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These lecture notes are supplementary materials for the lectures. They are by no means substitutes
for attending lectures or replacement for your own notes!

1 ε-Net

Suppose X is a set with some distribution D, and C is a class of boolean functions, each of which
has the form F : X → {0, 1}. We can think of each function F as a concept, labeling each point
in X as positive (1) or negative (0). The goal is to obtain a small subset S ⊂ X such that for
each function F ∈ C, if a large fraction (weighted according to distribution D) of points in X are
marked as positive under F , then there exists at least one point in S that is also marked positive
under F . We use EX [F (x)] := Ex∈D(X)[F (x)] to denote the expectation of F (x), where x is a point
drawn from X with distribution D.

Definition 1.1 An ε-net S for a set X with distribution D under a class C of boolean functions
on X is a subset satisfying the following:

For each F ∈ C, if EX [F (x)] ≥ ε, then there exists x ∈ S such that F (x) = 1.

Trivially, we could take S := X as an ε-net. However, we would want the cardinality of S to be
small, even though X or C might be infinite.

We assume that we are able to sample points independently from X under distribution D. The
straightforward way to construct a net is to sample an enough number of points.

For 0 < ε ≤ 1, we define Cε := {F ∈ C : EX [F (x)] ≥ ε}.
Example

Suppose X are points in the plane R2 with some distribution, and C is the class of functions, each
of which corresponds to an axis-aligned rectangle that marks the points inside 1 and 0 otherwise.
We would later see that for every 0 < ε ≤ 1, there is some finite sized ε-net Sε, i.e., if a rectangle
contains more than ε (weighted) fraction of points in X, then it must contain a point in Sε.

1.1 Simple Case: When C is finite

Theorem 1.2 Suppose C is finite and S is a subset obtained by sampling from X independently m
times. (There could be repeats, and so S could have size smaller than m.) If m ≥ 1

ε (ln |C|+ ln 1
δ ),

then with probability at least 1− δ, S is an ε-net.

Proof: Observe that S is an ε-net, if for all F ∈ Cε, there is some point x ∈ S such that F (x) = 1.
Fix any F ∈ Cε, the probability that a point sampled from X would be labeled 1 is at least ε.
Hence, the failure probability that all points in S are labeled 0 under F is at most (1− ε)m ≤ e−εm.
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Using union bound, the probability that the set S fails for some F ∈ Cε is at most |Cε|e−εm ≤
|C|e−εm, which is at most δ, when m ≥ 1

ε (ln |C|+ ln 1
δ ).

1.2 Extending to Infinite C

Observe that for a fixed subset S in X, if two functions F and F ′ agree on every point in S, then
essentially they are the same from the viewpoint of S. Hence, for every fixed set S of size m, there
are effectively only 2m boolean functions. However, there are still some issues.

1. There are still too many functions. Recall in the proof, we used the union bound to analyze
the failure probability |C| · e−εm ≤ 2m · e−εm. However, this is not useful as the last quantity
is larger than 1.

2. After we fix some S, there is no more randomness. Hence, we cannot even argue that the
probability that S is bad for even one F is at most (1− ε)m.

For the first issue, we would add more assumptions to the class C of functions to obtain a better
guarantee. The second issue is technical and can be resolved by using the technique of conditional
probability and expectation.

2 VC-Dimension: Limiting the Number of Boolean Functions on
a Subset

Definition 2.1 Given a set X and a class C of boolean function on X, a subset S ⊆ X is said to
be shattered by C, if for all subsets U of S, there exists F ∈ C such that for all x ∈ U , F (x) = 1
and for all x ∈ S \ U , F (x) = 0.

The VC-dimension of (X,C) is the maximum cardinality of a subset S ⊆ X that is shattered by C.
In other words, the VC-dimension of (X,C) is at least d if there exists S ⊆ X, where |S| = d, such
that S is shattered by C.

Example. Consider X = R2 and C is the class where each function corresponds to an axis-aligned
rectangle that labels each points inside it 1 and otherwise 0. Observer that S = {(1, 0), (−1, 0), (0, 1), (0,−1)}
can be shattered by C. However, one can show that no 5 points on the plane can be shattered by
C.

Definition 2.2 Suppose S ⊆ X and F : X → {0, 1}. Then, the projection of F on S is the boolean
function F |S : S → {0, 1} such that for all x ∈ S, F |S (x) = F (x). Given a class C of boolean
functions, the projection C(S) of C on S is the class C(S) := {F |S : F ∈ C}.
Given non-negative integers m and d, we denote

(
m
≤d
)

:=
∑d

i=0

(
m
i

)
.

Theorem 2.3 Suppose C is a class of boolean functions on X and the VC-dimension of (X,C) is
at most d. Let S be a subset of X of size m. Then, the cardinality of the projection C(S) is at
most

(
m
≤d
)
. In particular, when m ≥ 2 and d ≥ 2, this is at most md.

Proof: We prove by induction on d and m. For the base cases where d and m are small, we leave
it to the readers to verify the claim. Suppose we have S, where |S| = m > 1, and the VC-dimension
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of (X,C) is d > 1. We give an upper bound on |C(S)|.
Let x ∈ S and define S′ := S \ {x}. Define C(S′)† ⊆ C(S′) to be the set of functions F in C(S′)
such that there exists F1, F2 ∈ C(S), where F1 and F2 disagree on x and F1 |S′= F2 |S′= F .

Consider the projection of C on S′. It follows that each function in C(S′)† can be viewed as a
“merge” of 2 functions in C(S′). Hence, it follows that |C(S)| = |C(S′)|+ |C(S′)†|.
By induction hypothesis, we immediately have |C(S′)| ≤

(
m−1
≤d
)
.

We next show that the VC-dimension of (S′, C(S′)†) ≤ d − 1. Suppose C(S′)† shatters a subset
U ⊆ S′. Then, it follows immediately that C(S) shatters U ∪ {x}, which has size at most d, since
the VC-dimension of (X,C) is at most d. It follows |U | ≤ d − 1. Hence, by induction hypothesis
|C(S′)†| ≤

(
m−1
≤d−1

)
.

By observing that
(
m
i

)
=
(
m−1
i

)
+
(
m−1
i−1
)
, we conclude that |C(S)| ≤

(
m−1
≤d
)

+
(
m−1
≤d−1

)
=
(
m
≤d
)
.

Here is the result relating VC-dimension of (X,C) and the number of independent samples that is
sufficient to form an ε-net for X under C.

Theorem 2.4 (Number of Samples for Class with Bounded VC-Dimension) Suppose (X,C)
has VC-dimension at most d. Then, suppose S is a subset obtained by sampling from X indepen-
dently m times (and removing repeated points). If m ≥ max{4ε log 2

δ ,
8d
ε log 8d

ε }, then with probability
at least 1− δ, S is an ε-net.

Intuition. Observe that |C(S)| ≤
(
m
≤d
)
≤ md, for m ≥ 2 and d ≥ 2. Hence, if we use the “bogus”

union bound, the failure probability would be at most |C(S)| · e−εm ≤ md · e−εm. When m is large
enough as specified, this quantity is less than δ.

3 Conditional Probability and Expectation as Random Variables

We see that if (X,C) has VC-dimension d, then the projection of C on some subset S ⊆ X with
|S| = m has size |C(S)| ≤ md. When we sample a subset S, we would like to analyze the size of
C(S), conditioned on the fact that S is sampled. We need some formal notation to analyze this.

Definition 3.1 (Random Object) Suppose P = (Ω,F , P r) is a probability space. A random
object W taking values in some set U is a function W : Ω→ U . For u ∈ U , {W = u} is the event
{ω ∈ Ω : W (ω) = u}.
Example.

1. A {0, 1}-random variable is a special case when U = {0, 1}.

2. Suppose we flip a fair coin repeatedly, and W is the outcome of the first 2 flips. In this case,
U = {H,T}2.

Definition 3.2 (Conditional Probability as a Random Variable) Suppose P = (Ω,F , P r)
is a probability space, and A ∈ F is an event. Let W : Ω → U be a random object. Then, the
conditional probability Pr[A|W ] can be interpreted in two ways:

1. Pr[A|W ] : U → [0, 1] is a function such that for u ∈ U , Pr[A|W ](u) := Pr[A|W = u].
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2. Pr[A|W ] : Ω → [0, 1] is a random variable defined by Pr[A|W ](ω) := Pr[A|Wω], where
Wω := {ω′ ∈ Ω : W (ω′) = W (ω)} is the event that W equals to W (ω) ∈ U .

Definition 3.3 (Conditional Expectation as a Random Variable) Suppose P = (Ω,F , P r)
is a probability space, and Y : Ω → R is a random variable. Let W : Ω → U be a random object.
Then, the conditional expectation E[Y |W ] can be interpreted in two ways:

1. E[Y |W ] : U → R is a function such that for u ∈ U , E[Y |W ](u) := E[Y |W = u].

2. E[Y |W ] : Ω → R is a random variable defined by E[Y |W ](ω) := E[Y |Wω], where Wω :=
{ω′ ∈ Ω : W (ω′) = W (ω)} is the event that W equals to W (ω) ∈ U .

Since the conditional probability Pr[A|W ] and the conditional expectation E[Y |W ] are random
variables themselves, we can take expectation of them.

Fact 3.4 Let the event A, the random variable Y and the random object W be defined as above.
Then, E[Pr[A|W ]] = Pr[A] and E[E[Y |W ]] = E[Y ].

Example. Consider the probability space associated with flipping a fair coin repeatedly. Let W
be the outcome of the first 2 flips, and Y be the number of flips that a head first appears. As
before, we have U = {H,T}2. Consider the conditional expectation E[Y |W ].

1. We have E[Y |W = {H,H}] = 1, E[Y |W = {H,T}] = 1, E[Y |W = {T,H}] = 2. Finally,
E[Y |{T, T}] = 2 + E[Y ] = 4.

2. Hence, E[E[Y |W ]] = 1
4(1 + 1 + 2 + 4) = 2 = E[Y ].

3.1 Using Conditional Probability to Bound Failure Probability

Recall that we are drawing independent samples from X to form a subset S of size m in the hope
that S would be an ε-net for the class C of functions. Suppose further that (X,C) has VC-dimension
d.

Let A be the event that S is not an ε-net under C. In particular, let AF be the event that for all
x ∈ S, F (x) = 0. Recall that Cε := {C ∈ F : EX [F (x)] ≥ ε}. We wish to find a good upperbound
for Pr[A] = Pr[∪F∈CεAF ].

Using conditional probability, we have Pr[A] = E[Pr[A|S]]. Observe that if we fix S, then the set S
fails for the function F ∈ C iff S fails for F ′ := F |S∈ C(S). Hence, Pr[A|S] = Pr[∪F∈CεAF |S] =
Pr[∪F ′∈Cε(S)AF ′ |S] ≤

∑
F ′∈Cε(S)

Pr[AF ′ |S].

Observe that the summation contains at most |Cε(S)| ≤ |C(S)| ≤ md terms. Hence, it suffices to
give a good upperbound on p∗ := maxF ′∈Cε(S) Pr[AF ′ |S]. However, as we mention before, if we
condition on S, there is no more randomness, since Pr[AF |S] is either 0 or 1. Hence, we can have
p∗ = 1. We shall see next time how we can resolve this by introducing extra randomness in the
analysis.
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4 Homework Preview

1. VC-dimension of Axis-aligned rectangles.

(a) Prove that no 5 points on the plane R2 can be shattered by the class C of axis-aligned
rectangles (that map points inside a rectangle 1 and otherwise 0).

(b) Compute the VC-dimension of the class Ck of k-dimensional axis-aligned rectangles in
Rk. In particular, you need to find a number d such that there exist d points in Rk that
can be shattered by the Ck, and prove that any d+ 1 points in Rk cannot be shattered
by Ck.

2. Conditional Expectation. Suppose Y : Ω → R is a random variable and W : Ω → U
is a random object defined on the same probability space (Ω,F , P r). Prove that E[Y ] =
E[E[Y |W ]]. You may assume that both Ω and U are finite.

3. Using ε-Net for Learning. Suppose X is a set with some underlying distribution D and C
is a class of boolean functions on X, and the VC-dimension of (X,C) is d. Moreover, suppose
there is some function F0 ∈ C that corresponds to some classifier that we wish to learn. The
model we have is that we can sample a random x ∈ X and ask for the value F0(x). After
seeing m such samples S in X, we pick a function F1 ∈ C that agrees with F0 on S. The
hope is that F1 and F0 would agree on most points in X (according to distribution D).

(a) Define another class C ′ of boolean functions on X such that if S is an ε-net under C ′, and
F ∈ C is a function that disagrees with F0 on more than ε fraction (weighted according
to D) of points in X, then there exists some x ∈ S such that F (x) 6= F0(x). Prove the
VC-dimension of (X,C ′) for the class C ′ that you have constructed.

(b) How many samples are enough such that with probability at least 1− δ the function F1

returned disagrees with F0 on at most ε weighted fraction of points in X?
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