These lecture notes are supplementary materials for the lectures. They are by no means substitutes for attending lectures or replacement for your own notes!

1 ϵ -Net

Suppose X is a set with some distribution D, and C is a class of boolean functions, each of which has the form $F: X \to \{0, 1\}$. We can think of each function F as a concept, labeling each point in X as positive (1) or negative (0). The goal is to obtain a small subset $S \subset X$ such that for each function $F \in C$, if a large fraction (weighted according to distribution D) of points in X are marked as positive under F, then there exists at least one point in S that is also marked positive under F. We use $E_X[F(x)] := E_{x \in D(X)}[F(x)]$ to denote the expectation of F(x), where x is a point drawn from X with distribution D.

Definition 1.1 An ϵ -net S for a set X with distribution D under a class C of boolean functions on X is a subset satisfying the following:

For each $F \in C$, if $E_X[F(x)] \ge \epsilon$, then there exists $x \in S$ such that F(x) = 1.

Trivially, we could take S := X as an ϵ -net. However, we would want the cardinality of S to be small, even though X or C might be infinite.

We assume that we are able to sample points independently from X under distribution D. The straightforward way to construct a net is to sample an enough number of points.

For $0 < \epsilon \leq 1$, we define $C_{\epsilon} := \{F \in C : E_X[F(x)] \geq \epsilon\}.$

Example

Suppose X are points in the plane \mathbb{R}^2 with some distribution, and C is the class of functions, each of which corresponds to an axis-aligned rectangle that marks the points inside 1 and 0 otherwise. We would later see that for every $0 < \epsilon \leq 1$, there is some finite sized ϵ -net S_{ϵ} , i.e., if a rectangle contains more than ϵ (weighted) fraction of points in X, then it must contain a point in S_{ϵ} .

1.1 Simple Case: When C is finite

Theorem 1.2 Suppose C is finite and S is a subset obtained by sampling from X independently m times. (There could be repeats, and so S could have size smaller than m.) If $m \ge \frac{1}{\epsilon} (\ln |C| + \ln \frac{1}{\delta})$, then with probability at least $1 - \delta$, S is an ϵ -net.

Proof: Observe that S is an ϵ -net, if for all $F \in C_{\epsilon}$, there is some point $x \in S$ such that F(x) = 1. Fix any $F \in C_{\epsilon}$, the probability that a point sampled from X would be labeled 1 is at least ϵ . Hence, the failure probability that all points in S are labeled 0 under F is at most $(1-\epsilon)^m \leq e^{-\epsilon m}$. Using union bound, the probability that the set S fails for some $F \in C_{\epsilon}$ is at most $|C_{\epsilon}|e^{-\epsilon m} \leq |C|e^{-\epsilon m}$, which is at most δ , when $m \geq \frac{1}{\epsilon}(\ln |C| + \ln \frac{1}{\delta})$.

1.2 Extending to Infinite C

Observe that for a fixed subset S in X, if two functions F and F' agree on every point in S, then essentially they are the same from the viewpoint of S. Hence, for every fixed set S of size m, there are effectively only 2^m boolean functions. However, there are still some issues.

- 1. There are still too many functions. Recall in the proof, we used the union bound to analyze the failure probability $|C| \cdot e^{-\epsilon m} \leq 2^m \cdot e^{-\epsilon m}$. However, this is not useful as the last quantity is larger than 1.
- 2. After we fix some S, there is no more randomness. Hence, we cannot even argue that the probability that S is bad for even one F is at most $(1 \epsilon)^m$.

For the first issue, we would add more assumptions to the class C of functions to obtain a better guarantee. The second issue is technical and can be resolved by using the technique of conditional probability and expectation.

2 VC-Dimension: Limiting the Number of Boolean Functions on a Subset

Definition 2.1 Given a set X and a class C of boolean function on X, a subset $S \subseteq X$ is said to be shattered by C, if for all subsets U of S, there exists $F \in C$ such that for all $x \in U$, F(x) = 1 and for all $x \in S \setminus U$, F(x) = 0.

The VC-dimension of (X, C) is the maximum cardinality of a subset $S \subseteq X$ that is shattered by C. In other words, the VC-dimension of (X, C) is at least d if there exists $S \subseteq X$, where |S| = d, such that S is shattered by C.

Example. Consider $X = \mathbb{R}^2$ and C is the class where each function corresponds to an axis-aligned rectangle that labels each points inside it 1 and otherwise 0. Observer that $S = \{(1,0), (-1,0), (0,1), (0,-1)\}$ can be shattered by C. However, one can show that no 5 points on the plane can be shattered by C.

Definition 2.2 Suppose $S \subseteq X$ and $F: X \to \{0,1\}$. Then, the projection of F on S is the boolean function $F \mid_{S}: S \to \{0,1\}$ such that for all $x \in S$, $F \mid_{S} (x) = F(x)$. Given a class C of boolean functions, the projection C(S) of C on S is the class $C(S) := \{F \mid_{S}: F \in C\}$.

Given non-negative integers m and d, we denote $\binom{m}{\leq d} := \sum_{i=0}^{d} \binom{m}{i}$.

Theorem 2.3 Suppose C is a class of boolean functions on X and the VC-dimension of (X, C) is at most d. Let S be a subset of X of size m. Then, the cardinality of the projection C(S) is at most $\binom{m}{\leq d}$. In particular, when $m \geq 2$ and $d \geq 2$, this is at most m^d .

Proof: We prove by induction on d and m. For the base cases where d and m are small, we leave it to the readers to verify the claim. Suppose we have S, where |S| = m > 1, and the VC-dimension

of (X, C) is d > 1. We give an upper bound on |C(S)|.

Let $x \in S$ and define $S' := S \setminus \{x\}$. Define $C(S')^{\dagger} \subseteq C(S')$ to be the set of functions F in C(S') such that there exists $F_1, F_2 \in C(S)$, where F_1 and F_2 disagree on x and $F_1 \mid_{S'} = F_2 \mid_{S'} = F$.

Consider the projection of C on S'. It follows that each function in $C(S')^{\dagger}$ can be viewed as a "merge" of 2 functions in C(S'). Hence, it follows that $|C(S)| = |C(S')| + |C(S')^{\dagger}|$.

By induction hypothesis, we immediately have $|C(S')| \leq {\binom{m-1}{<d}}$.

We next show that the VC-dimension of $(S', C(S')^{\dagger}) \leq d-1$. Suppose $C(S')^{\dagger}$ shatters a subset $U \subseteq S'$. Then, it follows immediately that C(S) shatters $U \cup \{x\}$, which has size at most d, since the VC-dimension of (X, C) is at most d. It follows $|U| \leq d-1$. Hence, by induction hypothesis $|C(S')^{\dagger}| \leq {m-1 \choose \leq d-1}$.

By observing that $\binom{m}{i} = \binom{m-1}{i} + \binom{m-1}{i-1}$, we conclude that $|C(S)| \le \binom{m-1}{\le d} + \binom{m-1}{\le d-1} = \binom{m}{\le d}$.

Here is the result relating VC-dimension of (X, C) and the number of independent samples that is sufficient to form an ϵ -net for X under C.

Theorem 2.4 (Number of Samples for Class with Bounded VC-Dimension) Suppose (X, C) has VC-dimension at most d. Then, suppose S is a subset obtained by sampling from X independently m times (and removing repeated points). If $m \ge \max\{\frac{4}{\epsilon}\log\frac{2}{\delta}, \frac{8d}{\epsilon}\log\frac{8d}{\epsilon}\}$, then with probability at least $1 - \delta$, S is an ϵ -net.

Intuition. Observe that $|C(S)| \leq {m \choose \leq d} \leq m^d$, for $m \geq 2$ and $d \geq 2$. Hence, if we use the "bogus" union bound, the failure probability would be at most $|C(S)| \cdot e^{-\epsilon m} \leq m^d \cdot e^{-\epsilon m}$. When m is large enough as specified, this quantity is less than δ .

3 Conditional Probability and Expectation as Random Variables

We see that if (X, C) has VC-dimension d, then the projection of C on some subset $S \subseteq X$ with |S| = m has size $|C(S)| \leq m^d$. When we sample a subset S, we would like to analyze the size of C(S), conditioned on the fact that S is sampled. We need some formal notation to analyze this.

Definition 3.1 (Random Object) Suppose $\mathcal{P} = (\Omega, \mathcal{F}, Pr)$ is a probability space. A random object W taking values in some set \mathcal{U} is a function $W : \Omega \to \mathcal{U}$. For $u \in \mathcal{U}$, $\{W = u\}$ is the event $\{\omega \in \Omega : W(\omega) = u\}$.

Example.

- 1. A $\{0,1\}$ -random variable is a special case when $\mathcal{U} = \{0,1\}$.
- 2. Suppose we flip a fair coin repeatedly, and W is the outcome of the first 2 flips. In this case, $\mathcal{U} = \{H, T\}^2$.

Definition 3.2 (Conditional Probability as a Random Variable) Suppose $\mathcal{P} = (\Omega, \mathcal{F}, Pr)$ is a probability space, and $A \in \mathcal{F}$ is an event. Let $W : \Omega \to \mathcal{U}$ be a random object. Then, the conditional probability Pr[A|W] can be interpreted in two ways:

1. $Pr[A|W] : \mathcal{U} \to [0,1]$ is a function such that for $u \in \mathcal{U}$, Pr[A|W](u) := Pr[A|W=u].

2. $Pr[A|W] : \Omega \to [0,1]$ is a random variable defined by $Pr[A|W](\omega) := Pr[A|W_{\omega}]$, where $W_{\omega} := \{\omega' \in \Omega : W(\omega') = W(\omega)\}$ is the event that W equals to $W(\omega) \in \mathcal{U}$.

Definition 3.3 (Conditional Expectation as a Random Variable) Suppose $\mathcal{P} = (\Omega, \mathcal{F}, Pr)$ is a probability space, and $Y : \Omega \to \mathbb{R}$ is a random variable. Let $W : \Omega \to \mathcal{U}$ be a random object. Then, the conditional expectation E[Y|W] can be interpreted in two ways:

- 1. $E[Y|W] : \mathcal{U} \to \mathbb{R}$ is a function such that for $u \in \mathcal{U}$, E[Y|W](u) := E[Y|W = u].
- 2. $E[Y|W] : \Omega \to \mathbb{R}$ is a random variable defined by $E[Y|W](\omega) := E[Y|W_{\omega}]$, where $W_{\omega} := \{\omega' \in \Omega : W(\omega') = W(\omega)\}$ is the event that W equals to $W(\omega) \in \mathcal{U}$.

Since the conditional probability Pr[A|W] and the conditional expectation E[Y|W] are random variables themselves, we can take expectation of them.

Fact 3.4 Let the event A, the random variable Y and the random object W be defined as above. Then, E[Pr[A|W]] = Pr[A] and E[E[Y|W]] = E[Y].

Example. Consider the probability space associated with flipping a fair coin repeatedly. Let W be the outcome of the first 2 flips, and Y be the number of flips that a head first appears. As before, we have $\mathcal{U} = \{H, T\}^2$. Consider the conditional expectation E[Y|W].

- 1. We have $E[Y|W = \{H, H\}] = 1$, $E[Y|W = \{H, T\}] = 1$, $E[Y|W = \{T, H\}] = 2$. Finally, $E[Y|\{T, T\}] = 2 + E[Y] = 4$.
- 2. Hence, $E[E[Y|W]] = \frac{1}{4}(1+1+2+4) = 2 = E[Y].$

3.1 Using Conditional Probability to Bound Failure Probability

Recall that we are drawing independent samples from X to form a subset S of size m in the hope that S would be an ϵ -net for the class C of functions. Suppose further that (X, C) has VC-dimension d.

Let A be the event that S is not an ϵ -net under C. In particular, let A_F be the event that for all $x \in S$, F(x) = 0. Recall that $C_{\epsilon} := \{C \in F : E_X[F(x)] \ge \epsilon\}$. We wish to find a good upperbound for $Pr[A] = Pr[\bigcup_{F \in C_{\epsilon}} A_F]$.

Using conditional probability, we have Pr[A] = E[Pr[A|S]]. Observe that if we fix S, then the set S fails for the function $F \in C$ iff S fails for $F' := F |_S \in C(S)$. Hence, $Pr[A|S] = Pr[\cup_{F \in C_{\epsilon}} A_F|S] = Pr[\cup_{F' \in C_{\epsilon}(S)} A_{F'}|S] \leq \sum_{F' \in C_{\epsilon}(S)} Pr[A_{F'}|S]$.

Observe that the summation contains at most $|C_{\epsilon}(S)| \leq |C(S)| \leq m^d$ terms. Hence, it suffices to give a good upperbound on $p^* := \max_{F' \in C_{\epsilon}(S)} Pr[A_{F'}|S]$. However, as we mention before, if we condition on S, there is no more randomness, since $Pr[A_F|S]$ is either 0 or 1. Hence, we can have $p^* = 1$. We shall see next time how we can resolve this by introducing extra randomness in the analysis.

4 Homework Preview

1. VC-dimension of Axis-aligned rectangles.

- (a) Prove that no 5 points on the plane \mathbb{R}^2 can be shattered by the class C of axis-aligned rectangles (that map points inside a rectangle 1 and otherwise 0).
- (b) Compute the VC-dimension of the class C_k of k-dimensional axis-aligned rectangles in \mathbb{R}^k . In particular, you need to find a number d such that there exist d points in \mathbb{R}^k that can be shattered by the C_k , and prove that any d + 1 points in \mathbb{R}^k cannot be shattered by C_k .
- 2. Conditional Expectation. Suppose $Y : \Omega \to \mathbb{R}$ is a random variable and $W : \Omega \to \mathcal{U}$ is a random object defined on the same probability space $(\Omega, \mathcal{F}, Pr)$. Prove that E[Y] = E[E[Y|W]]. You may assume that both Ω and \mathcal{U} are finite.
- 3. Using ϵ -Net for Learning. Suppose X is a set with some underlying distribution D and C is a class of boolean functions on X, and the VC-dimension of (X, C) is d. Moreover, suppose there is some function $F_0 \in C$ that corresponds to some classifier that we wish to learn. The model we have is that we can sample a random $x \in X$ and ask for the value $F_0(x)$. After seeing m such samples S in X, we pick a function $F_1 \in C$ that agrees with F_0 on S. The hope is that F_1 and F_0 would agree on most points in X (according to distribution D).
 - (a) Define another class C' of boolean functions on X such that if S is an ϵ -net under C', and $F \in C$ is a function that disagrees with F_0 on more than ϵ fraction (weighted according to D) of points in X, then there exists some $x \in S$ such that $F(x) \neq F_0(x)$. Prove the VC-dimension of (X, C') for the class C' that you have constructed.
 - (b) How many samples are enough such that with probability at least 1δ the function F_1 returned disagrees with F_0 on at most ϵ weighted fraction of points in X?