
CSIS0351/8601: Randomized Algorithms
Homeworks 3 & 4 Due Date: 28 Nov 2011

Rules: Discussion of the problems is permitted, but writing the assignment together is not
(i.e. you are not allowed to see the actual pages of another student).

The weight of this homework is the same as those of Homeworks 1 and 2 together. This
homework has 260 points, of which 60 points are extra credit.

1. (15 points) Some Technical Proofs from Johnson-Lindenstrauss Lemma

(a) Suppose g is a random variable with normal distribution N(0, 1). Prove the
following.

i. For odd n ≥ 1, E[gn] = 0.

ii. For even n ≥ 2, E[gn] ≥ 1.

(Hint: Use induction. Let In := E[gn] = 1√
2π

∫
R x

ne−
x2

2 dx. Use integration by

parts to show that In+2 = (n+ 1)In.)

(b) Suppose γj ’s are independent uniform {−1, 1}-random variables and gj ’s are
independent random variables, each having normal distribution N(0, 1). Suppose
vj ’s are real numbers, and define X := (

∑
j γjvj)

2 and X̂ := (
∑

j gjvj)
2. Show

that for all integers n ≥ 1, E[Xn] ≤ E[X̂n].

(c) Suppose Z is a random variable having normal distribution N(0, ν2). Compute
E[etZ

2
]. For what values of t is your expression valid?

2. (25 points) Can Johnson-Lindenstrauss Lemma preserve area?

(a) Suppose the distances between three points are preserved with multiplicative
error ε. Is the area of the corresponding triangle also always preserved with
multiplicative error O(ε), or even some constant multiplicative error?

(b) Suppose u and v are mutually orthogonal unit vectors. Observe that the vectors
u and v together with the origin form a right-angled isosceles triangle with area
1
2 . Suppose the lengths of the triangle are distorted with multiplicative error at
most ε. What is the multiplicative error for the area of the triangle?

(c) Suppose a set V of n points are given in Euclidean space Rn. Let 0 < ε < 1. Give
a randomized algorithm that produces a low-dimensional mapping f : V → RT
such that the areas of all triangles formed from the n points are preserved with
multiplicative error ε. What is the value of T for your mapping? Please give the
exact number and do not use big O notation.

(Hint: If two triangles lie in the same plane (a 2-dimensional affine space) in Rn,
then under a linear mapping their areas have the same multiplicative error. For
every triangle, add an extra point to form a right-angled isosceles triangle in the
same plane.)
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3. (20 points) VC-dimension of Axis-aligned rectangles.

(a) Prove that no 5 points on the plane R2 can be shattered by the class C of
axis-aligned rectangles (that map points inside a rectangle 1 and otherwise 0).

(b) Compute the VC-dimension of the class Ck of k-dimensional axis-aligned rect-
angles in Rk. In particular, you need to find a number d such that there exist d
points in Rk that can be shattered by the Ck, and prove that any d + 1 points
in Rk cannot be shattered by Ck.

4. (10 points) Conditional Expectation. Suppose Y : Ω → R is a random variable
and W : Ω→ U is a random object defined on the same probability space (Ω,F , P r).
Prove that E[Y ] = E[E[Y |W ]]. You may assume that both Ω and U are finite.

5. (20 points) Using ε-Nets for Learning. Suppose X is a set with some underlying
distribution D and C is a class of boolean functions on X, and the VC-dimension of
(X,C) is d. Moreover, suppose there is some function F0 ∈ C that corresponds to
some classifier that we wish to learn. The model we have is that we can sample a
random x ∈ X and ask for the value F0(x). After seeing m such samples S in X, we
pick a function F1 ∈ C that agrees with F0 on S. The hope is that F1 and F0 would
agree on most points in X (according to distribution D).

(a) Define another class C ′ of boolean functions on X such that if S is an ε-net
under C ′, and F ∈ C is a function that disagrees with F0 on more than ε
fraction (weighted according to D) of points in X, then there exists some x ∈ S
such that F (x) 6= F0(x). Prove the VC-dimension of (X,C ′) for the class C ′ that
you have constructed.

(b) How many samples are enough such that with probability at least 1 − δ the
function F1 returned disagrees with F0 on at most ε weighted fraction of points
in X?

6. (75 points) ε-Sample for (X,C) with VC-dimension d. Suppose X is a set and
C is a collection of boolean functions such that (X,C) has VC-dimension d. In this
question, we derive a sufficient number m of independent random samples from X
with distribution D such that the resulting bag S is an ε-sample under class C of
boolean functions with probability at least 1− δ.

(a) Introducing Extra Randomness. (15 points) Suppose we sample 2m copies
independently from X to form the bag W . Then, we pick m copies out of W at
random to form S. In other words, W can be view as a point in X2m, and we
pick m distinct coordinates at random and use them to form S.

Let A be the event that there exists some F ∈ C such that |EX [F (x)] −
ES [F (x)]| > ε.

Let B be the event that there exists some F ∈ C such that |EX [F (x)] −
ES [F (x)]| > ε and |EW [F (x)]− ES [F (x)]| > ε

4 .
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Prove that Pr[A] ≤ 2Pr[B].

(Hint: Show that Pr[B|A] ≤ 1
2 .

Observe that given A, the event B implies that there is some F0 ∈ C such that
|EX [F0(x)]−ES [F0(x)]| > ε and |EW [F0(x)]−ES [F0(x)]| ≤ ε

4 . This means that
|EX [F0(x)]− EW\S [F0(x)]| > ε

2 .

Use Hoeffding’s Inequality and you may assume m ≥ 2 ln 4
ε2

.)

(b) Conditional Probability. (10 points) For F ∈ C, define BF to be the event
that |EX [F (x)] − ES [F (x)]| > ε and |EW [F (x)] − ES [F (x)]| > ε

4 . (Hence, B =
∪FBF .)

Fix F ∈ C. Define HF to be the event that |EW [F (x)]− ES [F (x)]| > ε
4 . Then,

clearly BF ⊆ HF , and so Pr[BF |W ] ≤ Pr[HF |W ]. We analyze Pr[HF |W ].

Suppose Pmax := maxF∈C Pr[HF |W ]. Prove that Pr[B] ≤ (2m)d · Pmax.

(Hint: Recall that (X,C) has VC-dimension d. After conditioning on W which
has only 2m points, how many boolean functions can the class C induce on W?)

(c) Bounding Pmax. (40 points) This is the most technical part of the proof and
this part differs the most from the proof for ε-net.

After W and F are fixed, we know precisely how many copies in W are marked 1
by F . Let this number be L. The only randomness left is the choice of S among
W . Recall that S is formed from W by choosing m copies from the 2m copies in
W .

We can order the objects in W in an arbitrary list, and assign one by one whether
each object is in S in the following way: suppose when object a is considered,
there are already x objects assigned to S and y objects assigned to W \ S.
Then, object a is assigned to S with probability m−x

(m−x)+(m−y) and to W \S with

probability m−y
(m−x)+(m−y) .

i. Suppose the L objects marked 1 are being considered first. For 1 ≤ i ≤ L,
let ui be the variable that takes value 1 if the ith object is assigned to S and
−1 if it is assigned to W \ S.
Define Ui :=

∑i
j=1 uj . Compute the probability that the (i + 1)st object is

assigned to S in terms of i and Ui.
What does it mean when Ui > 0? When Ui > 0, what happens to this
probability?
Are the ui’s independent?

ii. Find an expression β in terms of ε and m such that |EW [F (x)]−ES [F (x)]| >
ε
4 iff U2

L > β.
(We want to obtain an upper bound for Pr[U2

L > β].)

iii. We saw that the ui’s are not independent. This makes the analysis diffi-
cult. Hence, we would like to compare the ui’s with another collection of
independent random variables. For each 1 ≤ i ≤ L, we define independent
random variable γi that takes values in {−1, 1} uniformly, i.e., each value
with probability 1

2 . Define Yi :=
∑

1≤j≤i γj .

3



Observe that we would like U2
L to be small. Can you explain intuitively why

Y 2
L is more likely to be larger than U2

L?
Prove that E[U2

L] ≤ E[Y 2
L ].

(Hint: Prove by induction on i that E[U2
i ] ≤ E[Y 2

i ]. In the inductive step,
you might find considering the conditional expectation E[Uiui+1|Ui] useful.)
(Optional: Prove that for all non-negative integers r, E[U2r

L ] ≤ E[Y 2r
L ]. You

may use this result for later parts of the question.)

iv. Let t be a positive real number. Prove that E[exp(tU2
L)] ≤ E[exp(tY 2

L )].

(Hint: Recall the Taylor expansion exp(y) :=
∑

r≥0
yr

r! .)

v. By considering moment generating functions, prove an upper bound for
Pr[U2

L > β], and conclude that Pmax ≤ 2 exp(− ε2m
32 ).

(Hint: Recall from the lecture on Johnson-Lindenstrauss Lemma, we have
E[exp(tY 2

L )] ≤ (1− 2tL)−1/2, for t < 1
2L .)

(d) Wrapping Everything Up. (10 points) Prove that ifm ≥ max{64
ε2

ln 2
δ ,

128d
ε2

ln 32d
ε2
},

then with probability at least 1− δ, the bag S is an ε-sample for X under class
C.

7. (20 points) Properties of Symmetric Geometric Distribution. Let α > 1,
and let γ be a random variable sampled from the symmetric geometric distribution
Geom(α), i.e., Pr[γ = k] = α−1

α+1 · α
−|k|. Prove that

(a) (5pt) E[γ] = 0,

(b) (5pt) var[γ] = 2α
(1−α)2

,

(c) (10pt) for any integer z ≥ 0, Pr[|γ| > z] ≤ 1
αz .

8. (20 points) Achieving Differential Privacy with Geometric Distribution.
Let f : D → Zd be a deterministic function, 0 < ε < 1 be the privacy parameter and
0 < δ < 1 be the failure probability. Let γ1, γ2, . . . , γd be random variables indepen-
dently sampled from Geom(exp( ε

∆f )), where ∆f := maxX∼Y ∈D ||f(X)−f(Y )||1 is the
`1-sensitivity.

Prove that the randomized function f̂ such that f̂i(X) := fi(X) + γi for all i ∈ [d]

(a) preserves ε-differential privacy,

(b) is (∆f
ε ln d

δ , δ)-useful with respect to f , i.e., for all X ∈ D, with probability at

least 1− δ, for all i ∈ [d], |fi(X)− f̂i(X)| ≤ ∆f
ε ln d

δ .

9. (10 points) Deterministic Operation on Differentially Private Output Re-
mains Differentially Private. Let f : D → O1 be a ε-differentially private ran-
domized algorithm, and let g : O1 → O2 be a deterministic function. Prove that
g ◦ f : D → O2, whose value at X ∈ D is g(f(X)), preserves ε-differential privacy.

10. (45 points) Sum of Independent Laplace Random Variables. In this question,
we derive a measure concentration result for independent random variables drawn from

4



Laplace distribution. We show that with high probability, the sum of independent
Laplace random variables are concentrated around its mean, 0.

We use moment generating functions in a Chernoff-like argument. Let b1, b2, . . . , bn >
0 and γ1, γ2, . . . , γn be n independent random variables, where for each i γi is sampled
from Lap(bi).

(a) Prove that for each γi, the moment generating function is E[exp(hγi)] = 1
1−h2b2i

,

where |h| < 1
bi

.

(b) Show that E[exp(hγi)] ≤ exp(2h2b2i ), if |h| < 1√
2bi

.

(Hint: for |x| < 1
2 , we have 1

1−x ≤ 1 + 2x ≤ exp(2x).)

(c) Let bM := maxi∈[n] bi. Also, let ν ≥
√∑n

i=1 b
2
i and 0 < λ < 2

√
2ν2

bM
. Prove that

Pr[|Y | > λ] ≤ 2 exp
(
− λ2

8ν2

)
(d) Suppose 0 < δ < 1 and ν > max

{√∑n
i=1 b

2
i , bM

√
ln 2

δ

}
. Prove that Pr[|Y | >

ν
√

8 ln 2
δ ] < δ.

(e) Prove that Pr[|Y | >
√

8 ·
√∑n

i=1 b
2
i · ln

2
δ ] < δ.
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