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Abstract

We study the online submodular maximization problem
with free disposal under a matroid constraint. Elements
from some ground set arrive one by one in rounds,
and the algorithm maintains a feasible set that is
independent in the underlying matroid. In each round
when a new element arrives, the algorithm may accept
the new element into its feasible set and possibly remove
elements from it, provided that the resulting set is still
independent. The goal is to maximize the value of
the final feasible set under some monotone submodular
function, to which the algorithm has oracle access.

For k-uniform matroids, we give a deterministic
algorithm with competitive ratio at least 0.2959, and the
ratio approaches 1

α∞
≈ 0.3178 as k approaches infinity,

improving the previous best ratio of 0.25 by Chakrabarti
and Kale (IPCO 2014), Buchbinder et al. (SODA 2015)
and Chekuri et al. (ICALP 2015). We also show that
our algorithm is optimal among a class of deterministic
monotone algorithms that accept a new arriving element
only if the objective is strictly increased.

Further, we prove that no deterministic monotone
algorithm can be strictly better than 0.25-competitive
even for partition matroids, the most modest general-
ization of k-uniform matroids, matching the competi-
tive ratio by Chakrabarti and Kale (IPCO 2014) and
Chekuri et al. (ICALP 2015). Interestingly, we show
that randomized algorithms are strictly more powerful
by giving a (non-monotone) randomized algorithm for
partition matroids with ratio 1

α∞
≈ 0.3178.

Finally, our techniques can be extended to a more
general problem that generalizes both the online sub-
modular maximization problem and the online bipar-
tite matching problem with free disposal. Using the
techniques developed in this paper, we give constant-
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competitive algorithms for the submodular online bi-
partite matching problem.

1 Introduction

We study online submodular maximization with free
disposal under a matroid constraint. Let Ω be the
ground set of elements, f : 2Ω → R+ be a non-
negative submodular objective function, and I ⊆ 2Ω be
a collection of feasible subsets in Ω that the algorithm
can choose from. The goal is to find S ∈ I such that
f(S) is maximized. In this paper, we focus on the case
when I forms a matroid, i.e., a set of elements S is
feasible if it is independent with respect to the matroid.

The offline version [51, 52] has been extensively
studied due to its many applications, such as the
maximum coverage problem with group budget con-
straints [16, 45], the separable assignment problem [30,
31, 12], the assignment learning problem [36, 37], the se-
quence optimization problem [20], and the submodular
welfare maximization probelm [54, 24, 21].

In the online version (without free disposal), the
elements in Ω arrive in rounds in an arbitrary order.
The algorithm maintains a feasible set S ∈ I, which
is initially empty. In each round, the algorithm must
irrevocably decide whether to add the arriving element
u into S (provided that S+u ∈ I) without knowing the
future elements. We assume the algorithm has value
oracle access to function f on any subset of elements
arrived so far. However, this version of the problem
has no non-trivial competitive ratio even for the simple
constraint |S| ≤ 1.1

Buchbinder et al. [11] explicitly considered the on-
line version with free disposal2. In this model, in each
round, the algorithm may also remove elements from
its current feasible set S, as well as adding the new

1Consider a sequence of elements with value 1, ρ, ρ2, . . . , ρn for
some ρ� 1 and n unknown to the algorithm.

2The terms free disposal [25] and preemption [11] have both
been used in the literature. We will use free disposal throughout
this paper.



arriving element into S, as long as the resulting S is
still in I. (However, elements that have not been cho-
sen at their arrival, or have been disposed of cannot
be retrieved back.) They pointed out that a result by
Chakrabarti and Kale [13] implies a 0.25-competitive
algorithm for maximizing monotone submodular func-
tions online under a k-uniform matroid constraint, i.e.,
for some positive integer k, I consists of all subsets
with cardinalities at most k. Buchbinder et al. [11] also
proposed a different 0.25-competitive algorithm which
leads to a 0.0893-competitive randomized algorithm for
non-monotone submodular functions under a k-uniform
matroid constraint. They also showed several hardness
results for various settings.
Streaming Model. Chakrabarti and Kale [13] and
Chekuri et al. [15] considered streaming version of this
problem in which the algorithm has limited memory.
They consider even more general independent systems
than matroids, and their algorithms for the case of
matroids can be interpreted as an online algorithm with
free disposal that is 0.25-competitive. We summarize
the previous results in Table 1.

Matroid Objective Algorithm Hardness

k-Uniform
Monotone 0.25 [11, 13, 15] 0.5 [11]
General 0.0893 [11] 0.438 [11]

General
Monotone 0.25 [13, 15] 0.5 [11]
General - 0.438 [11]

Table 1: A summary of previous results

Our Contributions. We make contribution to the
problem by improving both the upper and lower bounds
on the competitive ratios in various settings. A sum-
mary is given in Table 2.
Monotone Algorithm. A deterministic algorithm
is monotone if, after each round, it either keeps the
same the set of chosen elements, or makes changes
that strictly increase the objective (see the precise
Definition 2.1).

Why monotone algorithms? First of all, monotonic-
ity of algorithms is a natural requirement for some ap-
plications. Consider the example of managing a soccer
team proposed by Buchbinder et al. [11]. It would be
difficult to talk the board and the fan base into a trans-
fer of players without immediate benefits to the team.
Further, to our knowledge, all known algorithms in the
literature for monotone submodular objectives are de-
terministic and monotone. Hence, it would be interest-
ing to fully understand the potential of this family of
algorithms.

Our first contribution is an improved algorithm

for the case of k-uniform matroids. We propose a
deterministic monotone algorithm (Section 3) that is
at least 0.2959-competitive for monotone submodular
functions, improving the previous ratio of 0.25 [11,
13, 15]. As k tends to infinity, our competitive ratio
approaches 1

α∞
≈ 0.3178 (from below), where α∞ is the

unique root of α = eα−2 that is greater than 1. Further,
we obtain a matching hardness result (Section 5) in the
sense that for any ε > 0, there is some sufficiently large
k > 0 such that no deterministic monotone algorithm
has competitive ratio at least 1

α∞
+ ε under a k-uniform

matroid constraint.
For general matroids, we show that no determin-

istic monotone algorithm is strictly better than 0.25-
competitive even for partition matroids, the most mod-
est generalization of k-uniform matroids (Section 6).
Our hardness result matches the competitive ratio by
[13, 15].
Randomized Algorithms on Partition Ma-
troids. Given the hardness for deterministic monotone
algorithms, it is natural to ask whether we could get
a better competitive ratio using randomized (and non-
monotone) algorithms. We consider the setting that the
adversary first fixes the arrival order before the algo-
rithm samples its randomness. We give affirmative an-
swer to this question for the case of partition matroids.
While a partition matroid can be viewed as a union
of disjoint uniform matroids, our k-uniform algorithm
fails to generalize directly due to the case of a union
of 1-uniform matroids. We handle a single 1-uniform
matroid using the trivial algorithm that keeps the most
valuable element, but this trick no longer works when
there is a union of many 1-uniform matroids.

Our high-level idea is to use randomized algorithms
to effectively allow picking only a fraction of each
element and, thus, treating each partition as effectively
having large size (with respect to tiny fractions of the
elements). There are some technical obstacles. First of
all, any rounding scheme that does not incur an intrinsic
loss in the objective, e.g., pipage rounding [1, 33], fails
to work in the online setting. As a result, we settle
for an online rounding scheme that loses a 1− 1

e factor
in the objective in the worst case. However, due to
the intrinsic loss from rounding, a näıve competitive
analysis gives only the product of 1

α∞
and 1− 1

e which

is smaller than 1
4 . We avoid losing an extra 1 − 1

e
factor observing that the scenario that gives rise to a

1
α∞

ratio for the fractional algorithm and the scenario

that incurs a rounding loss of 1 − 1
e do not occur

simultaneously. To instantiate this observation, we
introduce a novel inequality (Lemma 4.5) that allows
us to directly compare the optimal objective and the
expected value of f for the fractional solution after the



Matroid
Algorithm Hardness for Det. Alg.

Det. Alg. Rand. Alg. General Alg. Monotone Alg.

k-Uniform
Worst k k →∞ 1

α∞
≈ 0.318 0.5 [11]

1
α∞
≈ 0.318

0.296 (Thm. 3.1) 1
α∞
≈ 0.318 (Thm. 5.1)

Partition 0.25 [11, 13, 15] (Thm. 4.1)
0.382 0.25

(Thm. 6.2) (Thm. 6.1)

Table 2: A summary of the main results in this paper. The objective is monotone. The deterministic algorithms
are monotone. The hardness results are with respect to deterministic algorithms.

rounding.
Dichotomy between Deterministic and Random-
ized Algorithms. Our improved competitive ratio
for partition matroids shows that (non-monotone) ran-
domized algorithms are strictly more powerful, as our
randomized algorithm on partition matroids has ratio

1
α∞
≈ 0.3178, which is achieved by our “continuous”

algorithm. Conventional discrete algorithms can ap-
proach this ratio arbitrarily closely.
Extensions. Using the new insights we get for
monotone objectives, we further introduce a randomized
algorithm that is 0.1145-competitive for non-monotone
objectives under uniform matroid constraints (where
details can be found in the full version[14]), improving
the previous 0.0893 ratio [11].
Generalized Online Bipartite Matching. Our
techniques in fact solve a more general problem that
generalizes both the online submodular maximization
problem and the online bipartite matching problem with
free disposal that was first proposed in [25]. In this
submodular online bipartite matching problem, each
offline node corresponds to some agent λ ∈ Λ, and each
online node corresponds to an item u ∈ Ω. Each agent λ
has an evaluation function fλ : 2Ω → R+, and is also
associated with a matroid (Ω, Iλ).

The online submodular maximization problem is
a special case with only one agent, and the online
bipartite matching problem is a special case when
each agent is under a 1-uniform matroid constraint.
We show that our 1

α -competitive deterministic online
algorithm for a single offline node that is defined in
Section 3 (and one for general matroid defined in the
full version[14]) induce 1

α+1 -competitive algorithms for
submodular online bipartite matching (where details are
in the full version[14]).
Streaming Model. In contrast to previous approaches
[11, 13, 15], our improved algorithm (Algorithm 1) for
uniform matroid cannot be fitted into the streaming
model. As we shall see, it is crucial for the algorithm to
remember all the items that have been selected, where
the limited space is insufficient. This might represent a
separation between the streaming and the online version

of the model.
Paper Organization. The monotone algorithm for
a k-uniform matroid is given in Section 3. The ran-
domized algorithm for a partition matroid is given in
Section 4. The hardness results for uniform matroids
and general matroids are given in Section 5 and Sec-
tion 6, respectively. The details for the online algorithm
of the submodular online bipartite matching problem,
and a randomized algorithms for non-monotone objec-
tive functions are supplied in the full version[14]. We
also reprove the 1

4 competitive ratio under a general
matroid for completeness in the full version[14], which
is useful for the submodular online bipartite matching
problem.
Other Related Work. We have already discussed
the related work on online submodular maximization.
There is a vast literature on submodular maximization
in different settings. We will review some of the results
that are most related.

In the offline setting, Buchbinder et al. introduced
a 0.5-approximate randomized algorithm for maximiz-
ing a non-monotone submodular function with no con-
straint [10]. Feige et al. had previously proved that
0.5 is the best possible for this setting [23]. Recently,
Buchbinder and Feldman [9] obtained a determinis-
tic algorithm which also achieves the optimal 0.5 ra-
tio. For a uniform matroid constraint, Nemhauser et
al. [51] showed a (1 − 1

e )-approximate algorithm for
monotone objectives, which is optimal [50]. Feige [22]
further proved that even when the objective is a cov-
erage function, no algorithm can achieve better than
(1 − 1

e ), assuming P 6= NP. For maximizing a mono-
tone submodular function under a general matroid con-
straint, the simple greedy algorithm is 1

2 -approximate
[52]. Călinescu et al. [12] found an algorithm that is
(1 − 1

e )-approximate. Recently, Filmus and Ward [29]
introduced a simpler algorithm with the same ratio. Fi-
nally, for non-monotone objectives under a matroid con-
straint, the best known approximation ratio is 1

e [26],
and the best hardness result is 0.478 [34]. For maximiz-
ing a non-monotone submodular function with multiple
matroid constraints, Lee et al. [47] presented a 1

l+2+ 1
l+ε

-



approximate algorithm under l matroid constraints.
Our work is also closely related to the literature of

submodular matroid secretary problem, which can be
formulated as online submodular maximization without
free disposal but assuming the elements arrive in ran-
dom order. The submodular secretary problem has been
widely studied recently [6, 26, 39, 48], and constant-
competitive algorithms have been found on some spe-
cial cases, such as on a uniform matroid constraint [7],
or when the objective function is to maximize the largest
weighted element in the set [32, 42]. However, there is
no constant ratio for the general submodular matroid
secretary problem till now. Feldman and Zenklusen [28]
reduced the problem to the matroid secretary prob-
lem with linear objective functions, which implies an
O(log log(rank))-competitive algorithm for the submod-
ular matroid secretary problem, matching the current
best result for the matroid secretary problem [46, 27].

There is a long line of research on the online bipar-
tite cardinality matching problem [44, 35, 8, 43, 49], and
the vertex-weighted version [2, 19].

(
1− 1

e

)
-competitive

algorithms are known for both cases. For the most
general edge-weighted version, random arrival order or
free-disposal is necessary for any non-trivial competi-
tive ratio. When online nodes arrive in random order,
Wang et al. [55] discovered an algorithm that is

(
1− 1

e

)
-

competitive; while in the free-disposal model, the same
competitive ratio can only achieved by assuming that
the offline nodes have large capacity [25, 18], or under
the small bid assumption [55]. It remains an impor-
tant open question whether there is an online algorithm
with a competitive ratio unconditionally strictly better
than 1

2 for the free-disposal model of the edge-weighted
problem.

Finally, the buyback problem is similar to our
model, in which there is a cost associated with revo-
cations. The most related work in this literature is
by Babaioff et al. [4, 5], in which a matroid con-
straint is considered. For other buyback works, see e.g.
[17, 40, 41, 53, 3].

2 Preliminaries

We consider elements coming from some ground set Ω,
and a non-negative submodular function f : 2Ω → R+.
We further assume that f is monotone, i.e., S ⊆ T
implies that f(S) ≤ f(T ). Moreover, we assume that
there is a matroid (Ω, I), and, without loss of generality,
every singleton in Ω is independent. Given a ∈ Ω and
S ⊆ Ω, we denote S − a := S \ {a}, S + a := S ∪ {a}
and f(a|S) := f(S+a)− f(S). We assume value oracle
access to the function f and independence oracle access
to the matroid, i.e., given a subset S ⊆ Ω, an oracle
returns the value f(S) and answers whether S ∈ I. For

a positive integer n, we denote [n] := {1, 2, . . . , n}.
Online maximization problem with free disposal.
The algorithm maintains an independent set S, which
is initially empty. Elements from Ω arrive in a finite
sequence, whose length is not known by the algorithm.
In each round when an element u arrives, the algorithm
may remove some elements from S, and may also
include the current element u into S, as long as S
remains independent in I. The objective is to maximize
f(S) at the end of the sequence. We denote by OPT
an independent subset of elements in the sequence
that maximizes the function f . An algorithm has a
competitive ratio r ≤ 1, if at the end of every finite
sequence, the set S satisfies E[f(S)] ≥ r · f(OPT).

Our deterministic algorithm in Section 3 is strictly
monotone in the sense that it accepts an arriving item
only if there is absolute advantage in doing so. This
is formalized in Definition 2.1. Our hardness results
in Section 5 and 6 apply to any strictly monotone
algorithms.

Definition 2.1. (Strict Monotonicity) An algo-
rithm is strictly monotone if, in each round, the algo-
rithm includes the new arriving element into the feasi-
ble set S (and possibly removing some elements from S)
only if the objective value f(S) strictly increases com-
pared to its value at the beginning of the round.

Auxiliary Set and Weight Function. Suppose we
consider some algorithm. Recall that the algorithm
maintains some independent set S. To facilitate the
analysis, at the end of each round, we consider an
auxiliary set A that keeps track of all the elements
that have ever been added into S, but might have been
removed since then. For an element u in the sequence,
at the beginning of the round in which u arrives, let S(u)
be the independent set maintained by the algorithm at
this moment, and let A(u) be the set of elements that
have been added into S (but might have been removed
since then) at this moment.

We remark that the sets S(u) and A(u) are depen-
dent on the algorithm, and so are the following quan-
tities. We denote w(u) := f(u|A(u)) as the marginal
value of u when it arrives with respect to all the ele-
ments that have ever been picked by the algorithm at
this moment. For some element u that was added in
some previous round, we measure its value with respect
to the current set S by wS(u) := f(u|A(u)∩S). In gen-
eral, given a weight function ω : Ω→ R, for T ⊆ Ω, we
denote ω(T ) :=

∑
u∈T ω(u).

Element Naming Convention. For i ≥ 1, let ui
denote the i-th element added to S by the algorithm
(not the element arriving in the i-th round).

Let Si and Ai denote the sets of elements contained



in S and A respectively, where S and A are those at
the end of the round in which ui arrives. We denote the
value function wi := wSi .

Lemma 2.1. (Relating w and f) The functions f
and w satisfy the following for each n ≥ 1.
(a) w(Sn) ≤ wn(Sn) = f(Sn)− f(∅).
(b) w(An) = f(An)− f(∅).

Proof. For statement (a), the inequality follows because
for each v ∈ Sn, w(v) = f(v|A(v)) ≤ f(v|A(v) ∩
Sn) = wn(v), where the inequality holds because f
is submodular. If we write the elements of Sn =
{v1, v2, v3, . . . , } in the order they arrive, then for each
vi ∈ Sn, we have wn(vi) = f(vi|A(vi) ∩ Sn) =
f(vi|{v1, . . . , vi−1}). Hence, a telescoping sum gives
wn(Sn) = f(Sn)− f(∅).

For statement (b), we write the elements of An =
{u1, u2, . . . , un} in the order they arrive, and observe
that w(ui) = f(ui|A(ui)) = f(ui|{u1, . . . , ui−1}).
Hence, a similar telescoping sum gives w(An) = f(An)−
f(∅).

Lemma 2.2. (Monotone wS(u)) Suppose an element
u arrives in some round. Then, in subsequent rounds,
the value wS(u) does not decrease, when S is modified
by the algorithm.

Proof. Observe that in each round, the algorithm may
remove elements from S, and may add the new element
to S. Since the elements in the sequence are distinct, it
follows that in the subsequent rounds after u arrives, the
set A(u) ∩ S can only shrink. Since f is submodular, it
follows that wS(u) := f(u|A(u) ∩ S) does not decrease,
as the algorithm updates S.

3 Improved Algorithm for k-Uniform Matroid

In this section, we consider the special case of a k-
uniform matroid, i.e., a set is independent iff its
cardinality is at most k. Observe that the trivial
algorithm that keeps the singleton with the largest value
achieves ratio 1

k . Since we wish to obtain a ratio better
than 1

4 , we consider k ≥ 4 in this section.
Defining αk. We define αk to be the unique root in
the interval (3, 4) of the equation a = (1 + a−2

k+1 )k+1. We

shall show that the competitive ratio is 1
αk

. It can be

shown that αk is decreasing (see Lemma 3.5). Moreover,
as k tends to infinity, the equation defining αk becomes
a = ea−2, which has root α∞ ≈ 3.14619. For simplicity,
we write α := αk in the rest of this section.
Replacement Condition. The replacement condi-
tion is w(u) > 1

k (α · wS(S)− w(A)). This means that
even when |S| < k, if the arriving element u does not
have enough value w(u), then it will not be accepted.

1 Initialize S and A to empty sets.
2 for each round when u arrives do
3 if w(u) > 1

k (α · wS(S)− w(A)) then
4 if |S| = k then
5 u′ := arg minv∈S wS(v); (element in S

to be replaced)
6 else
7 u′ := ⊥; (no element in S is replaced)
8 S ← S − u′ + u; A← A+ u;

Algorithm 1: Modified Algorithm for k-Uniform
Matroids

When the algorithm decides to accept u, if |S| = k, then
the element u′ in S with minimum value under wS will
be replaced; if |S| < k, for notational convenience, we
set u′ to a dummy element ⊥. The function f can be
extended naturally such that any dummy elements are
ignored, and so wS(⊥) = 0.

An important technical result is the following
Lemma 3.1, which we use to argue about certain mono-
tone properties of our algorithm. Intuitively, it says
that we only accept an element if it is significantly better
than the replaced one. We defer its proof in Section 3.1.

Lemma 3.1. (Monotone Replacement) Suppose at
the beginning of the round when u arrives, the feasible
set is S, and Algorithm 1 includes u and discards u′

(which could be ⊥) from S. Then, w(u) > α
α−1 ·wS(u′).

Observe this implies that w(u) > wS(u′).

Using Lemma 3.1, by showing the following
Lemma 3.2, we can conclude that Algorithm 1 is strictly
monotone.

Lemma 3.2. (Monotonicity) Suppose in each round
the algorithm only replaces u′ (which could be ⊥) in S
with the new u such that w(u) > wS(u′). Then, for any
n ≥ 0, f(Sn+1) > f(Sn).

Proof. We write u = un+1 and denote Sn+1 = Sn−u′+
u, for some u′ ∈ Sn. (We use the convention that a
dummy element ⊥ ∈ Sn and A(⊥) = ∅.)

Then, we have f(Sn+1) = f(Sn−u′)+f(u|Sn−u′) ≥
f(Sn − u′) + f(u|A(u)), where the inequality follows
because Sn − u′ ⊆ A(u) and f is submodular.

We next observe that w(u) = f(u|A(u)). Moreover,
by the hypothesis of the lemma, w(u) > wn(u′) =
f(u′|A(u′) ∩ Sn), because the algorithm replaces u′ by
u. Moreover, since A(u′) ∩ Sn ⊆ Sn − u′ and f is
submodular, we have f(u′|A(u′) ∩ Sn) ≥ f(u′|Sn − u′).

Combining all the inequalities, we have f(Sn+1) ≥
f(Sn−u′)+f(u|A(u)) > f(Sn−u′)+f(u′|A(u′)∩Sn) ≥
f(Sn − u′) + f(u′|Sn − u′) = f(Sn), as required.



Using Lemma 3.1, we also show the following mono-
tone property, which is useful in proving the competitive
ratio.

Lemma 3.3. (Monotone Threshold) The sequence
{α · wn(Sn)− w(An)}n≥0 is monotonically increasing.

Proof. Fix n ≥ 0. Observe that An+1 = An + un+1,
and w(An+1) − w(An) = w(un+1). Hence, to prove
α · wn+1(Sn+1) − w(An+1) ≥ α · wn(Sn) − w(An), it
suffices to show that α · (wn+1(Sn+1) − wn(Sn)) ≥
w(un+1).

We write Sn+1 = Sn − u′ + un+1, where u′ ∈ Sn.
(Again, by convention, if u′ = ⊥ is dummy, we assume
u′ ∈ Sn.)

Observe that α · (wn+1(Sn+1) − wn(Sn)) ≥ α ·
(wn+1(un+1)−wn(u′)) ≥ α · (w(un+1)−wn(u′)), where
the first inequality follows from wn+1 ≥ wn and the
second follows from wn+1(un+1) ≥ w(un+1) (both of
which follows from the submodularity of f). Finally,
Lemma 3.1 implies that α · (w(un+1) − wn(u′)) ≥
w(un+1), which completes the proof.

Theorem 3.1. Algorithm 1 is 1
α -competitive.

Proof. We suppose that the algorithm has included n
elements into A. Then, the feasible solution at the
end is Sn, and we have f(OPT) ≤ f(An ∪ OPT) ≤
f(An) +

∑
u∈ÔPT

f(u|An), where ÔPT := OPT \An are
the elements in an optimal solution that are discarded
immediately in the rounds that they arrive.

For u ∈ ÔPT, by the submodularity of f , f(u|An) ≤
w(u), which, since u is discarded in the round it arrives,
is at most 1

k (α ·wS(u)(S(u))−w(A(u))). This quantity

is at most 1
k (α · wn(Sn)− w(An)), by Lemma 3.3.

Since |ÔPT| ≤ k, we have f(OPT) ≤ f(An) + α ·
wn(Sn)−w(An) ≤ α ·f(Sn)− (α−1) ·f(∅) ≤ α ·f(Sn),
where the second inequality follows from Lemma 2.1.

Corollary 3.1. For monotone f with uniform ma-
troid, there exists a deterministic algorithm with com-
petitive ratio at least mink max{ 1

k ,
1
αk
} = 1

α4
> 0.2959.

3.1 Proof of Lemma 3.1 Define β := α
1
k+1 = 1 +

α−2
k+1 . One can check that kβk+1−(α+k−1)βk+α = 0.

For ease of notation, we assume that there are
k dummy elements {u1, u2, . . . , uk}. The function f
is extended naturally such that any dummy elements
are ignored. For 1 ≤ i ≤ k, we use the convention
that Si = Ai = {u1, u2, . . . , ui}. Therefore, the real
algorithm starts at n = k + 1.

We prove a stronger statement that for all n ≥ k,
we have the following.

(A) If un+1 replaces u′ ∈ Sn (which could be dummy),
then w(un+1) > α

α−1 · wn(u′).
(B) w(An+1) ≥ β · w(An).

Observe that the first k dummy elements ensure
that w(Ai) = 0 for 0 ≤ i ≤ k, and hence statement (B)
actually holds for 0 ≤ n < k.

For contradiction’s sake, we consider the smallest
integer n (at least k) for which at least one of the above
statements does not hold.

We next prove the following claim.
Claim. For all I ⊆ An such that |I| ≤ k, wn(Sn) ≥
w(I).

Proof. By our assumption, for all k ≤ i < n, if ui+1

replaces u′i+1, then w(ui+1) > α
α−1 · wi(u

′
i+1), where

u′i+1 is an element attaining minu∈Si wi(u).
Observe that if an element u stays in the set Sj (for

j ≥ i + 1), then wj(u) does not decrease as j increases
(Lemma 2.2). Moreover, observe that minv∈Sj wj(v) is
non-decreasing as j increases. Hence, for any element
u ∈ Sj , we must have wj(u) ≥ wi(u′i+1) ≥ w(u′i+1).

Hence, it follows that if u ∈ Sn and u′ is an element
that is replaced at some point, then wn(u) ≥ w(u′).

Hence, if we set P := Sn ∩ I, we have wn(Sn) =
wn(P ) + wn(Sn \ P ) ≥ w(P ) + w(I \ P ) = w(I), as
required.

Hence, we can pick I = An \ An−k, and have
wn(Sn) ≥ w(An) − w(An−k) ≥ (1 − 1

βk
)w(An), where

the last inequality holds because w(Ai+1) ≥ β · w(Ai)
holds for i < n. Since the algorithm replaces an element
from Sn with un+1, we have w(un+1) > 1

k (α ·wn(Sn)−
w(An)). Combining this with the above lower bound
for wn(Sn), we have:

w(un+1) >
1

k
· {α(1− 1

βk
)− 1} · w(An)

= (β − 1) · w(An),(3.1)

where the last equality follows from the choice of β.
We first show that statement (B) must hold for n.

From w(An+1)−w(An) = w(un+1) and inequality (3.1),
we have w(An+1) ≥ β · w(An), as required. It remains
to show that statement (A) must also hold for n. We
prove the following lemma.

Lemma 3.4. For all 0 ≤ i ≤ k − 1, minu∈Sn wn(u) ≤
wn−i(Sn−i)

k−i .

Proof. The claim holds trivially for i = 0. We next fix
i > 0.

We next show that for j < n, wj+1(Sj+1) −
wj(Sj) ≤ wj+1(uj+1). When Sj+1 = Sj+uj+1, we have
wj(Sj) = wj+1(Sj), and so equality holds. Suppose



Sj+1 = Sj − u′ + un+1 for some u′ ∈ Sj . Then, from
Lemma 2.1, wj+1(Sj+1)− wj(Sj) = f(Sj+1)− f(Sj) =
f(Sj − u′ + uj+1) − f(Sj) ≤ f(Sj + uj+1) − f(Sj) =
f(uj+1|Sj) ≤ f(uj+1|Sj − u′) = wj+1(uj+1), where the
first inequality follows from the monotonicity of f .

Hence, summing the above inequality over appro-
priate indices, we have

i−1∑
j=0

(wn−j(Sn−j)− wn−j−1(Sn−j−1)) ≤
i−1∑
j=0

wn−j(un−j).

After rearranging, we have wn−i(Sn−i) ≥ wn(Sn)−∑i−1
j=0 wn−j(un−j).

Define P = {0 ≤ j ≤ i − 1 : un−j ∈ Sn} and
Q = {0, 1, . . . , i− 1} \ P .

By Lemma 2.2, for j ∈ P , wn(un−j) ≥ wn−j(un−j).
Hence, we have wn(Sn)−

∑i−1
j=0 wn−j(un−j) ≥ wn(Sn−

{un−j}j∈P )−
∑
j∈Q wn−j(un−j).

Fix j ∈ Q. Observe that in some round l, un−j
is replaced by some element u, where wn−j(un−j) ≤
wl−1(un−j) ≤ minv∈Sl wl(v). The first inequality comes
from Lemma 2.2. Moreover, the minimum weight is
only increasing during the execution of our algorithm,
because when the algorithm needs to replace an element
in S, it will choose arg minv∈S wS(v). Hence, it follows
that wn−j(un−j) ≤ minv∈Sn wn(v). Therefore,

wn−i(Sn−i) ≥ wn(Sn − {un−j}j∈P )−
∑
j∈Q

wn−j(un−j)

≥ (|Sn| − |P | − |Q|) · min
u∈Sn

wn(u)

= (k − i) · min
v∈Sn

wn(v),

as required.

Proving Statement (A). Define γ := (α−2)(α−1)
α · k

k+1 .
Observe that αγ > 2 (see Lemma 3.6(a)).

The easy case is when wn(Sn) ≤ γ · w(An). Then,
from (3.1), we have w(un+1) > (β − 1) · w(An) ≥
β−1
γ ·w(Sn) = α

α−1 ·
w(Sn)
k ≥ α

α−1 ·minv∈Sn wn(v), where
the last inequality comes from Lemma 3.4. Hence, we
can assume wn(Sn) > γ · w(An) from now on. Recall
that since un+1 is selected by the algorithm, we have
w(un+1) > 1

k ·(αwn(Sn)−w(An)) ≥ 1
k ·(αγ−1) ·w(An).

Hence, we next give a lower bound on w(An) with
respect to m := minu∈Sn wn(u).

Suppose 0 < i ≤ n is the smallest integer such
that wn−i(Sn−i) ≤ γ · w(An−i). Such an integer
must exist because the first dummy element implies
that w1(S1) = w(A1) = 0. For 0 ≤ j < i, we
have wn−j(Sn−j) > γ · w(An−j). Since the algorithm
replaces an element from Sn−j with un−j+1, it follows
that w(An−j+1) − w(An−j) = w(un−j+1) ≥ 1

k (α ·
wn−j(Sn−j)− w(An−j)) ≥ 1

k (αγ − 1) · w(An−j).

Define δ := 1 + 1
k (αγ − 1). Hence, for 0 ≤ j < i,

w(An−j+1) ≥ δ · w(An−j).
Define the function ϑ(x) := (1−x)δkx for x ∈ [0, 1],

and λ := 1− 1
k ln δ . Observe that ϑ is increasing on (0, λ)

and decreasing on (λ, 1). Hence, ϑ attains its maximum
at λ. We consider two cases.

Case 1. i ≤ λk. In this case, we have

w(An) ≥ δi−1β · w(An−i) ≥ δi−1β
γ · wn−i(Sn−i) ≥

βk
δγ ·δ

i(1− i
k ) ·m = βk

δγ ·ϑ( ik ) ·m, where the last inequality
follows from Lemma 3.4.

To finish with this case, we have
w(un+1) > 1

k · (αγ − 1) ·w(An) ≥ 1
k · (αγ − 1) · βkδγ ·

ϑ( ik ) ·m ≥ β
δγ · (αγ − 1) · ϑ(0) ·m ≥ α

α−1 ·m, where the

last inequality follows from Lemma 3.6(b).
Case 2. i > λk. In this case, set ` := bλkc. Then,

we have
w(An) ≥ δ` · w(An−`) ≥ δ` · wn−`(Sn−`) ≥ k ·

ϑ( 1
k · bλkc) · m, where the last inequality follows from

Lemma 3.4, and the penultimate inequality follows from
Lemma 2.1 and the monotonicity of f . Hence, to finish
with this case, we have

w(un+1) > (αγ−1) ·ϑ( 1
k ·bλkc) ·m ≥

α
α−1 ·m, where

the last inequality follows from Lemma 3.6(c).
This finishes the proof of statement (A).

Lemma 3.5. (αk Is Decreasing) αk is decreasing
with respect to k.

Proof. Recall that αk is defined to be the unique root
of equation α = (1 + α−2

k+1 )k+1 that is in (3, 4).
We are going to prove that for any 1 ≤ k ≤ k′,

αk ≥ αk′ . Since αk = (1 + αk−2
k+1 )k+1 ≤ (1 + αk−2

k′+1 )k
′+1,

we have (1+ αk−2
k′+1 )k

′+1−αk ≥ 0 = (1+ αk′−2
k′+1 )k

′+1−αk′ .
Observe that the function (1+ x−2

k′+1 )k
′+1−x of x is non-

decreasing when x ≥ 3. Therefore, αk ≥ αk′ .

Lemma 3.6. (Technical Inequalities) We have the
following technical inequalities.
(a) αγ > 2.
(b) β

δγ · (αγ − 1) ≥ α
α−1 .

(c) (αγ − 1) · ϑ( 1
k · bλkc) ≥

α
α−1 .

The proof to Lemma 3.6 is omitted and can be found in
the full version[14].

4 Randomized Algorithm for Partition
Matroid

We consider Ω := ·∪l∈[L]Ωl, which is a disjoint union of
L sets. Suppose for l ∈ [L], capacity kl is associated
with the set Ωl. Then, the partition matroid (Ω, I) is
defined such that a set S ⊂ Ω is independent in I iff
for all l ∈ [L], |S ∩ Ωl| ≤ kl. For an element u ∈ Ω, we



denote l(u) ∈ [L] such that u ∈ Ωl(u). We consider a
monotone submodular f : 2Ω → R+ objective function.

In this section, we consider randomized algorithms
for the online problem. We first define a continuous
variant of the problem and describe a corresponding
online algorithm. We observe in Section 3 that the
competitive ratio for k-uniform matroid is 1

αk
, where

αk approaches the root α∞ ≈ 3.14619 of a = ea−2, as k
tends to infinity. By considering the continuous variant
of the problem, we are essentially considering arbitrarily
large k in order to achieve ratio 1

α∞
. For simplicity, in

this section, we write α := α∞. Moreover, we shall
describe a rounding procedure that gives us an online
randomized algorithm for the original problem.
Continuous Variant. The algorithm maintains a
vector S ∈ RΩ

+ such that initially S = ~0. A vector
S is feasible (with respect to I) if for all l ∈ [L],∑
u∈Ωl

Su ≤ kl. The interpretation is that we can take
a fractional number of copies (even larger than 1) of
an item. When an item u arrives, the algorithm may
increase the coordinate Su corresponding to the item u
and possibly decrease the coordinates Sv for other items
v to maintain feasibility.

The objective function f̂ : RΩ
+ → R+ is induced by

the original function as follows. Given S ∈ RΩ
+, denote

R(S) ⊂ Ω as the random subset sampled by including
each element u ∈ Ω independently with probability
1− exp(−Su). Then, f̂(S) := E[f(R(S))].
Measure Interpretation. We also interpret S as a
subset of the product measure space Ω × R+ (where Ω
has the cardinality measure and R+ has the standard
Lebesgue measure). Specifically, we identify a vector
S ∈ RΩ

+ with the following subset: {(u, t) : u ∈
Ω∧t ∈ (0, Su]}. (We use half-open intervals to make the
rounding description more convenient later.) Observe
that there is a natural 1-1 correspondence between
vectors in RΩ

+ and valid subsets in M(RΩ
+) defined as

follows.

Definition 4.1. (Valid Subset) A subset B ⊂ Ω ×
R+ is valid if for all u ∈ Ω, there exists tu ≥ 0 such that
{u} × (0, tu] ⊆ B and for all t > tu, (u, t) /∈ B.

We use M(RΩ
+) to denote the collection of valid

subsets of Ω× R+.

Observe that valid subsets in M(RΩ
+) are closed

under union and intersection. Hence, it makes sense to
consider the submodularity of the function f̂ interpreted
as having domain M(RΩ

+).

Lemma 4.1. (Monotonicity and Submodularity

of f̂) Suppose f : 2Ω → R+ is monotone and submod-

ular. Then, f̂ : M(RΩ
+) → R+ is also monotone and

submodular.

Proof. This can be proved by a coupling argument.
Suppose ω is sampled from [0, 1]Ω uniformly at random.
Given P ∈ M(RΩ

+), denote Rω(P ) := {u ∈ Ω :

ωu ≤ 1 − exp(−Pu)}. Hence, it follows that f̂(P ) =
Eω[f(Rω(P ))].

Then, the results follows because of the following
facts that can be verified easily for any P,Q ∈ M(RΩ

+)
and ω ∈ Ω.

1. If P ⊆ Q, then Rω(P ) ⊆ Rω(Q).
2. Rω(P ∪Q) = Rω(P ) ∪ Rω(Q).
3. Rω(P ∩Q) = Rω(P ) ∩ Rω(Q).

Hence, the monotonicity and submodularity of f̂
follow from those of f immediately.

It will be clear from the context whether we use
the vector or the measure interpretation for S. For
instance, Su is the u-th coordinate of the vector, and
(u, t) ∈ S means that Su ≥ t. We use ‖S‖ to denote
the measure of S ∈ M(RΩ

+). For l ∈ [L], we denote
S|Ωl := {(u, t) ∈ S : u ∈ Ωl}. Then, the feasibility of S
can be expressed as ‖S|Ωl‖ ≤ kl for all l ∈ [L].
Increment. Given valid B ∈ M(RΩ

+), an element
u ∈ Ω and t ≥ 0, we use B ⊕ (u, [t]) := B ∪ ({u} ×
(B(u), B(u) + t]) to denote adding extra t units of
element u to B.
Marginal Value. Given valid B′, B ∈ M(RΩ

+), we

denote the marginal value f̂(B′|B) := f̂(B′∪B)− f̂(B).
The marginal value of an element u ∈ Ω with respect to

B is f̂(u|B) := limt→0+
f̂(B⊕(u,[t]))−f̂(B)

t .
Auxiliary Set A. Observe that as the algorithm
increases Su from 0 to some value t, we can interpret
this as adding (u, τ) to S continuously for τ from 0
to t. Similarly, as the algorithm decreases Sv from t2
to t1, we can interpret this as removing (v, τ) from S
continuously for τ from t2 to t1. While the algorithm
modifies S, we use an auxiliary set A to keep track of all
pairs (u, t) that have ever been added to S, but could
have already been removed at some point.
Value Function w. Suppose in the round that u
arrives, the algorithm has so far increased Su to some
value t ≥ 0. In order to decide whether to further
increase Su, we denote z = (u, t) and use a value

function w(z) := f̂(u|A(z)), where A(z) is the set of
pairs that have ever been added to S by the algorithm
up to this moment. Observe that w is dependent on
the behavior of the algorithm, and can be interpreted
as a function w : A → R+, where A is the auxiliary
set. Hence, for any subset B ⊆ A, we denote w(B) :=∫
B
w(z)dz as the Lebesgue integral.

Lemma 4.2. (Relating w and f̂) Suppose at some
instant, S is the feasible set maintained by the (contin-
uous) algorithm, and A is the auxiliary set defined above



in the same instant. Then, the following holds.
(a) w(S) ≤ f̂(S)− f̂(∅).

(b) w(A) = f̂(A)− f̂(∅).

Proof. We treat the measure ‖A‖ as a way to keep track
of time τ .

For statement (a), for z = (u, t) ∈ S, w(z) =

f̂(u|A(z)) ≤ f̂(u|A(z) ∩ S), where the last inequality

follows from the submodularity of f̂ . Hence, integrating
over z ∈ S, we have w(S) ≤ f̂(S)− f̂(∅).

For statement (b), for z = (u, t) ∈ A, w(z) =

f̂(u|A(z)). Hence, integrating over z ∈ A gives w(A) =

f̂(A)− f̂(∅).

Definition 4.2. (Knapsack for Rounding) To fa-
cilitate the description of the rounding procedure, we can
view the algorithm as storing the pairs in S in a knap-
sack B := ∪l∈[L]{l} × (0, kl], where each interval (0, kl]
is also equipped with the Lebesgue measure. Specifically,
when pairs (u, t) are added to S continuously (and other
pairs possibly removed), we associate (u, t) with a point
ϕ(u, t) ∈ B such that the following conditions hold.

1. Element u ∈ Ωl(u) is put in the correct part, i.e.,
ϕ(u, t) = (l(u), s), for some s ∈ (0, kl(u)].

2. At any moment, ϕ|S : S → B is injective. (Half-
intervals are used to satisfy this property.)

3. For any (measurable) subset B ⊆ S, ‖ϕ(B)‖ =
‖B‖.

We remark that there is a natural way to replace
pairs in S and assign values to ϕ such that the above
conditions hold. Hence, in the description of the
algorithm, we do not explicitly mention ϕ.

Definition 4.3. (Online Rounding Procedure)
Before any item arrives, a random subset Z ∈ B is
sampled in the knapsack as follows. For each l ∈ [L],
kl points are sampled uniformly at random indepen-
dently from {l} × (0, kl] and included in Z.

At any moment when the (continuous) algorithm
is maintaining S ∈ M(RΩ

+), we can imagine that the
randomized algorithm (which must maintain feasibility

in the original partition matroid (Ω, I)) is keeping S̃ :=
{u ∈ Ω : ∃t, (u, t) ∈ S ∧ ϕ(u, t) ∈ Z}.

Theorem 4.1. (Randomized Online Algorithm
for Partition Matroid) The rounding procedure in
Definition 4.3 can be applied to Algorithm 2 to produce
a randomized algorithm with competitive ratio 1

α∞
.

4.1 Continuous Online Algorithm for Partition
Matroid Algorithm Model. Without loss of gener-
ality, we assume that the algorithm knows the capacity
kl for each part Ωl, and when an element u arrives,

it also knows to which part l(u) the element belongs.
This is because the algorithm can keep on accepting el-
ements until a conflict is detected, at which point it can
tell which elements are in the full part and its capacity.
We assume that oracle accesses to the objective function
f̂(·) and its marginals f̂(·|·) (which involves first deriva-
tives). For ease of exposition, we do not discuss how
these quantities can be approximated by sampling the
original function f . Moreover, we assume that the algo-
rithm can monitor and change variables continuously.

Lemma 4.3. (Continuous Replacement) Suppose
during the round that u ∈ Ωl arrives, Su
is currently being increased, i.e., w(u, Su) >
1
kl

(α · w(S|Ωl)− w(A|Ωl)). Moreover, suppose at this

moment ‖S|Ωl‖ = kl. Then, we have

w(u, Su) >
α

α− 1
min
z∈S|Ωl

w(z).

Lemma 4.4. (Monotone Threshold) For each l ∈
[L], the quantity (α·w(S|Ωl)−w(A|Ωl)) is monotonically
increasing during the execution of algorithm.

Proof. Fix l ∈ [L]. We use the parameter τ := ‖A|Ωl‖
to keep track of time. (Observe that τ does not change if
elements from other Ωl′ ’s are considered.) Define G(τ)
as the quantity α·w(S|Ωl)−w(A|Ωl) at the instant when
‖A|Ωl‖ = τ . Suppose at the instant τ , for some u ∈ Ωl,
a pair z = (u, t) is being included into S, i.e., Su is
increasing and τ is moving forward. Hence, w(A|Ωl) is
increasing at rate w(z).

If at this moment ‖S|Ωl‖ < kl, then no pair is being
removed from S, and we have G′(τ) = (α−1)·w(z) ≥ 0.

Otherwise, pairs with value m := minz′∈S|Ωl w(z′)

are being removed from S|Ωl . Hence, G′(τ) = α(w(z)−
m) − w(z) ≥ α(w(z) − α−1

α · w(z)) − w(z) = 0, where
the inequality follows from Lemma 4.3.

The next lemma compares the objective value of a
subset O ⊂ Ω with that of a valid set A ∈M(RΩ

+).

Lemma 4.5. Suppose f is monotone and submodular.
Then, for any finite O ⊂ Ω and valid A ∈ M(RΩ

+), we
have

f(O) ≤ f̂(A) +
∑
v∈O

f̂(v|A).

Proof. We prove by induction on the cardinality of O.
The statement holds trivially when |O| = 0, because f
is monotone.

Fix u ∈ O, and let O′ = O − u. We assume the
statement holds for O′. Define g : 2Ω → R+ as g(X) :=
f(X + u), which is also monotone and submodular.



1 Initialize S and A to empty.
2 for each round when u in Ωl arrives do

/* We try to increase Su by including pairs (u, t) in S and possibly decrease other Sv
by removing some pairs from S. We use the parameter t = Su to keep track of how

much we increase Su. */

3 At the beginning of the round, t = 0.

4 while w(u, Su) > 1
kl

(α · w(S|Ωl)− w(A|Ωl)) do

5 Increase Su = t and Au = t (by including (u, t)) continuously.
6 if ‖S|Ωl‖ = kl then

/* We need to remove some pairs from S to maintain feasibility. */

7 Define T := {v ∈ Ωl : (v, Sv) ∈ arg minz∈S|Ωl w(z)}. /* T can change as S changes;

observe that v ∈ T implies that Sv > 0. */

8 For v ∈ T , we simultaneously decrease Sv(i.e., removing (v, Sv) from S) at an appropriate rate
such that as S changes, no element leaves T unless some v ∈ T has Sv dropping to 0; on the
other hand, it is possible that some new element can join T as S changes.

9 More precisely, define wv(τ) := w(v, τ), whose value was defined earlier at the moment when
(v, τ) was included in S and A. Observe that wv(τ) is a decreasing function of τ .

10 Let ηv := |w′v(Sv)|. Then, for each v ∈ T , Sv is decreased at rate (with respect to t) given by
dSv
dt = − η−1

v∑
s∈T η

−1
s

.

Algorithm 2: Continuous Online Algorithm for Partition Matroids

For v ∈ O, define Av := {(x, t) ∈ A : x = v} and
A−v := {(x, t) ∈ A : x 6= v}. Moreover, we have

f̂(A) = f̂(Av ∪A−v)
= (1− e−Av )E

[
f(R(A−v) + v)

]
+ e−AvE

[
f(R(A−v))

]
= (1− e−Av )E

[
f(v|R(A−v))

]
+ E

[
f(R(A−v))

]
,(4.2)

Hence, we can interpret f̂(A) as a function of Av:

τ 7→ (1− e−τ )E
[
f(v|R(A−v))

]
+ E

[
f(R(A−v))

]
.

Differentiating this function with respect to τ , we
have the following claim.
Claim. For any v ∈ Ω, f̂(v|A) = e−AvE[f(v|R(A−v))].

In particular, for v 6= u, we have

f̂(v|A) = e−AvE
[
f(v|R(A−v))

]
≥ e−AvE

[
f(v|R(A−v) + u)

]
= ĝ(v|A−u),(4.3)

where the inequality follows from the submodularity of
f . Hence, using (4.2) for the first equality below, we

have

f̂(A)+
∑
v∈O

f̂(v|A) = (1− e−Au)E
[
f(u|R(A−u))

]
+ E

[
f(R(A−u))

]
+ f̂(u|A) +

∑
v∈O′

f̂(v|A)

= E
[
f(u|R(A−u))

]
+ E

[
f(R(A−u))

]
+
∑
v∈O′

f̂(v|A)

= E
[
f(R(A−u) + u)

]
+
∑
v∈O′

f̂(v|A)

= ĝ(A−u) +
∑
v∈O′

f̂(v|A)

≥ ĝ(A−u) +
∑
v∈O′

ĝ(v|A−u)

≥ g(O′) = f(O),

where the first inequality follows from (4.3) and the last
inequality follows from induction hypothesis.

Lemma 4.6. (Competitive Ratio of Continuous
Algorithm) Suppose OPT ⊂ Ω is an independent
subset of items that have ever arrived, and S is the
feasible set maintained by Algorithm 2 at the end. Then,
f(OPT) ≤ α · f̂(S).

Proof. We use τ := ‖A‖ to keep track of time. For
instance, we denote A(τ) as the auxiliary set A at the
instant when ‖A‖ = τ , and denote S(τ) as the S at the



same instant. We use τ̂ to denote the instant at the end.
For u ∈ OPT, we use τu to denote the instant when the
algorithm stops including pairs (u, t) involving u.

For u ∈ OPT ∩ Ωl, by the submodularity of f̂ ,
f̂(u|A(τ̂)) ≤ f̂(u|A(τu)), which is at most

1

kl
(α · w(S(τu)|Ωl)− w(A(τu)|Ωl)),

because the algorithm does not accept pairs involv-
ing u after time τu. This last quantity is at most
1
kl

(α · w(S(τ̂)|Ωl) − w(A(τ̂)|Ωl)), by Lemma 4.4. Using
Lemma 4.5, we have

f(OPT) ≤ f̂(A(τ̂)) +
∑

u∈OPT

f̂(u|A(τ̂)).

Since |OPT ∩ Ωl| ≤ kl, we have

f(OPT) ≤ f̂(A(τ̂))

+
∑
l∈[L]

∑
u∈OPT∩Ωl

1

kl
(α · w(S(τ̂)|Ωl)− w(A(τ̂)|Ωl))

≤ f̂(A(τ̂)) +
∑
l∈[L]

(α · w(S(τ̂)|Ωl)− w(A(τ̂)|Ωl))

= f̂(A(τ̂)) + α · w(S(τ̂))− w(A(τ̂))

≤ α · f̂(S(τ̂)),

where the last inequality comes from Lemma 4.2.

Lemma 4.7. (Rounding Preserves Ratio) Suppose
the rounding procedure described in Definition 4.3 takes
valid S ∈ M(RΩ

+) and produces S̃ ⊂ Ω. Then,

E
[
f(S̃)

]
≥ f̂(S).

Proof of Theorem 4.1: Lemma 4.6 shows that
the competitive ratio of the continuous algorithm is

1
α∞

. Lemma 4.7 shows that the rounding procedure can
produce a randomized algorithm for the original discrete
problem with the same guarantee on the competitive
ratio.

4.2 Large Replacement: Proof of Lemma 4.3
Suppose we fix l ∈ [L]. For ease of notation, we write

Ŝ := S|Ωl , Â := A|Ωl and k := kl. We use Â(τ) to

denote the Â at the instant when it has measure τ
and we use Ŝ(τ) to denote the corresponding Ŝ at the
same instant. We can imagine that τ increases as pairs
pertaining to Ωl are added to S and A. To simplify
the argument, we imagine that when τ is increased
from 0 to k, Â is filled with dummy pairs such that
Â(k) = {⊥} × (0, k] for some dummy element ⊥ that
has 0 value.

We prove a stronger statement that for τ ≥ k,
suppose currently there is some u ∈ Ωl such that Su
is being increased. Then, the following holds.
(A) w(u, Su) > α

α−1 minz∈S w(z).

(B) w(u, Su) = dw(Â(τ))
dτ > θ ·w(Â(τ)), where θ := α−2

k .
Observe that because of the dummy pairs, we have

w(Â(τ)) = 0 for τ ∈ [0, k]. Hence, statement (B) holds
with equality for τ ∈ [0, k].

For contradiction’s sake, we consider the infimum
τ0 over τ ≥ k for which at least one of the above
statements does not hold. Since all involved quantities
are continuous in τ , one of the above statements does
not hold for τ0.

Claim 4.1. For all B ⊆ Â(τ0) such that ‖B‖ ≤ k,

w(Ŝ(τ0)) ≥ w(B).

Proof. For τ < τ0, statement (A) must hold. Hence,
when Su is increased while Sv is decreased, it must be
the case that w(u, Su) ≥ α

α−1 · w(v, Sv). This means
the pair entering S has larger w(·) value than the pair

leaving S. Therefore, it must be case that w(Ŝ(τ0)) has

the maximum w(·) value among all B ⊆ Â(τ0) having
measure ‖B‖ = k.

Hence, from the claim, we have w(Ŝ(τ0)) ≥
w(Â(τ0))− w(Â(τ0 − k)).

Since statement (B) holds (maybe with equality)
for τ < τ0, by integrating from τ = τ0 − k to τ0,
we have w(Â(τ0)) ≥ eθk · w(Â(τ0 − k)). Therefore,

w(Ŝ(τ0)) ≥ (1− e−θk) · w(Â(τ0)).

Next, when w(Â) is about to increase, we must have
some u ∈ Ωl being considered such that w(u, Su) >
1
k · {α · w(Ŝ(τ0)) − w(Â(τ0))} ≥ 1

k · {α(1 − e−θk) − 1} ·
w(Â(τ0)) = θ · w(Â(τ0)),

where the last equality follows because θ = α−2
k and

eα−2 = α. Hence, statement (B) must hold.
Denote m := minz∈Ŝ(τ0) w(z).

Lemma 4.8. For 0 ≤ t ≤ k ≤ τ0, m ≤ w(Ŝ(τ0−t))
k−t .

Proof. We denote zτ as the pair that is being added to
Ŝ(τ). Since at the same time, some pair may possibly

be removed from Ŝ(τ), we have d
dtw(Ŝ(τ)) ≤ w(zτ ).

Integrating this from τ = τ0 − t to τ0, we have

w(Ŝ(τ0))− w(Ŝ(τ0 − t)) ≤ w(Â(τ0))− w(Â(τ0 − t)).
(4.4)

Denote P := (Â(τ0) \ Â(τ0 − t)) ∩ Ŝ(τ0) and Q :=

(Â(τ0) \ Â(τ0 − t)) \ P . In other words, P is the set of
pairs that arrive between τ0 − t and τ0 and still stay in



Ŝ(τ0), and Q is the set of pairs arriving within the same

time frame, but have been removed from Ŝ before τ0.
Observe that ‖P ∪Q‖ = t.

Since pairs with minimum w(·) value are removed

from Ŝ, we have for all z ∈ Q, w(z) ≤ m. Hence,
rearranging (4.4), we have

w(Ŝ(τ0−t)) ≥ w(Ŝ(τ0))−w(P )−w(Q) ≥ (k−t)·m,
as required.

Proving Statement (A). Define γ := (α−2)(α−1)
α .

The easy case is when w(Ŝ(τ0)) ≤ γ · w(Â(τ0)).
Statement (B) implies that

w(u, Su) > θ · w(Â(τ0)) = α
α−1 ·

w(Ŝ(τ0))
k ≥ α

α−1 ·m,
where the last inequality follows from Lemma 4.3 (with
t = 0).

From now on, we consider w(Ŝ(τ0)) > γ ·w(Â(τ0)).
We have

w(u, Su) > 1
k · {α ·w(Ŝ(τ0))−w(Â(τ0))} > 1

k · (αγ−
1) · w(Â(τ0)).

Let 0 < t ≤ τ0 be the smallest t such that
w(Ŝ(τ0 − t)) ≤ γ · w(Â(τ0 − t)). We know such a t

exists because w(Ŝ(0)) = w(Â(0)) = 0.

Denoting zτ as the pair that is being added to Ŝ(τ),
we have for τ ∈ (τ0 − t, τ0],

d

dτ
w(Â(τ)) = w(zτ ) >

1

k
· (αγ − 1) · w(Â(τ)).(4.5)

Define the function ϑ(x) := e(αγ−1)x(1 − x) for
x ∈ [0, 1], and λ := 1 − 1

αγ−1 , where λ ∈ [0, 1] because

αγ > 2 (Fact 4.1 (a)). Observe that ϑ is increasing
on (0, λ) and decreasing on (λ, 1). Hence, ϑ attains its
maximum at λ and ϑ(λ) = 1

αγ−1 · e
αγ−2. We consider

two cases.
Case 1. t ≤ λk. After integrating (4.5) on τ ∈
(τ0 − t, τ0], we have

w(Â(τ0)) ≥ exp{(αγ − 1) · tk} · w(Â(τ0 − t)).
Applying the definition of t, we have w(Â(τ0−t)) ≥

1
γ · w(Ŝ(τ0 − t)) ≥ k−t

γ · m, where the last inequality
follows from Lemma 4.3.

Hence, in this case, we have
w(u, Su) > αγ−1

γ ·ϑ( tk )·m ≥ αγ−1
γ ·ϑ(0)·m ≥ α

α−1 ·m,

where the last inequality follows from Fact 4.1 (b).
Case 2. t > λk. After integrating (4.5) on τ ∈
(τ0 − λk, τ0], we have

w(Â(τ0)) ≥ exp{(αγ − 1) · λ} · w(Â(τ0 − λk)).

Note that w(Â(τ0−λk)) ≥ w(Ŝ(τ0−λk)) ≥ (k−λk)·
m, where the last inequality follows from Lemma 4.3.

Hence, in this case, we have
w(u, Su) > (αγ−1) ·ϑ(λ) ·m = eαγ−2 ·m ≥ α

α−1 ·m,
where the last inequality comes from Fact 4.1 (c).

Fact 4.1. (Technical Inequalities) The following

inequalities can be verified easily, as the variables (α ≈
3.14619 and γ ≈ 0.78188) are absolute constants.
(a) αγ > 2.
(b) αγ−1

γ ≥ α
α−1 .

(c) eαγ−2 ≥ α
α−1 .

4.3 Rounding Procedure: Proof of Lemma 4.7
Recall that the goal is that given valid S ∈ M(RΩ

+),

we wish to show that S̃ ⊂ Ω produced by the rounding

procedure in Definition 4.3 satisfies E
[
f(S̃)

]
≥ f̂(S).

As we shall see later, the procedure to obtain S̃ is
related to sampling without replacement (in the limiting

case) and the definition of f̂ is related to independent
sampling.
Sampling Distributions. Given a finite ground set
U , we define the following random subsets.
(a) Sampling without Replacement. For an in-

teger k > 0, denote Ck(U) as the random subset
obtained by sampling a k-subset from U uniformly
at random. In other words, it is sampling U for k
times without replacement.

(a) Independent Sampling. Given p ∈ [0, 1], denote
Ip(U) as the random subset obtained by including
each element in U independently with probability
p.

Lemma 4.9. (Sampling without Replacement vs
Independent Sampling.) Suppose g : 2U → R+ is a
submodular function. Moreover, |U| = n and k ∈ Z+

such that p = k
n ∈ [0, 1]. Then, we have

E[g(Ck(U))] ≥ E[g(Ip(U))].

Proof. For 0 ≤ i ≤ n, define gi := 1

(ni)

∑
T∈(Ui)

g(T ).

Observe that gi = E[g(Ip(U)) | |Ip(U)| = i], since
all subsets of size i are equally likely in independent
sampling.

Lemma 4.10. gi + gi−2 ≤ 2gi−1, for all 2 ≤ i ≤ n.

Proof. Define N := {(P,Q) : P,Q ⊆ U , |P | = |Q| =
i− 1, |P ∪Q| = i, |P ∩Q| = i− 2}.

Observe that N := |N | =
(
n
i−2

)
·(n−i+2)·(n−i+1).

By submodularity of g, we have the following∑
(P,Q)∈N

(g(P ) + g(Q)) ≥
∑

(P,Q)∈N

(g(P ∪Q) + g(P ∩Q)).

Because of symmetry, subsets of U with the same
cardinality appear the same number of times. Hence,
the inequality above becomes

2Ngi−1 ≥ Ngi +Ngi−2 ⇐⇒ 2gi−1 ≥ gi + gi−2.



For 0 ≤ i ≤ n, define ai := Pr[|Ck(U)| = i]
and bi := Pr[|Ip(U)| = i]. Observe that ak = 1 and
bi =

(
n
i

)
pi(1− p)n−i.

Moreover, we have
∑n
i=0 ai = 1 =

∑n
i=0 bi and∑n

i=0 i · ai = E[|Ck(U)|] = k = np = E[|Ip(U)|] =∑n
i=0 i · bi.

Fact 4.2. For any {ci}ni=0 such that
∑n
i=0 ci = 0 and∑n

i=0 i · ci = 0, and any {gi}ni=0, we have∑n
i=0 cigi =

∑n
i=2

∑n
j=i(j − i + 1)cj · (gi + gi−2 −

2gi−1).

Proof. We write g−1 = g−2 = 0 and use the backward
difference operator ∇gi := gi − gi−1.

Observing that
∑n
j=0 cj =

∑
j=0 jcj = 0, we can

add two initial terms to the RHS such that

RHS =

n∑
i=0

n∑
j=i

(j − i+ 1) · cj · (∇gi −∇gi−1)

=

n∑
j=0

j∑
i=0

(j − i+ 1) · cj · (∇gi −∇gi−1),

where the last inequality follows from changing the
order of summation. We next consider the coefficient of
cj as follows:

j∑
i=0

(j − i+ 1)(∇gi −∇gi−1) =

j∑
i=0

∇gi − (j + 1)∇g−1

= gj ,

where the last equality follows from a telescoping
sum and g−1 = ∇g−1 = 0.

Hence, we have RHS =
∑n
j=0 cjgj = LHS, as

required.

Hence, using the above fact, we have

E[g(Ck(U))]−E[g(Ip(U))] =

n∑
i=0

(ai − bi)gi

=

n∑
i=2

n∑
j=i

(j − i+ 1)(aj − bj) · (gi + gi−2 − 2gi−1).

Using Lemma 4.10, it suffices to show that ei :=∑n
j=i(j − i+ 1)(aj − bj) ≤ 0 holds for all i ≥ 2.

Observe that

ei =

n∑
j=i

Pr[|Ck(U)| ≥ j]−
n∑
j=i

Pr[|Ip(U)| ≥ j].

For i > k, the first term in the above expression is
0. Hence, ei ≤ 0.

For 1 ≤ i ≤ k, consider ei − ei+1 = Pr[|Ck(U)| ≥
i]− Pr[|Ip(U)| ≥ i] = 1− Pr[|Ip(U)| ≥ i] ≥ 0.

Hence, it follows that for 2 ≤ i ≤ k, ei ≤ e1 =
E[|Ck(U)|]−E[|Ip(U)|] = 0, as required.

Lemma 4.11. (Restatement of Lemma 4.7) Given
valid S ∈ M(RΩ

+), the rounding procedure in Defini-

tion 4.3 generates S̃ such that E
[
f(S̃)

]
≥ f̂(S).

Proof. Recall that we use ·̃ to represent the randomness
used in the rounding procedure in Definition 4.3, and we
use R(·) to represent the randomness used to define f̂ .

Observe that for both f(S̃) and f̂(S), the randomness
involved for different Ωl’s are independent. We shall use
a hybrid argument.

Fix l ∈ [L]. We condition on the randomness Rl :=⋃
l′∈{1,...,l−1} R(S|Ωl′ ) ∪

⋃
l′∈{l+1,...,L} S̃|Ωl′ . Define fl :

2Ωl → R+ by fl(X) := f(Rl ∪ X). In order to apply
the hybrid argument, it suffices to prove that for each
l ∈ [L],

(4.6) E
[
fl(S̃|Ωl)

]
≥ E[fl(R(S|Ωl))].

Observe that the expectations on both sides of the
inequality (4.6) are continuous in S|Ωl . Hence, without
loss of generality, we assume that for all u ∈ Ωl, Su
is rational. This means that for arbitrarily large n, we
can form a partition U of S|Ωl into n parts with equal
measure such that each x ∈ U is associated with only
one item in Ωl. We write k := kl and each x ∈ U has
measure k

n .
Define g : 2U → R+ as g(P ) := fl({u ∈ Ωl : ∃x ∈

P : x is associated with u}). The submodularity of g
follows from the submodularity of fl (and f).

Define Ĉk(U) to be a random sampling of U for k
times independently with replacement. Therefore, it

follows that E
[
g(Ĉk(U))

]
= E

[
fl(S̃|Ωl)

]
.

Let p := k
n . Fix some u ∈ Ωl and let ru := Su·n

k be
the number of elements in U that are associated with u.
It follows that the probability that at least one of these
r elements appears in Ip(U) is

1− (1− p)ru ≥ 1− e−pru = 1− e−Su

= Pr[u ∈ R(S|Ωl)].

By the monotonicity of f , it follows that
E[g(Ip(U))] ≥ E[fl(R(S|Ωl))].

Let ηn := Pr[|Ĉk(U)| = k]. As n tends to infinity,
the probability of collision when sampling k items
independently from a set of size n tends to 0. Hence, as
n tends to infinity, ηn tends to 1.

Since g is non-negative, we have

E
[
g(Ĉk(U))

]
≥ ηn ·E[g(Ck(U))] ≥ ηn ·E[g(Ip(U))],

where the last inequality follows from Lemma 4.9.



Finally, we have

E
[
fl(S̃|Ωl)

]
= E

[
g(Ĉk(U))

]
≥ ηn ·E[g(Ip(U))]

≥ ηn ·E[fl(R(S|Ωl))].

Since this holds for arbitrarily large n, as n tends
to infinity, we have the required result.

5 Hardness for Uniform Matroids

In this section, we give hardness results for deterministic
monotone algorithms (satisfying Definitions 2.1) on
uniform matroid constraints. Specifically, we show in
the following theorem that the best ratio is 1

α∞
, where

α∞ ∈ [3, 4] is the root of α = eα−2.

Theorem 5.1. Suppose α ≥ 1 and α > eα−2 (i.e.,
α < α∞). Then, there exists k > 0 such that with k-
uniform matroid constraint, no deterministic monotone
algorithm can have competitive ratio 1

α .

Explanation. Before going into the details, we give
an intuition on where the α∞ comes from. The key
insight is that in our hard instance, it suffices to com-
pare f(OPT) with f(OPT ∪ A), if we consider strictly
monotone algorithms. We consider an instance in which
each arriving item is a subset of some “objects”, each
of which has some non-negative weight. The objective
function on a set of items is the weight of the union of
the corresponding subsets of objects.

In each phase i, 2k distinct singleton items come,
each containing an object with weight wi = (1 − ε)−i.
Note that the weight grows exponentially. If the
deterministic algorithm accepts xi · k of them, then the
adversary gives a “large” item which is the union of
the xi · k items the algorithm chooses in this phase.
However, due to the monotonicity of the algorithm,
this large item cannot be included into the solution,
while it may appear in the OPT and only occupy one
of the k quotas. Intuitively, a deterministic algorithm
should exhibit convergent behavior after a large number
of phases, in the sense that xi converges to some x as
i increases, because the algorithm faces essentially the
same scenario in every phase.

Hence, after the n-th round,

f(Sn) = kwn · x(1 + (1− ε) + · · ·+ (1− ε) 1
x−1)

= kwn · x
1− (1− ε) 1

x

ε
≈ kwn ·

x

ε
(1− e− εx ).

On the other hand, f(OPTn) roughly equals (k −
n)wn+kwn ·x(1+(1−ε)+(1−ε)2 + · · · ), where the first
term corresponds to (k − n) singleton items in the last
round and the second term corresponds to the “large”

items. Note that the “large” items actually captures An
while each of them takes only one out of k quotas. This
is what we mean by comparing to f(OPT∪A). When k
is much larger than n, we have f(OPTn) ≈ kwn(1 + x

ε ).
Thus, the competitive ratio is bounded by

f(Sn)

f(OPTn)
=

x
ε (1− e− εx )

1 + x
ε

≤ 1

α∞
,

where the inequality holds when ε
x = α∞ − 2.

One issue in the above sketch proof is that we
consider k to be much larger than n, which we also
assume to be large. To make the proof formal, we choose
the parameters carefully. On a high level, assuming the
existence of a 1

α -competitive algorithm for all uniform
matroids for some fixed α, the parameter k is chosen
to be sufficiently large, and we only consider about δk
phases for some small enough δ > 0.

In the formal proof below, we first introduce some
notations and give the construction of our instance. We
assume the existence of a 1

α -competitive strict monotone
algorithm. This gives a family of constraints on the xi
variables since the algorithm has to maintain α ratio
after every round. However, we don’t immediately have
the property that the algorithm behaves the same in
each round. Alternatively, we derive a lower bound for
the xi variables (Lemma 5.2) by induction and use it
crucially to give a lower bound for α.
Parameters. Suppose ε, δ ∈ (0, 1) are parameters that
can vary. For i ≥ 1, define wi := (1− ε)−i.
Ground Set Ω and Value Function f . In our
construction, each element in the ground set Ω is a
union of a finite number of bounded intervals in R+.
We define the function ϕ : R+ → R+ by ϕ(x) :=∑
i≥1 wi · χ[i−1,i)(x), i.e, if i − 1 = bxc, then ϕ(x) =

wi. Each element A ∈ Ω corresponds to a subset of
[0,+∞). For a finite S ⊂ Ω, the value function is
f(S) := 2

∫
∪A∈SA ϕ(x)dx. That is, f(S) is a weighted

coverage function and, thus, is submodular.
Instance for k-Uniform Matroid. For each k ≥ 1,
we assume that there is an algorithm with competitive
ratio 1

α . The instance depends on δ, ε and k. The next
arriving element can be chosen adversarially depending
on the algorithm’s previous action. Moreover, the
adversary can stop at any moment, and hence the
algorithm needs to maintain the ratio after every round.
For T := bδkc, the elements arrive in T phases. For
1 ≤ i ≤ T , the following happens in phase i.
(a) There are 2k elements {[i − 1 + j−1

2k , i − 1 + j
2k ) :

j ∈ [2k]} arriving one by one. Observe each is
an interval in [i − 1, i) with measure 1

2k . Since in
the construction these 2k elements in phase i are
fixed, we can assume that if the algorithm selects
an interval during phase i, then it will not discard



it before the next phase; otherwise, the algorithm
needs not choose it in the first place. Moreover,
if the algorithm needs to remove an interval from
its feasible set, it will remove one from the earliest
phase.

(b) Suppose Bi is the collection of intervals selected by
the algorithm in step (a). If Bi is non-empty, the
next arriving element is the union of the intervals
in Bi. Since the algorithm is strictly monotone, it
will discard this element.
We write x0 := 0. For i ≥ 1, we define xi := |Bi|

k to
be twice the measure of the union of intervals in Bi; at
the end of step (a) of phase i, denote Si as the feasible
set maintained by the algorithm, OPTi as the current
optimal solution and Ai := ∪j≤iBi as the intervals that
have ever been picked by the algorithm so far.
Defining the sequence {βm}. We next define
a sequence {βm}m≥0 by β1 := α−1

1−δ and βm+1 :=

α−1−α(1−ε)1+
βm
ε

1−δ . Observe that the definition of the se-
quence depends only on α, ε and δ, and is independent
of k and the algorithm.

Lemma 5.1. ({βm} is decreasing) For m ≥ 1,
βm+1 < βm.

Proof. We prove by induction on m. For m = 1,

β2 = α−1−α(1−ε)1+
β1
ε

1−δ < α−1
1−δ = β1.

Suppose βm < βm−1 for some m ≥ 2. We have

βm+1 < βm ⇔

α− 1− α(1− ε)1+ βm
ε < α− 1− α(1− ε)1+

βm−1
ε

⇔ (1− ε)
βm−1
ε < (1− ε)

βm
ε

⇔ βm < βm−1,

which is true by inductive hypothesis. This completes
the inductive proof.

The following lemma is crucial to the hardness
proof. Even though the definition of the βm’s is
independent of the algorithm, we use the assumption on
the algorithm’s competitive ratio to place constraints on
the xi’s and infer that each βm is positive.

Lemma 5.2. ({βm} is positive) For m ≥ 1, βm > 0.

Constraints on xi’s. Suppose x := {xi}Ti=1, and for
notational convenience, we write x0 = 1 and w0 = 0.
For 1 ≤ n ≤ T , define in = in(x) to be the smallest
index such that

∑n
i=in

xi < 1; if xn = 1, set in = n+ 1,

and we interpret the summation
∑n
i=n+1 as an empty

sum equal to zero. Then, the value of the feasible set at
the end of phase n is

f(Sn(x)) =
∑n
i=in

xiwi + (1−
∑n
i=in

xi)win−1.
On the other hand, another feasible solution is to

take the sets in all the step (b)’s from phase 1 to phase
n, together with k−n sets in step (a) of phase n. Hence,
f(OPTn) ≥

∑n
i=1 xiwi+(1− n

k ) ·wn ≥
∑n
i=1 xiwi+(1−

δ)wn. Since the algorithm has competitive ratio 1
α , we

have α · f(Sn) ≥ f(OPTn). Hence, we have shown that
given any k > 0, for T = bδkc, there exists a sequence
of numbers x = {xi}Ti=1 in [0, 1] satisfying the following:

∀n ∈ [T ], α·f(Sn(x))

= α(

n∑
i=in

xiwi + (1−
n∑

i=in

xi)win−1)

≥
n∑
i=1

xiwi + (1− δ)wn.(5.7)

The following lemma allows us to assume that all
equalities in (5.7) hold.

Lemma 5.3. Suppose there exists a solution {xi}Ti=1 for
(5.7). Then, there exists a solution {x′i}Ti=1 such that all
equalities hold.

Proof. Suppose n is the smallest index such that the
inequality in (5.7) is strict. We will show that the n-th
inequality can be made into equality by decreasing xn
and perhaps increasing xn+1. Since inequalities with
indices smaller than n do not involve xn or xn+1, those
equalities will be maintained. On the other hand, we
will show that inequalities with indices larger than n
will not be violated. Hence, we can go through the
inequalities from smaller to larger indices to transform
all strict inequalities into equalities.

Fixing the values of x1, x2, . . . , xn−1, we consider
the difference of both sides of the n-th inequality as a
function of xn given by:

h(x) := α · f(Sn(x[n−1], x))−
n−1∑
i=1

xi − x− (1− δ)wn,

which is continuous.
From our assumption, h(xn) > 0; on the other

hand, h(0) = α·f(Sn−1(x[n−1]))−
∑n−1
i=1 xi−(1−δ)wn <

α ·f(Sn−1(x[n−1]))−
∑n−1
i=1 xi− (1− δ)wn−1 = 0, where

the last equality holds from the choice of n. Therefore,
h(x) = 0 for some x ∈ (0, xn); we let x̂ to be the largest
number in (0, xn) such that h(x̂) = 0.
Stage 1: xn+1 < 1. We decrease xn and increase
xn+1 continuously such that wn+1xn+1 +wnxn remains
constant. This stage ends when xn+1 reaches 1 or
xn reaches x̂, whichever happens first. (If the latter
happens first, then there is no need for Stage 2.)



As remarked above, all inequalities with indices
smaller than n are not affected and so they remain
equalities. Consider the m-th inequality, where m ≥
n+ 1. Observe that the right hand side is

∑m
i=1 xiwi +

(1− δ)wn, which does not change. Hence, it suffices to
show that the left hand side does not decrease.

Observe that f(Sm(x)) =
∑m
i=im

xiwi + (1 −∑m
i=im

xi)wim−1.
We consider the following cases. We remark that

im could change during Stage 1.
(a) Case im ≥ n + 2. In this case, f(Sm(x)) is

independent of xn and xn+1 and so does not
change.

(b) Case im = n + 1. In this case, f(Sm(x)) de-
pends only on xn+1. As xn+1 increases at rate 1,
f(Sm(x)) increases at rate wn+1 − wn. However,
observe that as xn+1 increases and xn decreases,
im could change from n+ 1 to n.

(c) Case im ≤ n. In this case, the first term∑m
i=im

xiwi does not change. However, as xn de-
creases and xn+1 increases to keep wn+1xn+1 +
wnxn constant, it follows that xn+xn+1 decreases.
Hence, the second term (1 −

∑m
i=im

xi)wim−1 in-
creases. Observe that this could cause im to further
decrease, but f(Sm(x)) never decreases.

Stage 2: xn+1 = 1. Suppose xn+1 reaches 1 first before
xn reaches x̂. When this happens, we keep xn+1 at 1
and only decreases xn (continuously) to x̂. Consider the
m-th inequality where m ≥ n + 1. Observe that since
xn+1 = 1, im ≥ n + 2, and hence the left hand side
does not change. On the other hand, as xn decreases,
the right hand side decreases. Therefore, the m-th
inequality is not violated.

This completes the proof of Lemma 5.3.

Proof of Lemma 5.2: We prove the following
stronger statement. Define Nm = 1 +

∑m−1
i=1 d

βi
ε e.

Suppose k is sufficiently large such that T = bδkc > Nm,
and {xi}Ti=1 is a sequence in [0, 1] satisfying all equalities
in (5.7). Then, for all Nm < n ≤ T , βmxn ≥ ε (which
implies that βm > 0). We prove this by induction on
m.

For m = 1 and n > N1 = 1, from f(Sn(x)) ≤
f(Sn−1(x)) + xnwn, we use equalities in (5.7) to derive
the following.

n∑
i=1

xiwi+(1− δ)wn = α · f(Sn(x))

≤ α · f(Sn−1(x)) + αxnwn

=

n−1∑
i=1

xiwi + (1− δ)wn−1 + αxnwn,

which is equivalent to (α − 1)xnwn ≥ (1 − δ)(wn −

wn−1) = (1− δ) · εwn. Rearranging gives β1xn ≥ ε.
Now suppose that for some m ≥ 1, for all Nm <

i ≤ T , βmxi ≥ ε.
Consider T ≥ n > Nm + dβmε e. Then, for 1 ≤ j ≤

dβmε e, xn−j ≥
ε
βm

. Hence, it follows that
∑d βmε e
j=1 xn−j ≥

1. Therefore, in−1 ≥ n− dβmε e+ 1.
Observe that in transforming the solution from

Sn−1 to Sn, elements associated with wj is replaced

by elements associated with wn, where j ≥ n − dβmε e.
Hence, we have f(Sn(x)) ≤ f(Sn−1(x)) + xn · (wn −
wn−d βmε e

). Again, using equalities (5.7), we have:

n∑
i=1

xiwi+(1− δ)wn = α · f(Sn(x))

≤ α · f(Sn−1(x)) + αxn · (wn − wn−d βmε e)

=

n−1∑
i=1

xiwi + (1− δ)wn−1

+ αxn · (wn − wn−d βmε e).

Rearranging gives βm+1xn ≥ α−1−α(1−ε)d
βm
ε
e

1−δ ·xn ≥
ε, completing the inductive proof.
Completing the Proof of Theorem 5.1. Recall
that for some α ≥ 1, we assume that for any k ≥ 0,
there is a deterministic monotone algorithm for the
k-uniform matroid with competitive ratio 1

α . Then,
for any δ, ε ∈ (0, 1), we define a sequence {βm}m≥1

(depending on only α, δ and ε). In Lemma 5.1, we
show that the sequence is decreasing. In Lemma 5.2,
using the assumption on the competitive ratio of the
algorithm, we show that each βm is positive. Hence,
by the monotone convergence theorem, the sequence
converges to some limit β, which satisfies the following

equation: β = α−1−α(1−ε)1+
β
ε

1−δ . After rearranging, we
have α− 1 = g(β), where

g(t) := t(1− δ) + α(1− ε)1+ t
ε .

Then, g′(t) = (1− δ) + α · ln(1−ε)
ε · (1− ε)1+ t

ε .
Writing c(ε) := − ε

ln(1−ε) , g attains its minimum

when g′(t) = 0, i.e., (1− ε)1+ t
ε = c(ε)·(1−δ)

α .
Hence, we have α − 1 = g(β) ≥ (1 − δ) ·

(
c(ε) ·

ln α
c(ε)·(1−δ) + c(ε) − ε

)
, where the inequality holds for

all ε, δ ∈ (0, 1).
Since the relevant quantities are all continuous in

ε and δ, as ε and δ tend to zero, c(ε) tends to 1, and
the above inequality becomes α− 1 ≥ lnα+ 1, which is
equivalent to eα−2 ≥ α, as required.



6 Hardness for Partition Matroids

In this section, we give hardness results for deterministic
algorithms on partition matroids. Specifically, the
ground set Ω := ∪i≥0Ωi is a union of disjoint sets Ωi’s
such that a (finite) set S is independent iff for all i,
|S ∩ Ωi| ≤ 1.

We consider a universe U of items, each of which
has a weight given by ν : U → R+. A subset X ⊆ U
has weight ν(X) :=

∑
x∈X ν(x). Then, for i ≥ 0,

Ωi := {(u, i) : u ∈ U}. For S ⊂ Ω, we define
f(S) := ν({x : (x, i) ∈ S}).

6.1 Hardness for Monotone Algorithms We
show that for general matroids, the competitive ratio
1
4 is optimal for monotone algorithms satisfying Def-
inition 2.1 (recalling that a monotone algorithm that
achieves this ratio is given in the full version[14]). In
particular, we show the following hardness result.

Theorem 6.1. For any α < 4, no monotone deter-
ministic algorithm can have competitive ratio strictly
larger than 1

α .

Adversarial Model. Given any 1 ≤ α < 4, we con-
struct a finite sequence of elements. For any algorithm,
an adversary can adaptively decide when to stop the
arrival of items, at which moment the competitive ratio
will be at most 1

α .
Instance Construction. Given α < 4, we shall pick
some large enough n (to be decided later), and consider
Ω := ∪ni=0Ωi.

The sequence of elements come in n phases. For
1 ≤ n, in phase i, two elements arrive in the order:
(xi, 0), (xi, i), for some xi ∈ U . We shall define the
weights of the ai := ν(xi) carefully. If the algorithm
does not take the element (xi, 0), then the adversary
stops the sequence, and we shall see the competitive
ratio will be at most 1

α . However, if the algorithm takes
(xi, 0), then it cannot take the next element (xi, i) due
to strict monotonicity.
Defining ai = ν(xi) and the invariant. We choose
a1 = 1. Recall that 1 ≤ α < 4. We show that if the
algorithm has competitive ratio strictly greater than 1

α ,
then the following invariant holds: after phase i, the
algorithm will have selected (xi, 0). As described above,
this is true after phase 1.

After phase i, the value achieved by the algorithm
is ai under f , while the optimal solution is {(xj , j) : j ∈
[i]} having value

∑i
j=1 aj . We next define the weight

ai+1 = ν(xi+1) such that the following holds:

i+1∑
j=1

aj = αai.

For instance, if α is just a little less than 4, then a2

is close to 3.
In phase (i + 1), the element (xi+1, 0) arrives first.

If the algorithm does not take it, then the adversary
stops the sequence. In this case, the algorithm has only
selected (xi, 0), whose value is ai = 1

α ·
∑i+1
j=1 aj , which

is at most 1
α fraction of the optimal value. Hence,

the algorithm must replace (xi, 0) with (xi+1, 0). As
described above, a monotone algorithm cannot take the
next element (xi+1, i + 1). Hence, we show that the
invariant holds after phase (i+ 1).
Choosing n. We next show that there exists some
n such that after phase n, the competitive ratio is
strictly less than 1

α . Observe that the weights ai’s
are determined totally by the recursion: a1 = 1 and
ai+1 = αai −

∑i
j=1 aj .

By considering the difference of the recursive def-
initions of ai+2 and ai+1, we can obtain the following
second order recursion: ai+2 − αai+1 + αai = 0.

Since ∆ = α2 − 4α < 0, the characteristic equation
has complex roots. By Lemma 6.1, this sequence will
eventually return a negative number. We can pick n to
be the smallest integer such that an+1 < 0. Hence, after
phase n, the algorithm has value an = 1

α

∑n+1
j=1 aj <

1
α

∑n
j=1 aj , which is 1

α fraction of the optimal value.
Hence, to complete the hardness proof, it suffices to
show the following lemma.

Lemma 6.1. Suppose P,Q > 0 such that ∆ := P 2 −
4Q < 0. The sequence {an} is defined by the recursion
an+2 − Pan+1 +Qan = 0 where both a1 and a2 are real
and at least one is non-zero. Then, there exists n > 0
such that an < 0.

Proof. Since ∆ < 0, the characteristic equation ρ2 −
Pρ + Q = 0 has complex roots ρ and ρ. Since Re(ρ) =
P
2 > 0, we can write ρ = reiφ, where r > 0 and
0 < φ < π

2 .
A standard technique to solve recurrence relation

gives that an is a linear combination of ρn = rneinφ

and ρn = rne−inφ [38]. Since an is real, it follows
that there exist real numbers A and B such that an =
rn(A cosnφ+B sinnφ). Since at least one of a0 and a1

is non-zero, at least one of A and B is non-zero.
Finally, since 0 < φ < π

2 , as n increases, nφ will
eventually reach all of the following 4 intervals: (0, π2 ),
(π2 , π), (π, 3π

2 ), ( 3π
2 , 2π). Hence, there exists n > 0 such

that cosnφ has opposite sign as A (if A 6= 0) and sinnφ
has opposite sign as B (if B 6= 0), which implies that
an < 0, as required.

6.2 Hardness for General Deterministic Algo-
rithms Similar to Section 6.1, we show that for algo-
rithms that are not necessarily monotone, the competi-



tive ratio cannot be better than 3−
√

5
2 ≈ 0.382. Specif-

ically, we also use a partition matroid and show the
following.

Theorem 6.2. For any α < 3+
√

5
2 , no deterministic

algorithm can have competitive ratio strictly larger
than 1

α .

Adversarial Model. Fix 1 ≤ α < 3+
√

5
2 . Unlike the

case in Section 6.1, the sequence of arriving items will
adapt according to the action of the algorithm. The
elements arrive in phases. For i ≥ 1, in phase i, the
following steps happen.

(a) First, x
(0)
i and x

(1)
i are distinct items in U with the

same value ai = ν(x
(0)
i ) = ν(x

(1)
i ) to be decided

later. The elements (x
(0)
i , 0) and (x

(1)
i , 0) in Ω0

arrive (one after another). We shall show that
the algorithm must select at least one of them, say

(x
(χi)
i , 0), for χi ∈ {0, 1}. Otherwise, the adversary

terminates the sequence.
(b) Next, there is some item yi ∈ U with value bi =

ν(yi) to be decided later. Then, the elements

(yi, 2i − 1) and (x
(χi)
i , 2i − 1) in Ω2i−1 arrive

(one after another), where (x
(χi)
i , 0) is the element

selected by the algorithm in step (a).
(c) If the algorithm selects an element (z, 2i − 1) in

step (b), choose ẑ := z, then the element (z, 2i) ∈
Ω2i arrives; otherwise, choose ẑ := x

(χi)
i . If z is

x
(χi)
i , then the adversary terminates the sequence.

Invariant. We show that if the algorithm has competi-
tive ratio strictly larger than 1

α , then after each step
in phase i, the following holds.
(a) The feasible set maintained by the algorithm con-

tains {(yj , 2j − 1) : j ∈ [i− 1]} and some (x
(χi)
i , 0).

The f value achieved by the algorithm is
∑i−1
j=0 bj+

ai, while the optimal value is
∑i−1
j=0(aj + bj) + ai

attained by the solution {(x(χj)
j , 2j − 1), (yj , 2j) :

j ∈ [i− 1]}+ (x
(1−χi)
i , 0).

(b) The algorithm selects (yi, 2i− 1).
(c) The feasible set maintained by the algorithm con-

tains {(yj , 2j−1) : j ∈ [i]}, (x
(χi)
i , 0) and (yi, 2i−1).

The optimal solution is {(x(χj)
j , 2j−1), (yj , 2j) : j ∈

[i]}+ (x
(1−χi)
i , 0) + (yi, 2i).

Defining ai and bi to maintain the invariant. We
define a1 := 1. Observe that in step (a) of phase 1, the
algorithm must pick at least 1 element. Otherwise, the
algorithm has value 0, while the optimal value is 1.
Inductive argument. We assume that for some i ≥ 1,
the invariant holds up to the moment after step (a) of
phase i, when {aj}ij=1 and {bj}i−1

j=1 are already defined.

We shall show that the invariant continues to hold after
step (a) of phase i+1, and define bi and ai+1. We define
bi such that the following holds:

α(ai +

i−1∑
j=1

bj) =

i∑
j=1

aj + ai +

i∑
j=1

bj .(6.8)

If bi ≤ 0, the adversary can terminate immediately,
because α(ai+

∑i−1
j=1 bj) ≤

∑i
j=1 aj+ai+

∑i−1
j=1 bj , which

is the optimal value achieved at the end of step (a) of
phase i. However, at this moment, the algorithm has
value ai +

∑i−1
j=1 bj , and so the competitive ratio is at

most 1
α . Hence, we can assume bi > 0.

Observe that the algorithm must take (yi, 2i − 1)
in step (b). Otherwise, the sequence terminates after
step (c), and the right hand side of (6.8) is the optimum

value. The algorithm attains value ai +
∑i−1
j=1 bj , and

hence has competitive ratio 1
α . However, recall that we

assume the algorithm has ratio strictly larger than 1
α .

Hence, the algorithm selects (yi, 2i− 1) and it does
not help to select (yi, 2i) in step (c). However, the

optimal solution could include (x
(1−χi)
i , 0) in step (a),

(x
(χi)
i , 2i− 1) in step (b) and (yi, 2i) in step (c).

We next consider the beginning of step (a) in phase
i+ 1. We define ai+1 such that the following holds:

α(ai +

i∑
j=1

bj) =

i+1∑
j=1

aj +

i∑
j=1

bj .(6.9)

Observe that subtracting (6.8) from (6.9) gives
ai+1 − ai = αbi > 0. Hence, the optimal solution will
replace the old element in Ω0 arrived in phase i with one
of the new elements arrived in step (a) of phase i+ 1.

Moreover, the algorithm must select some element
(x
χi+1

i+1 , 0). Otherwise, the sequence terminates, and the
right hand side of (6.9) is the optimal value, while the

algorithm achieves value ai+
∑i
j=1 bj , which is exactly 1

α
fraction of the optimal value. Recall that the algorithm
should achieve ratio strictly larger than 1

α .
This completes the inductive argument and the

recursive definitions of ai and bi.
There exists negative bn. As in Section 6.1, we show
that there exists n > 0 such that bn < 0. Suppose n
is the smallest integer such that this happens. Then,
in the above inductive argument, it follows that after
step (a) of phase n, the competitive ratio is strictly less
than 1

α .
To apply Lemma 6.1, we shall form a second order

recurrence relation for bn. If we consider (6.8) minus
(6.9)(i← i− 1), we have: α(ai − ai−1) = ai + bi. From
the inductive argument, we have ai − ai−1 = αbi−1.
Hence, the above equation becomes α2bi−1 = ai + bi.



Replacing i with i+ 1 gives α2bi = ai+1 + bi+1. Taking
the difference between the last two equations gives:

α2(bi − bi−1) = (ai+1 − ai) + bi+1 − bi
= αbi + bi+1 − bi.

Rearranging gives the required second order recur-
rence relation on bi:

bi+1 − (α2 − α+ 1)bi + α2bi−1 = 0.

To apply Lemma 6.1, observe that P := α2−α+1 >
0, Q := α2, and ∆ := (α2 − α+ 1)2 − 4α2 = (α2 + α+

1)(α2− 3α+ 1), which is negative for 1 ≤ α < 3+
√

5
2 , as

required.
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