1 and the eventM1(X) = z2∧M2(X) ∈ Sz2 are disjoint. Hence, suming up (if O1

is discrete) or integrating (if O1 is non-discrete) both sides of the above inequality for all z ∈ O1,
we get that

Pr[M(X1) ∈ S] ≤ exp(ε1 + ε2) · Pr[M(X2) ∈ S]

The following theorem gives a useful tool in designing differentially private mechanisms: designing
a simple differentially private algorithm first and adding deterministic actions on top of it.

Theorem 1.4 Let f : D → O1 be a ε-differentially private randomized algorithm, and let g : O1 →
O2 be a deterministic function. Then, g ◦ f : D → O2, whose value at X ∈ D is g(f(X)), preserves
ε-differential privacy.

The proof of the Theorem 1.4 is left as an exercise.

2 Achieving Differential Privacy

Given a set D of databases, a deterministic function f : D → Rd, and a privacy parameter ε, we
want to find an ε-differentially private version of f , i.e., to find a (random) function f̂ : D → Rd
that has the following properties:

1. Privacy. The function f̂ preserves ε-differential privacy,

2. Utility. For any database X ∈ D, with high probability, f̂(X) is close to f(X).

Observe that the trivial function f̂ ≡ 0 satisfies ε-differential privacy. However, this will not be
very useful. Here is one way to define utility.

Definition 2.1 ((λ, δ)-useful) Let 0 < δ < 1 and λ > 0 be utility parameters. Let f : D → Rd
be a deterministic function and f̂ : D → Rd be a randomized function. We say f̂ is (λ, δ)-useful
with respect to f , if for any database X ∈ D, with probability at least 1 − δ, for each i ∈ [d],
|fi(X)− f̂i(X)| ≤ λ.

2.1 Achieving differential privacy by adding Laplace noise

One way to convert a function f : D → Rd into a differentially private version is to add independent
random noise to each of its coordinates. Intuitively, the more f(X) changes when we change one
coordinate of X, the larger the random noise is needed to hide the difference. We use `1-sensitivity
to formally measure the maximum difference between the values of f of any two neighboring
databases.

Definition 2.2 (`1-Sensitivity) Let f : D → Rd be a deterministic function. The `1-sensitivity
of f , denoted by ∆f , is

max
X(1)∼X(2)

||f(X(1))− f(X(2))||1 = max
X(1)∼X(2)

d∑
i=1

|fi(X(1))− fi(X(2))|
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We use random variables sampled from Laplace distributions as the random noise.

Definition 2.3 (Laplace Distribution) Let b > 0. We denote by Lap(b) the Laplace distribution

such that the probability density function at z is 1
2b exp(− |z|b ).

Laplace distribution has the following properties.

Theorem 2.4 Let b > 0 and let γ be a random variable sampled from Lap(b). Then,

1. E[γ] = 0,

2. var[γ] = 2b2,

3. for any λ > 0, Pr[|γ| > λ] = exp(−λ
b ).

Proof:

1.

E[γ] =

∫ ∞
−∞

x

2b
exp

(
−|x|
b

)
dx =

∫ 0

−∞

x

2b
exp

(x
b

)
dx+

∫ ∞
0

x

2b
exp

(
−x
b

)
dx

=

∫ 0

∞

−x
2b

exp

(
−x
b

)
d(−x) +

∫ ∞
0

x

2b
exp

(
−x
b

)
dx

= −
∫ ∞

0

x

2b
exp

(
−x
b

)
dx+

∫ ∞
0

x

2b
exp

(
−x
b

)
dx = 0

2.

E[γ2] =

∫ ∞
−∞

x2

2b
exp

(
−|x|
b

)
dx = 2

∫ ∞
0

x2

2b
exp

(
−|x|
b

)
dx

= −
∫ ∞

0
x2 exp

(
−x
b

)
d
(
−x
b

)
= −(x2 exp

(
−x
b

)
|∞0 −

∫ ∞
0

2x exp
(
−x
b

)
dx)

= 2

∫ ∞
0

x exp
(
−x
b

)
dx = −2b

∫ ∞
0

x exp
(
−x
b

)
d
(
−x
b

)
= −2b

(
x exp

(
−x
b

)
|∞0 −

∫ ∞
0

exp
(
−x
b

)
dx

)
= 2b

∫ ∞
0

exp
(
−x
b

)
dx

= −2b2
∫ ∞

0
exp

(
−x
b

)
d
(
−x
b

)
= −2b2 exp

(
−x
b

) ∣∣∣∣∞
0

= 2b2

Hence,
var[γ] = E[γ2]− (E[γ])2 = 2b2 − 0 = 2b2
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3.

Pr[|γ| > λ] = Pr[γ > λ] + Pr[γ < −λ] =

∫ ∞
λ

1

2b
exp

(
−x
b

)
dx+

∫ −λ
−∞

1

2b
exp

(x
b

)
dx

= 2

∫ ∞
λ

1

2b
exp

(
−x
b

)
dx = −

∫ ∞
λ

exp
(
−x
b

)
d
(
−x
b

)
= − exp

(
−x
b

) ∣∣∣∣∞
λ

= exp

(
−λ
b

)

Note that if b is small, the mass is highly concentrated around 0. Hence, it can only be used to
privatize functions with small sensitivity. However, the highly concentrated mass also implies good
utility. The following theorem shows that choosing b := ∆f

ε is enough to preserve privacy and with
high probability, the additive error incurred by the random noise is small.

Theorem 2.5 Let f : D → Rd be a deterministic function, 0 < ε < 1 be the privacy parameter and
0 < δ < 1 be the failure probability. Let γ1, γ2, . . . , γd be random variables independently sampled
from Lap(∆f

ε ). Then, the randomized function f̂ such that f̂i(X) := fi(x) + γi for all i ∈ [d]

1. preserves ε-differential privacy,

2. is (∆f
ε ln d

δ , δ)-useful with respect to f .

Proof: Let X(1) ∈ D and X(2) ∈ D be two neighboring database. Let z ∈ Rd be a vector. We
abuse the notation a little bit and use Pr[f̂(X(1)) = z] and Pr[f̂(X(2)) = z] to denote the density
instead of the probability. Hence, we have

Pr[f̂(X(1)) = z]

Pr[f̂(X(2)) = z]
=

Pr[∧di=1fi(X
(1)) + γi = zi]

Pr[∧di=1fi(X
(2)) + γi = zi]

=
Pr[∧di=1γi = zi − fi(X(1))]

Pr[∧di=1γi = zi − fi(X(2))]

=

∏d
i=1 Pr[γi = zi − fi(X(1))]∏d
i=1 Pr[γi = zi − fi(X(2))]

=

∏d
i=1

ε
2∆f exp(− |fi(X

(1))−zi|
∆f/ε )∏d

i=1
ε

2∆f exp(− |fi(X
(2))−zi|

∆f/ε )

= exp

(
d∑
i=1

(
|f(X(2))− zi|

∆f/ε
− |f(X(1))− zi|

∆f/e

))

≤ exp

(
d∑
i=1

|f(X(1))− f(X(2))|
∆f/ε

)

≤ exp

(
∆f

∆f/ε

)
= exp(ε)
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For any measurable subset S ⊆ Rd, Pr[f̂(X(1)) ∈ S] =
∫
S Pr[f̂(X(1)) = z]dz ≤ exp(ε)

∫
S Pr[f̂(X(2)) =

z]dz = Pr[f̂(X(2)) ∈ S]. Hence, the privacy guarantee is proved.

By Property 3 of Theorem 2.4, we know that for all i ∈ [d], Pr[|γi| > ∆f
ε ln d

δ ] = exp(−(∆f
ε ln d

δ )/(∆f
ε )) =

δ
d . Hence, by union bound on i ∈ [d], we know that Pr[∨i∈[d]|γi| > ∆f

ε ln d
δ ] ≤ δ.

Let X ∈ D be any database. Note that |fi(X) − f̂i(X)| = |γi| for all i ∈ [d]. Hence, by the union
bound, Pr[∃i ∈ [d],|fi(X)− f̂i(X)| > ∆f

ε ln d
δ ] ≤ δ, which is equivalent to Pr[∧i∈[d]|fi(X)− f̂i(X)| ≤

∆f
ε ln d

δ ] ≥ 1− δ. Thus, the utility guarantee is proved.

2.2 Achieving differential privacy by adding geometric noise

If the function f has only integer values, we can add the discrete counterpart of Laplace noise,
geometric noise, to achieve differential privacy.

Definition 2.6 (Geometric Distribution) Let α > 1. We denote by Geom(α) the symmetric
geometric distribution that takes integer values such that the probability mass function at k is
α−1
α+1 · α

−|k|.

Geometric distribution have similar properties to those of Laplace distribution.

Theorem 2.7 Let α > 1, and let γ be a random variable sampled from symmetric geometric
distribution Geom(α). Then,

1. E[γ] = 0,

2. var[γ] = 2α
(1−α)2

,

3. for any integer z ≥ 0, Pr[|γ| > z] ≤ 1
αz .

Similar to Theorem 2.5, we have the following result:

Theorem 2.8 Let f : D → Zd be a deterministic function, 0 < ε < 1 be the privacy parameter and
0 < δ < 1 be the failure probability. Let γ1, γ2, . . . , γd be random variables independently sampled
from Geom(exp( ε

∆f )). Then, the randomized function f̂ such that f̂i(X) := fi(x) + γi for all i ∈ [d]

1. preserves ε-differential privacy,

2. is (∆f
ε ln d

δ , δ)-useful with respect to f .

The proof of the above two theorems are left as exercises.

3 Homework Preview

1. Prove Theorem 2.7.

2. Prove Theorem 2.8.

3. Prove Theorem 1.4.
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