CSIS0351/8601: Randomized Algorithms
Lecture 4: Chernoff Bound: Measure Concentration
Lecturer: Hubert Chan
Date: 30 Sept 2010

These lecture notes are supplementary materials for the lectures. They are by no means substitutes for attending lectures or replacement for your own notes!

1 Measure Concentration

As we have seen in the previous lectures, the objective function of a problem can be expressed as some random variable Y, and we analyze the performance of a randomized algorithm in terms of the expectation (or mean) $E[Y]$. We often wish to show that with a large probability, the random variable Y is near its mean $E[Y]$. We see that if Y is a sum of independent random variables, then this is indeed the case. This phenomenon is known as measure concentration.

1.1 Example: Chebyshev's Inequality

Suppose $X_{0}, X_{1}, \ldots, X_{n-1}$ are independent $\{0,1\}$-random variables such that for each $i, \operatorname{Pr}\left(X_{i}=\right.$ 1) $=p$ and $\operatorname{Pr}\left(X_{i}=0\right)=1-p$. Let $Y:=\sum_{i} X_{i}$. We have $E[Y]=n p$.

Remark 1.1 By using pairwise independence of the X^{\prime} 's, we have $\operatorname{var}[Y]=n p(1-p)$.
Using the Chebyshev's Inequality, we have for $0<\epsilon<1$,

$$
\operatorname{Pr}(|Y-E[Y]| \geq \epsilon E[Y]) \leq \frac{\operatorname{var}[Y]}{(\epsilon E[Y])^{2}}=\frac{1-p}{\epsilon^{2} p} \cdot \frac{1}{n}
$$

We have only used the fact that any two different random variables X_{i} and X_{j} are independent. The goal is to show that if we fully exploit the fact that all the random variables $X_{0}, X_{1}, \ldots, X_{n-1}$ are independent of one another, we can obtain a much better result.

Theorem 1.2 (Basic Chernoff Bound) Suppose Y is the sum of n independent $\{0,1\}$-random variables X_{i} 's such that for each $i, \operatorname{Pr}\left(X_{i}=1\right)=p$. Let $\mu:=E[Y]=n p$. Then, for $0<\epsilon<1$,

$$
\operatorname{Pr}(|Y-E[Y]| \geq \epsilon E[Y]) \leq 2 \exp \left\{-\frac{1}{3} \epsilon^{2} n p\right\} .
$$

2 Using Moment Generating Function

The bound in Theorem 1.2 measures, in terms of $E[Y]$, how far the random variable Y is away from its mean $E[Y]$. One can instead measure this in terms of the total number of random variables n, i.e., one wants to analyze the probability $\operatorname{Pr}(|Y-E[Y]| \geq \epsilon n)$. Of course, a different bound would be obtained. There are a number of variations of this inequality: Hoeffding's Inequality, Azuma's Inequality, McDiarmid's Inequalities. Each one of them has slightly different assumptions, and it would be confusing to learn them separately. Fortunately, there is a generic method to obtain all
of them: the method of moment generating function.
We describe in general terms. Suppose $X_{0}, X_{1}, \ldots, X_{n-1}$ are independent random variables. They can take any value (not necessarily in $\{0,1\}$), and need not even be identically distributed. Let $Y:=\sum_{i} X_{i}$ and $\mu:=E[Y]$. The goal is to give an upper bound on the probability $\operatorname{Pr}[|Y-\mu| \geq \alpha]$, for some value $\alpha>0$. We outline the steps in the following.

2.1 Transform the Inequality into a Convenient Form

We first use the union bound:

$$
\begin{equation*}
\operatorname{Pr}[|Y-\mu| \geq \alpha] \leq \operatorname{Pr}[Y-\mu \geq \alpha]+\operatorname{Pr}[Y-\mu \leq-\alpha] . \tag{2.1}
\end{equation*}
$$

We bound each of the term on the right hand side separately. Recall that $Y:=\sum_{i} X_{i}$. Sometimes it would be convenient to first rescale each random variable X_{i}. For example,

1. $Z_{i}:=X_{i}$. The simplest case. We can just work with X_{i}.
2. $Z_{i}:=X_{i}-E\left[X_{i}\right]$. We have $E\left[Z_{i}\right]=0$.
3. $Z_{i}:=\frac{X_{i}}{R}$. If X_{i} is in the range $[0, R]$, then we now have $Z_{i} \in[0,1]$.

Since the X_{i} 's are independent, the Z_{i} 's are also independent. After the transformation, the two terms in (2.1) have the form
(i) $\operatorname{Pr}\left[\sum_{i} Z_{i} \geq \beta\right]$, or
(ii) $\operatorname{Pr}\left[\sum_{i} Z_{i} \leq \beta\right]$.

Note that the β in each case is different. The direction of the inequality is also different. We use a trick to turn both inequalities into the same form. In case (i), let $t>0$; in case (ii), let $t<0$. Now, both inequalities have the same form

$$
\begin{equation*}
\operatorname{Pr}\left[t \sum_{i} Z_{i} \geq t \beta\right] \tag{2.2}
\end{equation*}
$$

The value t would be chosen later to get the best possible bound. Note that we have to remember whether t is positive or negative.

Example.

As part of the Basic Chernoff Bound, suppose we wish to consider the part $\operatorname{Pr}[Y-\mu \leq-\epsilon \mu]$. In this case, we just let $Z_{i}:=X_{i}$ and let $t<0$ to obtain
$\operatorname{Pr}[Y-\mu \leq-\epsilon \mu]=\operatorname{Pr}\left[t \sum_{i} X_{i} \geq t(1-\epsilon) \mu\right]$.

2.2 Using Moment Generating Function and Independence

Notation: we write $\exp (x)=e^{x}=\sum_{i=0}^{\infty} \frac{x^{i}}{i!}$.
Observe that the exponentiation function is strictly increasing, i.e. $x<y$ iff $\exp (x) \leq \exp (y)$. Hence,
$\operatorname{Pr}\left[t \sum_{i} Z_{i} \geq t \beta\right]=\operatorname{Pr}\left[\exp \left(t \sum_{i} Z_{i}\right) \geq \exp (t \beta)\right]$.
Notice that now both sides of the inequality are positive. Hence, by Markov's Inequality, we have $\operatorname{Pr}\left[\exp \left(t \sum_{i} Z_{i}\right) \geq \exp (t \beta)\right] \leq \exp (-t \beta) E\left[\exp \left(t \sum_{i} Z_{i}\right)\right]$.
The next step is where we use the fact that the Z_{i} 's are independent:
$E\left[\exp \left(t \sum_{i} Z_{i}\right)\right]=\prod_{i} E\left[\exp \left(t Z_{i}\right)\right]$.
Definition 2.1 Given a random variable Z, the moment generating function is given by the mapping $t \mapsto E\left[e^{t Z}\right]$.
Hence, it suffices to find an upper bound for $E\left[e^{t Z_{i}}\right]$, for each i.
Remark 2.2 We wish to find an upper bound of the form $E\left[e^{t Z_{i}}\right] \leq \exp \left(g_{i}(t)\right)$ for some appropriate function $g_{i}(t)$. Note that this is often the most technical part of the proof, and requires tools from calculus.
Hence, we obtain the bound
$\operatorname{Pr}\left[t \sum_{i} Z_{i} \geq t \beta\right] \leq \exp (-t \beta) \prod_{i} E\left[e^{t Z_{i}}\right] \leq \exp (-t \beta) \prod_{i} \exp \left(g_{i}(t)\right)=\exp \left(-t \beta+\sum_{i} g_{i}(t)\right)=$ $\exp (g(t))$,
where $g(t):=-t \beta+\sum_{i} g_{i}(t)$.

Example.

Continuing with our example, if $Z_{i}=X_{i}$ is a $\{0,1\}$-random variable such that $\operatorname{Pr}\left(X_{i}=1\right)=p$, then we have
$E\left[e^{t Z_{i}}\right]=(1-p) \cdot e^{0}+p \cdot e^{t}=1+p\left(e^{t}-1\right) \leq \exp \left(p\left(e^{t}-1\right)\right)$,
where we have used the inequality $1+x \leq e^{x}$, for all real numbers x.
Hence,
$\operatorname{Pr}\left[t \sum_{i} X_{i} \geq t(1-\epsilon) \mu\right] \leq \exp \left\{-t(1-\epsilon) \mu+n p\left(e^{t}-1\right)\right\}=\exp (g(t))$,
where $g(t):=\mu\left(e^{t}-t(1-\epsilon)-1\right)$.

2.3 Find the Best Value for t to Minimize $g(t)$

We find the value t that minimizes the function $g(t):=-t \beta+\sum_{i} g_{i}(t)$. Be careful to remember whether t is positive or negative!

Example.

In our example, we have $g(t):=\mu\left(e^{t}-t(1-\epsilon)-1\right)$.

Note that $g^{\prime}(t)=\mu\left(e^{t}-(1-\epsilon)\right)$ and $g^{\prime \prime}(t)=\mu e^{t}>0$. It follows that g attains its minimum when $g^{\prime}(t)=0$, i.e., when $t=\ln (1-\epsilon)<0$.
We check that in our example, $t<0$. So, we can set the value $t:=\ln (1-\epsilon)$. Using the expansion for $0<\epsilon<1,-\ln (1-\epsilon)=\sum_{i \geq 1} \frac{\epsilon^{i}}{i}$, we have $g(\ln (1-\epsilon)) \leq-\frac{\epsilon^{2} \mu}{2}=-\frac{\epsilon^{2} n p}{2}$.
So, we have one part of the Basic Chernoff Bound,
$\operatorname{Pr}[Y-\mu \leq-\epsilon \mu] \leq \exp \left(-\frac{\epsilon^{2} n p}{2}\right) \leq \exp \left(-\frac{\epsilon^{2} n p}{3}\right)$.
Theorem 2.3 Suppose $X_{0}, X_{1}, \ldots, X_{n-1}$ are independent $\{0,1\}$-random variables, each having expectation p. Let $Y:=\sum_{i} X_{i}$ and $\mu:=E[Y]$.
Then, for $0<\epsilon<1, \operatorname{Pr}[Y \leq(1-\epsilon) \mu] \leq \exp \left(-\frac{\epsilon^{2} \mu}{2}\right)$.

3 The Other Half of Chernoff

To complete the proof of the Chernoff Bound, one also needs to obtain an upper bound for $[Y-\mu \geq$ $\epsilon \mu]$. The same technique of moment generating function can be applied. The calculations might be different though. We would leave the details as a homework problem.
Lemma 3.1 Suppose $X_{0}, X_{1}, \ldots, X_{n-1}$ are independent $\{0,1\}$-random variables, each having expectation p. Let $Y:=\sum_{i} X_{i}$ and $\mu:=E[Y]$.
Then, for all $\epsilon>0, \operatorname{Pr}[Y \geq(1+\epsilon) \mu] \leq\left(\frac{e^{\epsilon}}{(1+\epsilon)^{1+\epsilon}}\right)^{\mu}$.
Corollary 3.2 For $0<\epsilon<1$, using the inequality $(1+\epsilon) \ln (1+\epsilon) \geq \epsilon+\frac{\epsilon^{2}}{3}$, we have:
$\operatorname{Pr}[Y \geq(1+\epsilon) \mu] \leq \exp \left(-\frac{\epsilon^{2} \mu}{3}\right)$.
Corollary 3.3 (Chernoff Bound with Large ϵ) For all $\epsilon>0$, using the inequality $\ln (1+\epsilon)>$ $\frac{2 \epsilon}{2+\epsilon}$, we have:
$\operatorname{Pr}[Y \geq(1+\epsilon) \mu] \leq \exp \left(-\frac{\epsilon^{2} \mu}{2+\epsilon}\right)$.

4 2-Coloring Subsets: Revisited

Consider a finite set U and subsets $S_{1}, S_{2}, \ldots, S_{m}$ of U such that each S_{i} has size $\left|S_{i}\right|=l$, where $l>12 \ln m$. Is it possible to color each element of U red or blue such that each set S_{i} contains roughly the same number of red and blue elements?

Proposition 4.1 Fix a subset S_{i}, let X_{i} be the number of red elements in S_{i}.
Then, $\operatorname{Pr}\left[\left|X_{i}-\frac{l}{2}\right| \geq \sqrt{3 l \ln m}\right] \leq \frac{2}{m^{2}}$.
Proof: Note that $E\left[X_{i}\right]=\frac{l}{2}$. By Chernoff Bound, for $0<\epsilon<1$,
$\operatorname{Pr}\left[\left|X_{i}-\frac{l}{2}\right| \geq \epsilon E\left[X_{i}\right]\right] \leq 2 \exp \left(-\frac{1}{3} \epsilon^{2} E\left[X_{i}\right]\right)$.
Substituting $\epsilon:=\sqrt{\frac{12 \ln m}{l}}<1$, we have the result.

Corollary 4.2 By the union bound, $\operatorname{Pr}\left[\exists i,\left|X_{i}-\frac{l}{2}\right| \geq \sqrt{3 l \ln m}\right] \leq \frac{2}{m}$.

$5 n$ Balls into n Bins: Load Balancing

Suppose one throws n balls into n bins, independently and uniformly at random. We wish to analyze the maximum number of balls in any single bin. A similar situation arises when there are n jobs independently and randomly assigned to n machines, and we wish to analyze the number of jobs assigned to the busiest machine.
Consider the first bin, and let Y_{1} be the number of balls in it. Note that Y_{1} is a sum of n independent $\{0,1\}$-random variables, each having expectation $\frac{1}{n}$.
Proposition 5.1 $\left.\operatorname{Pr}\left[Y_{1} \geq 4 \ln n+1\right] \leq \frac{1}{n^{2}}\right]$.
Proof: Observe that $E\left[Y_{1}\right]=1$, we use Chernoff Bound with large $\epsilon>0$ (Corollary 3.3). We have:
$\operatorname{Pr}\left[Y_{1} \geq 1+\epsilon\right] \leq \exp \left(-\frac{\epsilon^{2}}{2+\epsilon}\right)$.
We wish to find a value for ϵ so that the last quantity is at most $\frac{1}{n^{2}}$.
For $\epsilon \geq 2$, we have $\frac{\epsilon^{2}}{2+\epsilon} \geq \frac{\epsilon^{2}}{2 \epsilon}=\frac{\epsilon}{2}$. Hence, the last quantity is at most $\exp \left(-\frac{\epsilon}{2}\right)$, which equals $\frac{1}{n^{2}}$, if we set $\epsilon:=4 \ln n \geq 2$.

Corollary 5.2 Using union bound, the probability that there exists a bin with more than $1+4 \ln n$ balls is at most $\frac{1}{n}$.

6 Homework Preview

1. The Other Half of Chernoff. Suppose $X_{0}, X_{1}, \ldots, X_{n-1}$ are independent $\{0,1\}$-random variables, each having expectation p. Let $Y:=\sum_{i} X_{i}$ and $\mu:=E[Y]$. Using the method of moment generating function, prove the following.
For all $\epsilon>0, \operatorname{Pr}[Y-\mu \geq \epsilon \mu] \leq\left(\frac{e^{\epsilon}}{(1+\epsilon)^{1+\epsilon}}\right)^{\mu}$.
2. n Balls into n Bins (Revisited). Using the Chernoff Bound from the previous question, we can obtain a better bound for the balls and bins problem. Suppose n balls are thrown independently and uniformly at random into n bins. Let Y_{1} be the number of balls in the first bin.
(a) Find a number N in terms of n such that $\operatorname{Pr}\left[Y_{1} \geq N\right] \leq \frac{1}{n^{2}}$. Please give the exact form and do not use big O notation for this part of the question.
(Hint: if you need to find a number W such that $W \ln W \geq \ln n$, try setting $W:=\frac{\lambda \ln n}{\ln \ln n}$, for some constant $\lambda>0$. You can also assume that n is large enough, say $n \geq 100$.)
(b) Show that with probability at least $1-\frac{1}{n}$, no bin contains more than $\Theta\left(\frac{\log n}{\log \log n}\right)$ balls.
