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These lecture notes are supplementary materials for the lectures. They are by no means substitutes
for attending lectures or replacement for your own notes!

1 Measure Concentration

As we have seen in the previous lectures, the objective function of a problem can be expressed as
some random variable Y , and we analyze the performance of a randomized algorithm in terms of
the expectation (or mean) E[Y ]. We often wish to show that with a large probability, the random
variable Y is near its mean E[Y ]. We see that if Y is a sum of independent random variables, then
this is indeed the case. This phenomenon is known as measure concentration.

1.1 Example: Chebyshev’s Inequality

Suppose X0, X1, . . . , Xn−1 are independent {0, 1}-random variables such that for each i, Pr(Xi =
1) = p and Pr(Xi = 0) = 1− p. Let Y :=

∑
iXi. We have E[Y ] = np.

Remark 1.1 By using pairwise independence of the Xi’s, we have var[Y ] = np(1− p).
Using the Chebyshev’s Inequality, we have for 0 < ε < 1,

Pr(|Y − E[Y ]| ≥ εE[Y ]) ≤ var[Y ]

(εE[Y ])2
=

1− p
ε2p

· 1

n

We have only used the fact that any two different random variables Xi and Xj are independent.
The goal is to show that if we fully exploit the fact that all the random variables X0, X1, . . . , Xn−1
are independent of one another, we can obtain a much better result.

Theorem 1.2 (Basic Chernoff Bound) Suppose Y is the sum of n independent {0, 1}-random
variables Xi’s such that for each i, Pr(Xi = 1) = p. Let µ := E[Y ] = np. Then, for 0 < ε < 1,

Pr(|Y − E[Y ]| ≥ εE[Y ]) ≤ 2 exp{−1

3
ε2np}.

2 Using Moment Generating Function

The bound in Theorem 1.2 measures, in terms of E[Y ], how far the random variable Y is away from
its mean E[Y ]. One can instead measure this in terms of the total number of random variables n,
i.e., one wants to analyze the probability Pr(|Y −E[Y ]| ≥ εn). Of course, a different bound would
be obtained. There are a number of variations of this inequality: Hoeffding’s Inequality, Azuma’s
Inequality, McDiarmid’s Inequalities. Each one of them has slightly different assumptions, and it
would be confusing to learn them separately. Fortunately, there is a generic method to obtain all
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of them: the method of moment generating function.

We describe in general terms. Suppose X0, X1, . . . , Xn−1 are independent random variables. They
can take any value (not necessarily in {0, 1}), and need not even be identically distributed. Let
Y :=

∑
iXi and µ := E[Y ]. The goal is to give an upper bound on the probability Pr[|Y −µ| ≥ α],

for some value α > 0. We outline the steps in the following.

2.1 Transform the Inequality into a Convenient Form

We first use the equation:

Pr[|Y − µ| ≥ α] = Pr[Y − µ ≥ α] + Pr[Y − µ ≤ −α]. (2.1)

We bound each of the term on the right hand side separately. Recall that Y :=
∑

iXi. Sometimes
it would be convenient to first rescale each random variable Xi. For example,

1. Zi := Xi. The simplest case. We can just work with Xi.

2. Zi := Xi − E[Xi]. We have E[Zi] = 0.

3. Zi := Xi
R . If Xi is in the range [0, R], then we now have Zi ∈ [0, 1].

Since the Xi’s are independent, the Zi’s are also independent. After the transformation, the two
terms in (2.1) have the form

(i) Pr[
∑

i Zi ≥ β], or

(ii) Pr[
∑

i Zi ≤ β].

Note that the β in each case is different. The direction of the inequality is also different. We use
a trick to turn both inequalities into the same form. In case (i), let t > 0; in case (ii), let t < 0.
Now, both inequalities have the same form

Pr[t
∑
i

Zi ≥ tβ] (2.2)

The value t would be chosen later to get the best possible bound. Note that we have to remember
whether t is positive or negative.

Example.

As part of the Basic Chernoff Bound, suppose we wish to consider the part Pr[Y − µ ≤ −εµ]. In
this case, we just let Zi := Xi and let t < 0 to obtain

Pr[Y − µ ≤ −εµ] = Pr[t
∑

iXi ≥ t(1− ε)µ].
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2.2 Using Moment Generating Function and Independence

Notation: we write exp(x) = ex =
∑∞

i=0
xi

i! .

Observe that the exponentiation function is strictly increasing, i.e. x < y iff exp(x) < exp(y).
Hence,

Pr[t
∑

i Zi ≥ tβ] = Pr[exp(t
∑

i Zi) ≥ exp(tβ)].

Notice that now both sides of the inequality are positive. Hence, by Markov’s Inequality, we have

Pr[exp(t
∑

i Zi) ≥ exp(tβ)] ≤ exp(−tβ)E[exp(t
∑

i Zi)].

The next step is where we use the fact that the Zi’s are independent:

E[exp(t
∑

i Zi)] =
∏
iE[exp(tZi)].

Definition 2.1 Given a random variable Z, the moment generating function is given by the map-
ping t 7→ E[etZ ].

Hence, it suffices to find an upper bound for E[etZi ], for each i.

Remark 2.2 We wish to find an upper bound of the form E[etZi ] ≤ exp(gi(t)) for some appropriate
function gi(t). Note that this is often the most technical part of the proof, and requires tools from
calculus.

Hence, we obtain the bound

Pr[t
∑

i Zi ≥ tβ] ≤ exp(−tβ)
∏
iE[etZi ] ≤ exp(−tβ)

∏
i exp(gi(t)) = exp(−tβ +

∑
i gi(t)) =

exp(g(t)),

where g(t) := −tβ +
∑

i gi(t).

Example.

Continuing with our example, if Zi = Xi is a {0, 1}-random variable such that Pr(Xi = 1) = p,
then we have

E[etZi ] = (1− p) · e0 + p · et = 1 + p(et − 1) ≤ exp(p(et − 1)),

where we have used the inequality 1 + x ≤ ex, for all real numbers x.

Hence,

Pr[t
∑

iXi ≥ t(1− ε)µ] ≤ exp{−t(1− ε)µ+ np(et − 1)} = exp(g(t)),

where g(t) := µ(et − t(1− ε)− 1).

2.3 Find the Best Value for t to Minimize g(t)

We find the value t that minimizes the function g(t) := −tβ +
∑

i gi(t). Be careful to remember
whether t is positive or negative!

Example.

In our example, we have g(t) := µ(et − t(1− ε)− 1).
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Note that g′(t) = µ(et − (1− ε)) and g′′(t) = µet > 0. It follows that g attains its minimum when
g′(t) = 0, i.e., when t = ln(1− ε) < 0.

We check that in our example, t < 0. So, we can set the value t := ln(1− ε). Using the expansion

for 0 < ε < 1, − ln(1− ε) =
∑

i≥1
εi

i , we have g(ln(1− ε)) ≤ − ε2µ
2 = − ε2np

2 .

So, we have one part of the Basic Chernoff Bound,

Pr[Y − µ ≤ −εµ] ≤ exp(− ε2np
2 ) ≤ exp(− ε2np

3 ).

Theorem 2.3 Suppose X0, X1, . . . , Xn−1 are independent {0, 1}-random variables, each having ex-
pectation p. Let Y :=

∑
iXi and µ := E[Y ].

Then, for 0 < ε < 1, Pr[Y ≤ (1− ε)µ] ≤ exp(− ε2µ
2 ).

3 The Other Half of Chernoff

To complete the proof of the Chernoff Bound, one also needs to obtain an upper bound for [Y −µ ≥
εµ]. The same technique of moment generating function can be applied. The calculations might be
different though. We would leave the details as a homework problem.

Lemma 3.1 Suppose X0, X1, . . . , Xn−1 are independent {0, 1}-random variables, each having ex-
pectation p. Let Y :=

∑
iXi and µ := E[Y ].

Then, for all ε > 0, Pr[Y ≥ (1 + ε)µ] ≤ ( eε

(1+ε)1+ε
)µ.

Corollary 3.2 For 0 < ε < 1, using the inequality (1 + ε) ln(1 + ε) ≥ ε+ ε2

3 , we have:

Pr[Y ≥ (1 + ε)µ] ≤ exp(− ε2µ
3 ).

Corollary 3.3 (Chernoff Bound with Large ε) For all ε > 0, using the inequality ln(1 + ε) >
2ε
2+ε , we have:

Pr[Y ≥ (1 + ε)µ] ≤ exp(− ε2µ
2+ε).

4 2-Coloring Subsets: Revisited

Consider a finite set U and subsets S1, S2, . . . , Sm of U such that each Si has size |Si| = l, where
l > 12 lnm. Is it possible to color each element of U red or blue such that each set Si contains
roughly the same number of red and blue elements?

Proposition 4.1 Fix a subset Si, let Xi be the number of red elements in Si.

Then, Pr[|Xi − l
2 | ≥

√
3l lnm] ≤ 2

m2 .

Proof: Note that E[Xi] = l
2 . By Chernoff Bound, for 0 < ε < 1,

Pr[|Xi − l
2 | ≥ εE[Xi]] ≤ 2 exp(−1

3ε
2E[Xi]).

Substituting ε :=
√

12 lnm
l < 1, we have the result.
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Corollary 4.2 By the union bound, Pr[∃i, |Xi − l
2 | ≥

√
3l lnm] ≤ 2

m .

5 n Balls into n Bins: Load Balancing

Suppose one throws n balls into n bins, independently and uniformly at random. We wish to
analyze the maximum number of balls in any single bin. A similar situation arises when there are
n jobs independently and randomly assigned to n machines, and we wish to analyze the number of
jobs assigned to the busiest machine.

Consider the first bin, and let Y1 be the number of balls in it. Note that Y1 is a sum of n independent
{0, 1}-random variables, each having expectation 1

n .

Proposition 5.1 Pr[Y1 ≥ 4 lnn+ 1] ≤ 1
n2 ].

Proof: Observe that E[Y1] = 1, we use Chernoff Bound with large ε > 0 (Corollary 3.3). We
have:

Pr[Y1 ≥ 1 + ε] ≤ exp(− ε2

2+ε).

We wish to find a value for ε so that the last quantity is at most 1
n2 .

For ε ≥ 2, we have ε2

2+ε ≥
ε2

2ε = ε
2 . Hence, the last quantity is at most exp(− ε

2), which equals 1
n2 , if

we set ε := 4 lnn ≥ 2.

Corollary 5.2 Using union bound, the probability that there exists a bin with more than 1 + 4 lnn
balls is at most 1

n .

6 Homework Preview

1. The Other Half of Chernoff. Suppose X0, X1, . . . , Xn−1 are independent {0, 1}-random
variables, each having expectation p. Let Y :=

∑
iXi and µ := E[Y ]. Using the method of

moment generating function, prove the following.

For all ε > 0, Pr[Y − µ ≥ εµ] ≤
(

eε

(1+ε)1+ε

)µ
.

2. n Balls into n Bins (Revisited). Using the Chernoff Bound from the previous question,
we can obtain a better bound for the balls and bins problem. Suppose n balls are thrown
independently and uniformly at random into n bins. Let Y1 be the number of balls in the
first bin.

(a) Find a number N in terms of n such that Pr[Y1 ≥ N ] ≤ 1
n2 . Please give the exact form

and do not use big O notation for this part of the question.

(Hint: if you need to find a number W such that W lnW ≥ lnn, try setting W := λ lnn
ln lnn ,

for some constant λ > 0. You can also assume that n is large enough, say n ≥ 100.)

(b) Show that with probability at least 1− 1
n , no bin contains more than Θ( logn

log logn) balls.
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