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These lecture notes are supplementary materials for the lectures. They are by no means substitutes
for attending lectures or replacement for your own notes!

1 Approximate Counting by Random Sampling

Suppose there is a bag containing red balls and blue balls. You would like to estimate the fraction
of red balls in the bag. However, you are only allowed to sample randomly from the bag with
replacement. The straightforward method is to make T random samples and use the fraction of
red balls in the random samples as an estimate of the true fraction. The question is: how many
samples are enough so that with probability at least 1− δ, our estimate is within a multiplicative
error of 0 < ε < 1 from the true value?

Let Y :=
∑

τ∈[T ] Zτ , where Zτ is the {0, 1}-random variable that takes value 1 if the τth sample is

red. The estimator is Y
T . Suppose the true fraction of red balls in the bag is p. Then, by Chernoff

Bound,

Pr[| 1
T
Y − p| ≥ εp] = Pr[|Y − E[Y ]| ≥ εE[Y ]] ≤ 2 exp(−1

3
ε2Tp).

In order for this probability to be less than δ, it is enough to have T = Θ( 1
pε2

log 1
δ ). If p is very

small, then we would need a lot of samples.

1.1 Counting DNF Satisfying Assignments

Definition 1.1 A formula φ in disjunctive normal form consists of disjunction of clauses in n
Boolean variables x1, x2, . . . , xn: φ = ∨m−1j=0 Cj, where each clause Cj is a conjunction of literals.
Given an assignment of variables, a DNF formula is satisfied if at least one clause Cj is satisfied.
A clause Cj is satisfied if all literals in Cj evaluate to TRUE.

Observe that while it is hard to find a satisfying assignment for a CNF formula, it is easy to satisfy
a DNF formula. However, the problem of finding the total number of satisfying assignments for a
DNF formula is #P complete, which means it is believed that there is no polynomial time algorithm
that can give the exact number of satisfying assignments.

Is it possible to get an estimate with multiplicative error ε by random sampling?

Note that there are totally 2n assignments and an assignment can be sampled uniformly at random
with n independent bits. Note that if there are L satisfying assignments, then the fraction of
satisfying assignments is p := L

2n . From the discussion above on estimating the fraction of red balls,
we know that to get an estimate with multiplicative error ε and failure probability at most δ, the
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required number of samples can be as large as Θ( 2n

Lε2
log 1

δ ).

Hence, if L is small, this is no better than trying out all 2n possible assignments. Moreover, since
we do not know the value of L, we cannot even tell how many samples are enough in the first place!

1.2 Importance Counting

Our problem is that the number L of satisfying assignments could be small compared to 2n, the
total number of assignments. Hence, sampling uniformly from all possible assignments is wasteful.
We can do better if we only sample “useful” assignments.

For each clause Cj , let Sj be the set of assignments that satisfy Cj . Observe that if Cj contains
d literals, then in order to satisfy Cj , those d corresponding variables have no freedom, while the
rest of the variables can take any values. Hence, in this case |Sj | = 2n−d, and we can see it is easy
to sample from Sj : we just need n− d independent random bits.

For each j, we define Ŝj := {(j, a) : a ∈ Sj}. For each assignment satisfying Cj , we attach an extra

tag specifying that it satisfies clause Cj . Let S := ∪j∈[m]Sj and Ŝ := ∪j∈[m]Ŝj . Also, let L := |S|
and N := |Ŝ| So, an assignment appears in Ŝ as many times as the number of clauses it satisfies.
Observe the following.

1. For each j, we can compute |Ŝj | = |Sj |, and hence we can compute N := |Ŝ|. However, it is
L := |S| that we want to estimate.

2. We can generate a uniform random sample from Ŝj by first generating a sample from Sj .

3. Observe that p := L
N ≥ maxj

|Sj |∑
k |Sk| ≥

1
m .

Remark 1.2 Suppose we can sample a {0, 1}-random variable X that takes value 1 with proba-
bility exactly p := L

N . Then, by Chernoff Bound, with failure probability at most δ, the value of p
and hence that of |S| can be estimated with multiplicative error ε by drawing Θ( 1

pε2
log 1

δ ) samples

of X. Since we know 1
p ≤ m, we conclude that O(m

ε2
log 1

δ ) samples are enough, even though we do
not know the value of p.

Sampling Uniformly at Random from Ŝ. Note that a pair (j, a) ∈ Ŝ can be sampled uniformly
at random by the following procedure.

1. Pick j ∈ [m] with probability
|Ŝj |
|Ŝ|

.

The expected number of random bits required is O(log2 |Ŝ|) = O(n+ logm)

2. Pick a satisfying assignment a ∈ Sj uniformly at random. The number of random bits required
is at most n.

Sampling X ∈ {0, 1} with mean L
N . We are going to describe how to sample such a random

variable X. First, define for each assignment a ∈ S, j(a) := min{j : a ∈ Sj}. If a ∈ Sj , this means
a satisfies at least one clause, and j(a) corresponds to the clause with the smallest index that it
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satisfies. Note that given a, we just need to test, starting from the smallest j, whether it satisfies
Cj . This takes O(nm) time. Here is the description of the sampling procedure.

1. Pick (J,A) uniformly at random from Ŝ.

2. If J = j(A), then set X := 1; otherwise, set X := 0.

Claim 1.3 Pr[X = 1] = L
N .

Proof: Let N := Ŝ. Suppose we index the assignments in S by {al : l ∈ [L]}. For each l, let Nl

be the number of clauses that al satisfies. Note that N =
∑

l∈[L]Nl =
∑

j∈[m] |Sj |.

Pr[X = 1] = Pr[J = j(A)]

=
∑
l∈[L]

Pr[A = al ∧ J = j(A)]

=
∑
l∈[L]

Pr[A = al] · Pr[J = j(A)|A = al]

=
∑
l∈[L]

Nl

N
· 1

Nl

=
L

N

2 Hoeffding’s Inequality

We study another measure concentration inequality.

Theorem 2.1 Suppose X1, X2, . . . , Xn are independent real-valued random variables, such that for
each i, Xi takes values from the interval [ai, bi]. Let Y :=

∑
iXi. Then, for all α > 0,

Pr[|Y − E[Y ]| ≥ nα] ≤ 2 exp(− 2n2α2∑
iR

2
i
),

where Ri := bi − ai.
Note that the main differences from the Chernoff Bound are:

1. We are giving an upperbound for the event |Yn −E[Yn ]| ≥ α. Hence, when all Xi are identically
distributed, Y

n is an estimator for E[Xi], and we are dealing with additive error (as opposed
to multiplicative error).

2. Each random variable Xi takes continuous values (as opposed to {0, 1}).

3. The mean of Xi does not appear in the upperbound. This would turn out to be useful for
sampling, when we do not know the mean of Xi in advance.
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Again, we use the technique of moment generating function to prove the Hoeffding’s Inequality.
For simplicity, we prove a slightly weaker result:

Pr[|Y − E[Y ]| ≥ nα] ≤ 2 exp(− n2α2

2
∑

iR
2
i
).

Once again, here are the three steps.

2.1 Transform the Inequality into a Convenient Form

We use the inequality Pr[|Y −E[Y ]| ≥ nα] ≤ Pr[Y −E[Y ] ≥ nα] +Pr[Y −E[Y ] ≤ −nα], and give
bounds for the two probabilities separately. Here, we consider Pr[Y −E[Y ] ≥ nα]. The other case
is similar.

Observe that the expectation of Y does not appear in the upperbound. It would be more convenient
to first translate the variable Xi. Define Zi := Xi − E[Xi]. Observe that E[Zi] = 0. Moreover,
since both Xi and E[Xi] are in the interval [ai, bi], it follows that Zi takes values in the interval
[−Ri, Ri].
For t > 0, we have

Pr[Y − E[Y ] ≥ nα] = Pr[t
∑

i Zi ≥ tnα].

2.2 Using Moment Generating Function and Independence

Applying the exponentiation function to both sides of the inequality, we follow the standard calcu-
lation, using independence of the Zi’s.

Pr[t
∑
i

Zi ≥ tnα] = Pr[exp(t
∑
i

Zi) ≥ exp(tnα)]

≤ exp(−tnα) · E[exp(t
∑
i

Zi)]

≤ exp(−tnα) ·
∏
i

E[exp(tZi)]

The next step is the most technical part of the proof. Recall that we want to find some appropriate
function gi(t) such that E[exp(tZi)] ≤ exp(gi(t)). All we know about Zi is that E[Zi] = 0 and Zi
takes value in [−Ri, Ri].
Think of a simple (but non-trivial) random variable that has mean 0 and takes values in [−Ri, Ri].
Consider Ẑi that takes value Ri with probability 1

2 and −Ri with probability 1
2 . Then, it follows

that E[exp(tẐi)] = 1
2(etRi + e−tRi) ≤ exp(12 t

2R2
i ), the last inequality follows from the fact that for

all real x, 1
2(ex + e−x) ≤ e

1
2
x2 .

Therefore, for such a simple Ẑi, we have a nice bound E[exp(tẐi)] ≤ exp(gi(t)), where gi(t) :=
1
2 t

2R2
i .

Using Convexity to Show that the Extreme Points are the Worst Case Scenario. In-
tuitively, Ẑi is the worst case scenario. Since we wish to show measure concentration, it is a

4



bad case if there is a lot of variation for Zi. However, we have the requirement that E[Zi] = 0
and Zi ∈ [−Ri, Ri]. Hence, intuitively, Zi has the most variation if it takes values only at the
extreme points, each with probability 1

2 . We formalize this intuition using the convexity of the
exponentiation function.

Definition 2.2 A function f : R→ R is convex if for all x, y ∈ R and 0 ≤ λ ≤ 1,

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

Fact 2.3 If a function is doubly differentiable and f ′′(x) ≥ 0, then f is convex.

We use the fact that the exponentiation function x 7→ etx is convex. First, we need to express
Zi as a convex combination of the end points, i.e., we want to find 0 ≤ λ ≤ 1 such that Zi =
λRi + (1− λ)(−Ri). We have λ := Zi+Ri

2Ri
.

Using the convexity of the function x 7→ etx, we have

exp(tZi) = exp(t(λRi + (1− λ)(−Ri)))
≤ λ exp(tRi) + (1− λ) exp(−tRi)

= (
1

2
+

Zi
2Ri

) exp(tRi) + (
1

2
− Zi

2Ri
) exp(−tRi).

Take expectation on both sides, and observing that E[Zi] = 0, we have

E[exp(tZi)] ≤ 1
2(exp(tRi) + exp(−tRi)) = E[exp(tẐi)], as required.

2.3 Picking the Best Value for t

We have shown that for all t > 0,

Pr[Y − E[Y ] ≥ nα] ≤ exp(12 t
2
∑

iR
2
i − nαt), and we want to find a value of t that minimizes the

right hand side.

Note that the exponent is a quadratic function in t and hence is minimized when t := nα∑
iR

2
i
> 0.

Hence, in this case, we have

Pr[Y − E[Y ] ≥ nα] ≤ exp(− n2α2

2
∑

iR
2
i
), as required.

2.4 Estimating the Fraction of Red Balls

Using the Hoeffding’s Inequality, with Xi ∈ [0, 1] and E[Xi] = p, we have

Pr[| 1T
∑

iXi − p| ≥ α] ≤ 2 exp(−2Tα2).

Hence, in order to estimate the fraction of red balls with additive error at most α and failure
probability at most δ, it suffices to use T = Θ( 1

α2 log 1
δ ).

3 Homework Preview

1. Integration by Sampling. Suppose we are given an integrable function f : [0, 1]→ [0,M ],
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and we wish to estimate the integral I(f) :=
∫ 1
0 f(x)dx. We only have black box access to

the function f : this means that we are given a box such that when we provide it with a
real number x, the box returns the value f(x). Moreover, we assume the real computation
model. In particular, we assume that storing a real number takes constant space, and basic
arithmetic and comparison operator (≤) take constant time. Suppose we are also given a
random number generator Rand[0,1] that returns a number uniformly at random from [0,1],
and subsequent runs of Rand[0,1] are independent. The goal is to design an algorithm that
given black box access to a function f : [0, 1] → [0,M ] and parameters 0 < ε, δ < 1, return
an estimate of I(f) with additive error at most ε and failure probability at most δ.

(a) Show that this is not achievable by a deterministic algorithm. In particular, show that
for any deterministic algorithm A, there is some function f such that the algorithm A
returns an answer with additive error M

2 .

(b) Using the random generator Rand[0,1], design a randomized algorithm to achieve the
desired goal. Give the number of black box accesses to the function f and the number
of accesses to Rand[0,1] used by your algorithm.

2. Estimating the (Unknown) Fraction of Red Balls. Suppose a bag contains an unknown
number of red balls (assume there is at least one red ball) and you are only allowed to sample
(with replacement) uniformly at random from the bag. Design an algorithm that, given
0 < ε, δ < 1, with failure probability at most δ, returns an estimate of the fraction of red balls
with multiplicative error at most ε, i.e., if the real fraction is p, the algorithm returns a
number p̂ such that |p̂−p| ≤ εp. Give the number of random samples used by your algorithm.
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