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Abstract. In a seminal STOC’95 paper, Arya et al. conjectured that
spanners for low-dimensional Euclidean spaces with constant maximum
degree, hop-diameter O(logn) and lightness O(logn) (i.e., weight O(logn)·
w(MST)) can be constructed in O(n logn) time. This conjecture, which
became a central open question in this area, was resolved in the affirma-
tive by Elkin and Solomon in STOC’13 (even for doubling metrics).
In this work we present a simpler construction of spanners for doubling
metrics with the above guarantees. Moreover, our construction extends
in a simple and natural way to provide k-fault tolerant spanners with
maximum degree O(k2), hop-diameter O(logn) and lightness O(k2 logn).

1 Introduction

An n-point metric space (X, d) can be represented by a complete weighted graph
G = (X,E), where the weight w(e) of an edge e = (u, v) is given by d(u, v). A
t-spanner of X is a weighted subgraph H = (X,E′) of G (where E′ ⊆ E has
the same weights) that preserves all pairwise distances to within a factor of t,
i.e., dH(u, v) ≤ t ·d(u, v) for all u, v ∈ X, where dH(u, v) is the distance between
u and v in H. The parameter t is called the stretch of the spanner H. A path
between u and v in H with weight at most t · d(u, v) is called a t-spanner path.

In this paper we focus on the regime of stretch t = 1 + ε, for an arbitrarily
small 0 < ε < 1

2 . In general, there are metric spaces (such as the one correspond-
ing to uniformly weighted complete graph), where the only possible (1 + ε)-
spanner is the complete graph. A special class of metric spaces, which has been
subject to intensive research in the last decade, is the class of doubling metrics.
The doubling dimension of a metric space (X, d), denoted by dim(X) (or dim
when the context is clear), is the smallest value ρ such that every ball in X can be
covered by 2ρ balls of half the radius [12]. A metric space is called doubling if its
doubling dimension is bounded by some constant. (We will sometimes disregard
dependencies on ε and dim to avoid cluttered expressions in the text, but we
provide these dependencies in all formal statements.) The doubling dimension is
a generalization of the Euclidean dimension for arbitrary metric spaces, as the
Euclidean space RD equipped with any of the `p-norms has doubling dimension
Θ(D) [12]. Spanners for doubling metrics (hereafter, doubling spanners), and in
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particular for low-dimensional Euclidean spaces, have been studied extensively
since the mid-eighties; see [6, 1, 9, 2, 13, 10, 3, 11, 15] and the references therein.

In addition to small stretch and small number of edges, it is often desirable
to optimize other parameters depending on the application. First, it is often im-
portant for the spanner to achieve a small maximum degree (or shortly, degree),
hence having a small number of edges. Second, it is sometimes required that the
hop-diameter would be small, i.e., every pair of points should be connected by a
t-spanner path with a small number of edges (or hops). Third, it is desirable that
the weight of the spanner would be at most some small factor (called lightness)
times the weight of a minimum spanning tree (MST) of the metric space.

A natural requirement for a spanner is to be robust against node failures,
meaning that even when some of the nodes in the spanner fail, the remaining
part still provides a t-spanner. Formally, given a parameter 1 ≤ k ≤ n − 2, a
spanner H of X is called a k-vertex-fault-tolerant t-spanner ((k, t)-VFTS), if for
any subset F ⊆ X with |F | ≤ k, H \ F is a t-spanner for X \ F .

1.1 Our Contribution. The following is the main result of this paper.

Theorem 1 ((k, 1 + ε)-VFTS with Degree O(k2), Hop-Diameter O(log n)
and Lightness O(k2 log n)). Let (X, d) be an n-point metric space, and let
0 < ε < 1. Given any parameter 1 ≤ k ≤ n − 2, there exists a (k, 1 + ε)-VFTS
with degree ε−O(dim) ·k2, hop-diameter O(log n), and lightness ε−O(dim) ·k2 ·log n.
Such a spanner can be constructed in ε−O(dim) · n log n+ ε−O(dim) · k2n time.

Research Background. We review the most relevant related work; the readers
can refer to [5, 8] for a more detailed survey. In a seminal STOC’95 paper, Arya
et al. [1] gave several constructions of Euclidean spanners that trade between
degree, hop-diameter and lightness. In particular, they showed that for any n-
point low-dimensional Euclidean space, a (1 + ε)-spanner with constant degree,
hop-diameter O(log n) and lightness O(log2 n) can be built in O(n log n) time.

Arya et al. [1] conjectured that the lightness bound can be improved to
O(log n), without increasing the stretch, the degree and the hop-diameter of the
spanner, and within the same running time O(n log n). The bound O(log n) on
the lightness is optimal due to a lower bound result by Dinitz et al. [7].

This conjecture was resolved in the affirmative by Elkin and Solomon [8] only
recently. In fact, Elkin and Solomon showed a stronger result: their construction
works for doubling metrics, and moreover, it provides a general tradeoff between
the involved parameters that is tight up to constants in the entire range.

Chan et al. [4] showed that the standard net-tree with cross edge framework
(used in [9, 2]) can be modified to give a simpler spanner construction with all the
desired properties, except for running time O(n log n). Combining the techniques
from a previous work on k-fault tolerant spanners [5], a precursor of this paper’s
result was achieved, but with a worse lightness of O(k3 log n); moreover, the
running time was not analyzed in [4]. Solomon [14] made further improvements to
the construction in [4], and achieved improved lightness O(k2 log n) and running
time O(n log n). This paper is the result of a collaboration between the authors
of the (unpublished) manuscripts [4, 14].



1.2 Our Techniques. We first give the main ideas for constructing a span-
ner when all nodes are functioning. The treatment for fault-tolerance is given in
Section 5. We use the standard net-tree with cross edge framework from [9, 2]:
given a metric space (X, d), construct a hierarchical sequence {Ni} of nets with
geometrically increasing distance scales. For each x ∈ Ni ⊆ X in level i (here-
after, level-i net-point), we have a node (x, i) called incubator. The hierarchical
net structure induces an incubator tree (IncTree) with the incubators as nodes.
At each level, if two net-points are close together with respect to the distance
scale at that level, we add a cross edge between their corresponding incubators.

A basic spanner [9, 2] consisting of the tree edges and the cross edges can be
shown to have a low stretch. The basic idea is that for any two points u and v,
we can start at the corresponding leaf nodes and climb to an appropriate level
(depending on d(u, v)) to reach net-points u′ and v′ that are close to u and v,
respectively, such that the cross edge {u′, v′} is guaranteed to exist. Observe
that there is a 1-1 correspondence between the leaf nodes and the original points
of X (i.e., each leaf corresponds to a unique point), and we later show how to
label each internal node with a unique point in X using the incubator-zombie
terminology.1 Next, we analyze each of the involved parameters (degree, hop-
diameter, and lightness), and explain how issues that arise can be resolved.
Degree. Since the doubling dimension is constant, each node in the net-tree has
a constant number of children and a constant number of incident cross edges.
However, in many net-based spanner constructions, each chain of lonely nodes
(i.e., a chain of nodes each of which has only one child) will be contracted ; this
may increase the degree of the contracted nodes due to cross edges. The idea of
constant degree single-sink spanners (used in [2, 5]) can be applied to resolve this
issue. However, a simpler method is parent replacement, used by Gottlieb and
Roditty [11] to build a routing tree (RouTree) and reroute spanner paths, thus
pruning unnecessary cross edges. In Section 3 we use Gottlieb and Roditty’s
construction to bound the degree of our spanner construction.
Hop-Diameter. Observe that there may be many levels in the net-tree. In this
case, in the aforementioned spanner path between u and v, it will take many hops
to go from u (respectively, v) to an appropriate ancestor u′ (resp., v′). However,
this can be easily fixed by adding shortcut edges to subtrees of the contracted
routing tree (ConRouTree) at “small” distance scales via the 1-spanner construc-
tion with hop-diameter O(log n) for tree metrics by Solomon and Elkin [15]; this
“shortcut spanner” increases both the degree and the lightness by a constant.
We shall see in Section 4 that there are only O(log n) levels with “large” distance
scales, and hence hop-diameter O(log n) can achieved.
Lightness. For doubling metrics, lightness comes almost for free. We will show
that the total weight of small-scale edges is O(w(MST)). For each of the O(log n)
large-scale levels, the standard analysis in [9, 2] uses the fact that for doubling
metrics each net-point has a constant number of neighbors at that level. Conse-
quently, the weight of edges from each large-scale level is only a constant times
that of an MST, thereby giving lightness O(log n). See Section 4 for the details.

1 The terminology is borrowed from [8], but these terms have different meaning there.



To summarize, we obtained a spanner on the incubators that consists of
(1) edges in ConRouTree, where each chain of lonely nodes is contracted into a sin-
gle super incubator, (2) useful cross edges (which are not pruned after rerouting),
and (3) edges in the shortcut spanner for ConRouTree. The resulting incubator
graph H has constant degree, hop-diameter O(log n), lightness O(log n), and low
stretch with respect to the leaf nodes.

The final step is to convert the incubator graph H (which contains more than
n nodes) to a spanner H for the original n-point metric space. One way is to
label each node in the net-tree with the corresponding net-point in X. Then,
an edge between two nodes induces an edge between their labels. However, this
labeling is problematic, due to the hierarchical property of the nets. Although
H has constant degree, if a point in X is used as a label for many nodes, that
point will accumulate a large degree. In particular, the point associated with the
root node is a net-point at every level, hence this gives rise to a large degree.

The key idea is simple and has been used in [1, 11]: we label each node with a
point that is nearby with respect to the relevant distance scale (which means that
small stretch will still be preserved), such that each label is used only a constant
number of times. This guarantees that the degree of the resulting spanner will be
constant. In order to describe the labeling process clearly, we find it convenient
to use the incubator-zombie terminology.

Incubators Working with Zombies. Each incubator will receive a label that
we refer to as a zombie, which is identified with a point in X. The incubator
graph H and the zombies naturally induce a spanner on X: if there is an edge be-
tween two incubators, then there is an induced edge between the corresponding
zombies. It is left to show how we assign zombies to incubators. Each leaf incuba-
tor can be simply assigned its original net-point, as there is a 1-1 correspondence
between leaf incubators and points in X. Also, since each internal incubator has
at least two children in the contracted incubator tree (ConIncTree), each internal
incubator can be assigned a unique nearby zombie from its descendant leaves.
(To achieve fault-tolerance, we use a zombie-climbing process that involves using
both ConIncTree and ConRouTree; we will guarantee that each internal incubator
holds up to k + 1 nearby zombies, and each point appears as a zombie in O(k)
incubators. We provide the details in Section 5.)

Sketch Analysis. Since each incubator contains a nearby zombie, small stretch
and lightness can still be preserved. Since the incubator graph H has constant
degree and each point in X can be the identity of at most two zombies, the
degree of the resulting spanner H is constant too. The hop-diameter of H is
O(log n), as any spanner path (between leaf nodes) in H with l hops gives rise to
a spanner path in H with at most l hops. Finally, the running time is dominated
by the subroutines that our construction uses, which have been shown (in the
relevant references) to take O(n log n) time.

2 Preliminaries

Let (X, d) be an n-point doubling metric, and let 1 ≤ k ≤ n−2 be the maximum
number of failed nodes allowed. We consider the regime of stretch 1 + ε, for an



arbitrarily small 0 < ε < 1
2 . We assume that the minimum inter-point distance

of X is 1, and let ∆ := maxu,v∈X d(u, v) be the diameter of X.
The ball of radius r > 0 centered at x is B(x, r) := {u ∈ X : d(x, u) ≤ r}.

A set Y ⊆ X is called an r-cover of X if for any point x ∈ X there is a point
y ∈ Y , with d(x, y) ≤ r. A set Y is an r-packing if for any pair of distinct points
y, y′ ∈ Y , it holds that d(y, y′) > r. For r1 ≥ r2 > 0, we say that a set Y ⊆ X is
an (r1, r2)-net for X if Y is both an r1-cover of X and an r2-packing. Note that
such a net can be constructed by a greedy algorithm. By recursively applying
the definition of doubling dimension, we can get the following key fact [12].

Fact 1 (Nets Have Small Size [12]) Let R ≥ 2r > 0 and let Y ⊆ X be an
r-packing contained in a ball of radius R. Then, |Y | ≤ (Rr )2dim.

The minimum spanning tree of a metric space (X, d) is denoted by MST(X)
(or simply MST if (X, d) is clear from the context). Also, we denote by w(MST)
the weight of MST. Given a spanner H for (X, d), the lightness of H is defined
as the ratio of the weight of H to the weight of MST.

Fact 2 (Two Lower Bounds for w(MST)) 1. w(MST) ≥ ∆.
2. Let S ⊆ X be an r-packing, with r ≤ ∆. Then, w(MST) ≥ 1

2r · |S|.

Hierarchical Nets. We consider the hierarchical nets that are used by Gottlieb
and Roditty [11]. Let ri := 5i and ` := dlog5∆e. Also, let {Ni}`i≥0 be a sequence
of hierarchical nets, where N0 := X and for each i ≥ 1, Ni is a (3ri, ri)-net for
Ni−1. (Observe that N` contains one point.) As mentioned in [11], this choice of
parameters is needed to achieve running time O(n log n).

Net-tree with Cross Edge Framework. We recap the basic spanner con-
struction [2, 11] using the incubator-zombie terminology.
Incubators. For each level i and each x ∈ Ni, there is a corresponding incubator
C = (x, i), where x is the identity of the incubator and i is its level. For C1 =
(x1, i1) and C2 = (x2, i2), define d(C1, C2) := d(x1, x2); for C1 = (x1, i1) and
x2 ∈ X, define d(C1, x2) := d(x1, x2).
Incubator Tree. The hierarchical nets induce a tree structure (hereafter, the
incubator tree IncTree) on the incubators as follows. The only incubator at level
` is the root, and for each level 0 ≤ i < `, each incubator at level i (hereafter,
level-i incubator) has a parent at level i+ 1 within distance 3ri+1. (Recall that
Ni+1 is a 3ri+1-cover for Ni.) Hence, every descendant of a level-i incubator can
reach it by climbing a path of weight at most

∑
j≤i 3rj ≤ 4ri.

Cross Edges. In order to achieve stretch (1 + ε), in each level cross edges are
added between incubators that are close together with respect to the distance
scale at that level. Specifically, for each level 0 ≤ i < `, for all u, v ∈ Ni such
that u 6= v and d(u, v) ≤ γri, for some appropriate parameter γ = O( 1

ε ), we
add a cross edge between the corresponding incubators (u, i) and (v, i) (with
weight d(u, v)). The basic spanner construction is obtained as the union of the
tree (IncTree) edges and the cross edges. The following lemma gives the essence
of the cross edge framework; a variant of this lemma appears in [2, Lemma 5.1]



and [9]. Since we shall later reroute spanner paths and assign internal incubators
with labels (which we refer to as zombies), we also give an extended version here.

Lemma 1 (Cross Edge Framework Guarantees Low Stretch). Consider
the cross edge framework as described above.
(a) Let µ > 0 be an arbitrary constant. Suppose a graph H on the incubators
contains all cross edges (defined with some appropriate parameter γ depending
on µ and ε), and for each level i ≥ 1, each level-(i − 1) incubator is connected
via a tree edge to some level-i incubator within distance µri. Then, H contains
a (1 + ε)-spanner path Pu,v for each u, v ∈ X, obtained by climbing up from
the leaf incubators corresponding to u and v to some level-j ancestors u′ and v′,
respectively, where u′ and v′ are connected by a cross edge and rj = O(ε)·d(u, v).
(b) In the above graph H, if for each level i ≥ 1, each level-i incubator (u, i) is

labeled with a point û such that d(u, û) = O(ri), then the path P̂u,v induced by
the above path Pu,v and the labels is a (1 +O(ε))-spanner path.

Lonely Incubators. An incubator is called lonely if it has exactly one child in-
cubator (which has the same identity as the parent); otherwise it is non-lonely.
Observe that the leaf incubators have no children and are non-lonely. For effi-
ciency reasons, a long chain of lonely incubators will be represented implicitly;
implementation details can be found in [11]. As we shall later see, for the zombie-
climbing process (described in Section 5) to succeed we need the property that
each internal incubator has at least two children. Observe that at the bottom of
a chain C of lonely incubators is a non-lonely incubator C with the same iden-
tity. We shall later contract a chain C of lonely incubators (together with the
non-lonely incubator C at the bottom) into a super incubator.
Running Time. All the subroutines that our construction uses have been shown
(in the relevant references) to take O(n log n) running time. Hence, we disregard
the running time analysis, except for places which require clarification.

Challenges Ahead. Lemma 1 can be used to achieve low stretch. As lonely
incubators need to be contracted, the next issue is that many cross edges will be
inherited by the super incubator, which may explode the degree. To overcome
this obstacle, in Section 3 we use Gottlieb and Roditty’s technique [11] to reroute
spanner paths and prune redundant cross edges. In Section 4 we show that
hop-diameter O(log n) (and lightness O(log n) too) can be achieved by applying
Solomon and Elkin’s shortcut spanner [15] to all subtrees at sufficiently small
distance scales (less than ∆

n ). In Section 5 we describe a zombie-climbing process,
which converts a graph on the incubators to a k-fault tolerant spanner on X with
all the desired properties, thereby completing the proof of Theorem 1.

3 Reducing Degree via Gottlieb-Roditty’s Spanner

By Fact 1, each internal incubator has at most O(1)O(dim) children in IncTree,
and each incubator is incident on at most ε−O(dim) cross edges. However, the
problem that arises is that when a chain of lonely incubators is contracted, the
cross edges that are incident on the corresponding super incubator may explode



its degree. We employ the parent replacement technique due to Gottlieb and
Roditty [11] to reroute spanner paths and make some cross edges redundant.
Our procedure below is a simple modification of subroutines that appear in [11],
and hence can be implemented within the same running time O(n log n).

Routing Tree. We carry out the parent replacement procedure by constructing
a routing tree (RouTree), which has the same leaf incubators as IncTree; moreover,
each level-(i− 1) child incubator is connected to a level-i parent incubator with
an edge of possibly heavier weight at most 5ri (as opposed to weight at most 3ri
as in IncTree). Consider a non-root incubator C in the (uncontracted) IncTree.
The parent incubator of C in RouTree is determined by the following rules.
(1) If either the parent C ′ of C in IncTree or the parent of C ′ is non-lonely, then
C will have the same parent C ′ in RouTree.
(2) For a chain of at least two lonely incubators, we start from the bottom
incubator Ci = (x, i) (which is non-lonely) at some level i. If the parent Ci+1 of
Ci = (x, i) in IncTree is lonely and the parent of Ci+1 is also lonely, then we try
to find a new parent for Ci. Specifically, if there is some point w ∈ Ni+1 \ {x}
such that d(x,w) ≤ 5ri+1 (if there is more than one such point w, we can pick
one arbitrarily), then a non-lonely adopting parent is found as follows.

(a) If the incubator Ĉi+1 = (w, i+1) is non-lonely, then Ĉi+1 is designated as the

adopting parent of Ci (which means that Ĉi+1 will be Ci’s parent in RouTree).

Similarly, Ci is designated as an adopted child of Ĉi+1.

(b) If the incubator Ĉi+1 is lonely, then it does not adopt Ci. However, we shall

see in Lemma 2 that the parent Ĉi+2 of Ĉi+1 cannot be lonely. Moreover, it is

close enough to Ci+1, namely, d(Ci+1, Ĉi+2) ≤ 5ri+2. In this case Ĉi+2 will adopt
Ci+1 (and will be its parent in RouTree), and Ci+1 will remain Ci’s parent.

Observe that once an adopting parent is found, there is no need to find
adopting parents for the rest of the lonely ancestors in the chain, because these
lonely ancestors will not adopt, and so they will not be used for routing.
If there is no such nearby point w ∈ Ni+1 \ {x} for Ci = (x, i), then Ci’s parent
in RouTree remains Ci+1, and we continue to climb up the chain.

Lemma 2 (Lonely Incubators Need Not Adopt). [Proof in full version]
Suppose that an incubator Ci = (x, i) has at least two lonely ancestors (excluding
Ci) and there exists a point w ∈ Ni+1 \ {x}, such that d(x,w) ≤ 5ri+1 and the

incubator Ĉi+1 = (w, i+ 1) is lonely. Then, the parent Ĉi+2 = (u, i+ 2) of Ĉi+1

in IncTree is non-lonely; moreover, d(x, u) ≤ 5ri+2.

Rerouting Spanner Paths. When we wish to find a spanner path between u
and v, we use RouTree to climb to the corresponding ancestor incubators (from
an appropriate level) which are connected by a cross edge. Observe that using
RouTree, it is still possible to climb from a level-i incubator to a level-(i + 1)
incubator that is within distance O(ri+1) from it. Hence, by Lemma 1, stretch
1 + ε can still be preserved.
Degree Analysis. Notice that only non-lonely incubators can adopt, and by
Fact 1, each incubator can have only O(1)O(dim) adopted child incubators. Hence,



the degree of RouTree is O(1)O(dim). Consider a chain of lonely incubators with
identity x. If some incubator C = (x, i) has found an adopting parent, then all
lonely ancestors of C in the chain will not be used for routing (since a lonely
incubator cannot adopt). Thus the cross edges incident on those unused lonely
ancestors are redundant. Next, we show that the number of useful cross edges
accumulated by a chain of lonely incubators (until an adoption occurs) is small.

Lemma 3 (No Nearby Net-Points Implies Few Cross Edges). [Proof in
full version] Suppose that x ∈ Ni and all other points in Ni are at distance
more than 5ri away (i.e., no adopting parent is found for any child of (x, i)).
Then, there are at most O(γ)O(dim) = ε−O(dim) cross edges with level at most i
connecting incubators with identity x and non-descendants of (x, i).

Pruning Cross Edges and Routing Tree. After the lowest level incubator
in a chain of lonely incubators finds an adopting parent, redundant cross edges
incident on the ancestors of the adopted incubator can be pruned. By Lemma 3,
no matter if an adopting parent is found for a chain, at most ε−O(dim) remaining
cross edges are incident on incubators in the chain for the following reason.
• If no adopting parent is found for a chain, Lemma 3 can be applied to the second
lonely incubator (if any) from the top of the chain. Since the top incubator has
only ε−O(dim) cross edges, the entire chain has ε−O(dim) incident cross edges.
• If some point w ∈ Ni+1 \{x} is found for an incubator Ci = (x, i) in the parent
replacement process described above, Lemma 3 can be applied to Ci (unless Ci is
the bottom incubator in the chain, and then we do not need to apply the lemma).
Since either Ci or its parent will be adopted (and the cross edges incident on
the ancestors of the adopted child are redundant, and will be pruned), it follows
that the entire chain has ε−O(dim) remaining incident cross edges.

For efficiency reasons, observe that we can first build RouTree and add cross
edges only for incubators that are actually used for routing. In other words, we
do not have to add redundant cross edges that will be pruned later.

Contraction Phase. After finishing the construction of RouTree, we start the
contraction phase, which involves contracting all chains of lonely incubators.
The above argument implies that the number of cross edges incident on a super
incubator is at most ε−O(dim). Also, since lonely incubators cannot adopt, the
degree of the routing tree cannot increase.
• If no adopting parent is found for a chain, the chain will be contracted to a
super incubator C, which has the same parent C (that itself may be a super
incubator corresponding to a contracted chain) in the contracted incubator tree
(ConIncTree) and the contracted routing tree (ConRouTree).

• If an adopting parent Ĉ is found for a chain, the chain will be contracted to
a super incubator C, whose parent C in ConRouTree is different from its parent
C̃ in ConIncTree; either one among C and C̃ can be a super incubator.

Multiple edges are removed from the resulting multi-graph, keeping just the
edge of minimum level between any pair of incident (super) incubators.

Corollary 1 (Constant Degree). ConRouTree has degree O(1)O(dim), and
each incubator (and also super incubator) has ε−O(dim) cross edges.



4 Achieving Small Hop-Diameter and Lightness

Consider ConRouTree constructed in Section 3. Observe that if the maximum
inter-point distance ∆ is large enough (exponential in n), the hop-diameter will
be as large as Θ(n). In this section we add edges to shortcut ConRouTree, such
that for each level i, any leaf incubator can reach some level-i incubator in
O(log n) hops and within distance O(ri); this guarantees that the hop-diameter
is O(log n). We also make sure that the lightness will be in check.

Theorem 2 (Spanner Shortcut [15]). Let T be a tree (whose edges have
positive weights) with n nodes and degree deg(T ). For the tree metric induced by
the shortest-path distances in T , a 1-spanner J with O(n) edges, degree at most
deg(T ) + 4, and hop-diameter O(log n) can be constructed in O(n log n) time.

Levels of Super Incubators and Edges. Technically, a super incubator is of the
same level as the non-lonely incubator at the bottom of the corresponding chain.
The level of an edge before the contractions is defined as the maximum level of
its endpoint incubators, and its level after the contractions remains the same.

Shortcut the Low Levels of ConRouTree. Let r̂ = ∆
n , and define σ := blog5 r̂c.

Observe that the number of levels above σ is O(log n). We shortcut all maximal
subtrees rooted at level at most σ in ConRouTree, i.e., the root of each such
subtree is at level at most σ, but its parent is at level greater than σ. Each such
subtree is shortcut via the 1-spanner that is given by Theorem 2. Notice that
this shortcut procedure adds edges that enable going from each leaf incubator to
any of its ancestor incubators in ConRouTree tree in O(log n) hops. This implies
that for any u, v ∈ X, there is a spanner path between the corresponding leaf
incubators with O(log n) hops and weight at most (1 + ε) ·d(u, v). Moreover, the
shortcut procedure increases the degree of each incubator by at most four.
Large vs Small Scales. We analyze the weight of the spanner by considering
the weight contribution from large-scale edges and small-scale edges separately.
An edge has a small scale if its level is at most σ (we use the convention that a
shortcut edge has a small scale); otherwise, it has a large scale. We remark that
the following lemma remains valid if we increase the weight of each level-i edge
by O(ri); this observation will be used later (in Section 5) when we apply our
labeling procedure.

Lemma 4 (Edges are Light). [Proof in full version] The total weight of all
large-scale edges is ε−O(dim) ·log n·w(MST), and the total weight of all small-scale
edges is ε−O(dim) · w(MST).

Incubator Graph H. To summarize, we build an incubator graph H on the
incubators (and super incubators) that consists of (1) the edges in ConRouTree,
(2) useful cross edges that remain after pruning, and (3) edges used to shortcut
the low levels (at most σ) of ConRouTree. The incubator graph H has degree
ε−O(dim). Moreover, for any u, v ∈ X, there is a path in H between the corre-
sponding leaf incubators with O(log n) hops and weight at most (1 + ε) · d(u, v).



Also, Lemma 4 implies that it has weight ε−O(dim) · log n ·w(MST). Finally, it is
easy to see that H can be implemented within ε−O(dim) · n log n time.

In other words, the incubator graph H has almost all the desired properties,
except that each point in X may be the identity of many incubators (and super
incubators). Moreover, we have not considered fault tolerance so far. We will
address these issues in Section 5.

5 Incubators Working with Zombies: Fault Tolerance

The incubator graph H defined at the end of Section 4 achieves all the desired
properties, except that the same point may be the identity of many incubators.
Moreover, there is a 1-1 correspondence between the leaf incubators and the
points in X. In this section we show how to convert H into a k-fault tolerant
spanner H for X that satisfies all the desired properties. To this end we devise
a simple labeling procedure (that we refer to below as the zombie-climbing pro-
cedure), which is convenient to describe via the incubator-zombie terminology.

Zombies. A zombie is identified by a point x ∈ X, which is the identity of the
zombie. When the context is clear, we do not distinguish between a zombie and
its identity. After the zombie-climbing procedure is finished, each leaf incubator
will contain a zombie whose identity is the same as the leaf’s identity, and each
internal incubator will contain up to k + 1 zombies with distinct identities.
Induced Spanner on X. The incubator graphH together with the zombies induce
a spanner H on X in a natural way: two points u and v are neighbors in H if
there are zombies with identities u and v residing in neighboring incubators in
H. Hence, it suffices to describe how zombies are assigned to incubators.

The zombies are climbing. . . We assign zombies to incubators in two stages.
In the first stage, we use ConIncTree to assign a single host zombie to each
incubator; in the second stage, for each internal incubator, we use ConRouTree
to collect up to k additional guest zombies with distinct identities, which are
also different from the identity of the host zombie.
First Stage. Consider ConIncTree, and note that each internal incubator has at
least two children. Each incubator is assigned a host zombie as follows. A leaf
incubator C creates two zombies with the same identity as itself; one stays in
C as its host zombie and the other climbs to C’s parent. An internal incubator
Ĉ receives exactly one zombie from each of its (at least two) children. One of

these zombies stays in Ĉ as its host zombie, and another one (chosen arbitrarily)

climbs to Ĉ’s parent incubator (if any); extra zombies (which do not become host
zombies) are discarded. Since there are O(n) incubators, this procedure takes
O(n) time. Observe that each point can appear as the identity of at most two
host zombies: once in a leaf incubator, and at most once in an internal incubator.
Second Stage. We use ConRouTree in this step. Each internal incubator C col-
lects up to k guest zombies with distinct identities from the host zombies of C’s
descendants (in ConRouTree) using a bounded breadth-first search. Specifically,
when a descendant incubator C̃ is visited, if its host zombie z̃ is different from
the host zombie of C and from all the guest zombies already collected by C,



then z̃ will be collected as one of C’s guest zombies. The breadth-first search
terminates once C has collected k distinct guest zombies or when all C’s descen-
dants in ConRouTree have been visited. Since for each breadth-first search, O(k)
incubators are visited (as each point can appear as the identity of at most two
host zombies), the second stage can be implemented within O(kn) time.

Lemma 5 (Each Point Appears as O(k) Zombies). [Proof in full version]
Each point can be the identity of a zombie in at most 2k+2 incubators (as either
a host or a guest).

Fault tolerance. Recall that in the cross edge framework, the low-stretch span-
ner path between any two points u and v is obtained as follows. We start from
the two leaf incubators corresponding to u and v, and climb to the ancestor in-
cubators (according to ConRouTree in our case) in some appropriate level, where
a cross edge is guaranteed to exist. Observe that only incubators with the same
identity will be contracted, and so this does not change the stretch of the span-
ner path. The two following lemmas show that for any functioning point u, each
ancestor of the leaf incubator corresponding to u (in ConRouTree) contains at
least one nearby functioning zombie. Consequently, fault-tolerance is achieved.

Lemma 6 (Every Ancestor in ConRouTree Has a Functioning Zombie).
[Proof in full version] Suppose that at most k points fail. Let u be an arbitrary
functioning point, and let Cu be the leaf incubator corresponding to u. Then,
every ancestor of Cu in ConRouTree contains at least one functioning zombie.

Lemma 7 (Incubators Contain Nearby Zombies). [Proof in full version]
If an incubator C = (x, i) contains a zombie z, then d(x, z) = O(ri).

Tying Up Everything Together – Completing the Proof of Theorem 1
Stretch and Fault-Tolerance. Lemmas 6 and 7 state that each incubator contains
a functioning zombie that is nearby, which implies that a level-i incubator edge
will induce a functioning zombie edge with weight that is greater by at most
an additive factor of O(ri). The second assertion of Lemma 1 implies that the
stretch of the resulting spanner is 1 + O(ε); we can achieve stretch (1 + ε) by
rescaling γ (and other parameters) by an appropriate constant.
Degree. Since the incubator graph H has degree ε−O(dim) and each incubator
contains at most k+ 1 zombies, it follows that each occurrence of a point as the
identity of some zombie will incur a degree of at most ε−O(dim) ·k. By Lemma 5,
each point can be the identity of at most 2k+ 2 zombies, which implies that the
degree of H is at most ε−O(dim) · k2.
Hop-Diameter. Observe that any spanner path in H (between leaf nodes) with
l hops induces a functioning spanner path in H with at most l hops. Hence the
hop-diameter of H is O(log n).
Lightness. As already mentioned, in the proof of Lemma 4, the upper bound
still holds if we add O(ri) to the weight of each level-i incubator edge. Moreover,
as only zombies within distance O(ri) are assigned to a level-i incubator, it
follows that each level-i zombie edge has weight at most an additive factor O(ri)



greater than that of the inducing incubator edge. Since every incubator edge
induces at most O(k2) zombie edges, we conclude that the lightness of H is
ε−O(dim) · k2 log n.
Running Time. As mentioned in Sections 3 and 4, our construction uses subrou-
tines from Gottlieb-Roditty’s spanner [11] and Elkin-Solomon’s shortcut span-
ner [15], which have running time at most ε−O(dim) · n log n. Also, the zombie-
climbing procedure takes time O(kn). Finally, observe that there are ε−O(dim) ·n
edges in H, each of which induces O(k2) zombie edges; hence, transforming the
incubator graph H into the ultimate spanner H takes ε−O(dim) · k2n time.
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