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Abstract
We consider the online vector packing problem in which we have a d dimensional knapsack and
items u with weight vectors wu ∈ Rd+ arrive online in an arbitrary order. Upon the arrival of
an item, the algorithm must decide immediately whether to discard or accept the item into the
knapsack. When item u is accepted, wu(i) units of capacity on dimension i will be taken up, for
each i ∈ [d]. To satisfy the knapsack constraint, an accepted item can be later disposed of with
no cost, but discarded or disposed of items cannot be recovered. The objective is to maximize
the utility of the accepted items S at the end of the algorithm, which is given by f(S) for some
non-negative monotone submodular function f .

For any small constant ε > 0, we consider the special case that the weight of an item on
every dimension is at most a (1 − ε) fraction of the total capacity, and give a polynomial-time
deterministic O( kε2 )-competitive algorithm for the problem, where k is the (column) sparsity of
the weight vectors. We also show several (almost) tight hardness results even when the algorithm
is computationally unbounded. We first show that under the ε-slack assumption, no deterministic
algorithm can obtain any o(k) competitive ratio, and no randomized algorithm can obtain any
o( k

log k ) competitive ratio. We then show that for the general case (when ε = 0), no randomized
algorithm can obtain any o(k) competitive ratio.

In contrast to the (1 + δ) competitive ratio achieved in Kesselheim et al. (STOC 2014) for
the problem with random arrival order of items and under large capacity assumption, we show
that in the arbitrary arrival order case, even when ‖wu‖∞ is arbitrarily small for all items u, it
is impossible to achieve any o( log k

log log k ) competitive ratio.
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1 Introduction

Online Vector Packing Problem. We consider the following online submodular maximiz-
ation problem with vector packing constraint. Suppose we have a d dimensional knapsack,
and items arrive online in an arbitrary order. Each item u ∈ Ω has a weight vector wu ∈ Rd+,
i.e., when item u ∈ Ω is accepted, for each i ∈ [d], item u will take up wu(i) units of capacity
on every dimension i of the knapsack. By rescaling the weight vectors, we can assume that
each of the d dimensions has capacity 1. Hence we can assume w.l.o.g. that wu ∈ [0, 1]d for
all u ∈ Ω. The (column) sparsity [6, 26] is defined as the minimum number k such that every
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weight vector wu has at most k non-zero coordinates. The objective is to pack a subset of
items with the maximum utility into the knapsack, where the utility of a set S of items is
given by a non-negative monotone submodular function f : 2Ω → R+.

The vector packing constraint requires that the accepted items can take up a total amount
of at most 1 capacity on each of the d dimensions of the knapsack. However, as items come
in an arbitrary order, it can be easily shown that the competitive ratio is arbitrarily bad,
if the decision of acceptance of each item is decided online and cannot be revoked later. In
the literature, when the arrival order is arbitrary, the free disposal feature [19] is considered,
namely, an accepted item can be disposed of when later items arrive. On the other hand,
we cannot recover items that are discarded or disposed of earlier.

We can also interpret the problem as solving the following program online, where vari-
ables pertaining to u arrive at step u ∈ Ω. We assume that the algorithm does not know
the number of items in the sequence. The variable xu ∈ {0, 1} indicates whether item u is
accepted. During the step u, the algorithm decides to set xu to 0 or 1, and may decrease
xu′ from 1 to 0 for some u′ < u in order to satisfy the vector packing constraints.

max f({u ∈ Ω : xu = 1})
s.t.

∑
u∈Ω wu(i) · xu ≤ 1, ∀i ∈ [d]

xu ∈ {0, 1}, ∀u ∈ Ω.

In some existing works [8, 18, 27, 26], the items are decided by the adversary, who sets
the value (the utility of a set of items is the summation of their values) and the weight vector
of each item, but the items arrive in a uniformly random order. This problem is sometimes
referred to as Online Packing LPs with random arrival order, and each choice is irrevocable.
To emphasize our setting, we refer to our problem as Online Vector Packing Problem (with
submodular objective and free disposal).

Competitive Ratio. After all items have arrived, suppose S ⊂ Ω is the set of items currently
accepted (excluding those that are disposed of) by the algorithm. The objective is ALG :=
f(S). Note that to guarantee feasibility, we have

∑
u∈S wu ≤ 1, where 1 denotes the d

dimensional all-one vector. The competitive ratio is defined as the ratio between the optimal
objective OPT that is achievable by an offline algorithm and the (expected) objective of the
algorithm: r := OPT

E[ALG] ≥ 1.

1.1 Our Results and Techniques
We first consider the Online Vector Packing Problem with slack, i.e., there is a constant
ε > 0 such that for all u ∈ Ω, we have wu ∈ [0, 1 − ε]d, and propose a deterministic
O( kε2 )-competitive algorithm, where k is the sparsity of weight vectors.

I Theorem 1. For the Online Vector Packing Problem with ε slack, there is a (polynomial-
time) deterministic O( kε2 )-competitive algorithm for the Online Vector Packing Problem.

Observe that by scaling weight vectors, Theorem 1 implies a bi-criteria (1 + ε, kε2 )-
competitive algorithm for general weight vectors, i.e., by relaxing the capacity constraint by
an ε fraction, we can obtain a solution that is O( kε2 )-competitive compared to the optimal
solution (with the augmented capacity).

We show that our competitive ratio is optimal (up to a constant factor) for deterministic
algorithms, and almost optimal (up to a logarithmic factor) for any (randomized) algorithms.
Moreover, all our following hardness results (Theorem 2, 3 and 4) hold for algorithms with
unbounded computational power.
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I Theorem 2 (Hardness with Slack). For the Online Vector Packing Problem with slack
ε ∈ (0, 1

2 ), any deterministic algorithm has a competitive ratio Ω(k), even when the utility
function is linear and all items have the same value, i.e., f(S) := |S|; for randomized
algorithms, the lower bound is Ω( k

log k ).

We then consider the hardness of the Online Vector Packing Problem (without slack) and
show that no (randomized) algorithm can achieve any o(k)-competitive ratio.

I Theorem 3 (Hardness without Slack). Any (randomized) algorithm for the Online Vector
Packing Problem has a competitive ratio Ω(k), even when f(S) := |S|.

As shown by [26], for the Online Vector Packing Problem with random arrival order, if we
have ‖wu‖∞ = O( ε2

log k ) for all items u ∈ Ω, then a (1+ε) competitive ratio can be obtained.
Hence, a natural question is whether better ratio can be achieved under this “small weight”
assumption. For example, if maxu∈Ω{‖wu‖∞} is arbitrarily small, is it possible to achieve
a (1 + ε) competitive ratio like existing works [18, 16, 27, 26]? Unfortunately, we show that
even when all weights are arbitrarily small, it is still not possible to achieve any constant
competitive ratio.

I Theorem 4 (Hardness under Small Weight Assumption). There does not exist any (random-
ized) algorithm with an o( log k

log log k ) competitive ratio for the Online Vector Packing Problem,
even when maxu∈Ω{‖wu‖∞} is arbitrarily small and f(S) := |S|.

Our hardness result implies that even with free disposal, the problem with arbitrary
arrival order is strictly harder than its counter part when the arrival order is random. For
space reason, we defer the proof the Theorem 3 and 4 to the full version of the paper [10].

Our Techniques. To handle submodular functions, we use the standard technique by con-
sidering marginal cost of an item, thereby essentially reducing to linear objective functions.
However, observe that the hardness results in Theorems 2, 3 and 4 hold even for linear
objective function where every item has the same value. The main difficulty of the problem
comes from the weight vectors of items, i.e., when items conflict with one another due to
multiple dimensions, it is difficult to decide which items to accept. Indeed, even the offline
version of the problem has an Ω( k

log k ) NP-hardness of approximation result [24, 28].
For the case when d = 1, i.e., wu ∈ [0, 1], it is very natural to compare items based on

their densities [23], i.e., the value per unit of weight, and accept the items with maximum
densities. A naive solution is to use the maximum weight ‖wu‖∞ to reduce the problem to
the 1-dimensional case, but this can lead to Ω(d)-competitive ratio, even though each weight
vector has sparsity k � d. To overcome this difficulty, we define for each item a density on
each of the d dimensions, and make items comparable on any particular dimension.

Even though our algorithm is deterministic, we borrow techniques from randomized
algorithms for a variant of the problem with matroid constraints [7, 9]. Our algorithm
maintains a fractional solution, which is rounded at every step to achieve an integer solution.
When a new item arrives, we try to accept the item by continuously increasing its accepted
fraction (up to 1), while for each of its k non-zero dimensions, we decrease the fraction of
the currently least dense accepted item, as long as the rate of increase in value due to the
new item is at least some factor times the rate of loss due to disposing of items fractionally.

The rounding is simple after every step. If the new item is accepted with a fraction
larger than some threshold α, then the new item will be accepted completely in the integer
solution; at the same time, if the fraction of some item drops below some threshold β, then
the corresponding item will be disposed of completely in the integer solution. The ε slack
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assumption is used to bound the loss of utility due to rounding. The high level intuition
of why the competitive ratio depends on the sparsity k (as opposed to the total number d
of dimensions) is that when a new item is fractionally increased, at most k dimensions can
cause other items to be fractionally disposed of.

Then, we apply a standard argument to compare the value of items that are eventually
accepted (the utility of our algorithm) with the value of items that are ever accepted (but
maybe disposed of later). The value of the latter is in turn compared with that of an optimal
solution to give the competitive ratio.

1.2 Related Work
The Online Vector Packing Problem (with free disposal) is general enough to subsume many
well-known online problems. For instance, the special case d = 1 becomes the Online Knap-
sack Problem [23]. The offline version of the problem captures the k-Hypergraph b-Matching
Problem (with sparsity k and wu ∈ {0, 1

b}
d, where d is the number of vertices), for which an

Ω( k
b log k ) NP-hardness of approximation is known [24, 28], for any b ≤ k

log k . In contrast, our
hardness results are due to the online nature of the problem and hold even if the algorithms
have unbounded computational power.

Free Disposal. The free disposal setting was first proposed by Feldman et al. [19] for the
online edge-weighted bipartite matching problem with arbitrary arrival order, in which the
decision whether an online node is matched to an offline node must be made when the online
node arrives. However, an offline node can dispose of its currently matched node, if the new
online node is more beneficial. They showed that the competitive ratio approaches 1 − 1

e

when the number of online nodes each offline node can accept approaches infinity. It can
be shown that in many online (edge-weighted) problems with arbitrary arrival order, no
algorithm can achieve any bounded competitive ratio without the free disposal assumption.
Hence, this setting has been adopted by many other works [13, 5, 17, 14, 22, 20, 11, 23, 7].

Online Generalized Assignment Problem (OGAP). Feldman et al. [19] also considered a
more general online biparte matching problem, where each edge e has both a value ve and a
weight we, and each offline node has a capacity constraint on the sum of weights of matched
edges (assume without loss of generality that all capacities are 1). It can be easily shown
that the problem is a special case of the Online Vector Packing Problem with d equal to the
total number of nodes, and sparsity k = 2: every item represents an edge e, and has value
ve, weight 1 on the dimension corresponding to the online endpoint, and weight we on the
dimension corresponding to the offline endpoint.

For the problem when each edge has arbitrary weight and each offline node has capacity
1, it is well-known that the greedy algorithm that assigns each online node to the offline
node with maximum marginal increase in the objective is 2-competitive, while no algorithm
is known to have a competitive ratio strictly smaller than 2. However, several special cases
of the problem were analyzed and better competitive ratios have been achieved [2, 15, 11, 1].

Apart from vector packing constraints, the online submodular maximization problem
with free disposal has been studied under matroid constraints [7, 9]. In particular, the uni-
form and the partition matroids can be thought of special cases of vector packing constraints,
where each item’s weight vector has sparsity one and the same value for non-zero coordinate.
However, using special properties of partition matroids, the exact optimal competitive ratio
can be derived in [9], from which we also borrow relevant techniques to design our online
algorithm.
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Other Online Models. Kesselheim et al. [26] considered a variant of the problem when
items (which they called requests) arrive in random order and have small weights compared
to the total capacity; this is also known as the secretary setting, and free disposal is not
allowed. They considered a more general setting in which an item can be accepted with
more than one option, i.e., each item has different utilities and different weight vectors for
different options. For every δ ∈ (0, 1

2 ), for the case when every weight vector is in [0, δ]d,
they proposed an O(k δ

1−δ )-competitive algorithm, and a (1+ ε)-competitive algorithm when
δ = O( ε2

log k ), for ε ∈ (0, 1). In the random arrival order framework, many works assumed
that the weights of items are much smaller than the total capacity [18, 16, 27, 26]. In
comparison, our algorithm just needs the weaker ε slack assumption that no weight is more
than 1− ε fraction of the total capacity.

The Online Vector Bin Packing problem [4, 3] is similar to the problem we consider in
this paper. In the problem, items (with weight wu ∈ [0, 1]d) arrive online in an arbitrary
order and the objective is to pack all items into a minimum number of knapsacks, each with
capacity 1. The current best competitive ratio for the problem is O(d) [21] while the best
hardness result is Ω(d1−ε) [4], for any constant ε > 0.

Future Work. We believe that it is an interesting open problem to see whether an O(k)-
competitive ratio can be achieved for general instances, i.e., wu ∈ [0, 1]d. However, at least
we know that it is impossible to do so using deterministic algorithms (see Lemma 5).

Actually, it is interesting to observe that similar slack assumptions on the weight vectors
of items have been made by several other literatures [12, 4, 26]. For example, for the
Online Packing LPs problem (with random arrival order) [26], the competitive ratio O(k δ

1−δ )
holds only when wu ∈ [0, δ]d for all u ∈ Ω, for some δ ≤ 1

2 . For the Online Vector Bin
Packing problem [4], while a hardness result Ω(d1−ε) on the competitive ratio is proof for
general instances with wu ∈ [0, 1]d; when wu ∈ [0, 1

B ]d for some B ≥ 2, they proposed an
O(d 1

B−1 (log d) B
B−1 )-competitive algorithm.

Another interesting open problem is whether the O(k)-competitive ratio can be improved
for the problem under the “small weight assumption”. Note that we have shown in Theorem 4
that achieving a constant competitive ratio is impossible.

2 Preliminaries

We use Ω to denote the set of items, which are not known by the algorithm initially and
arrive one by one. Assume that each of the d dimensions of the knapsack has capacity 1. For
u ∈ Ω, the weight vector wu ∈ [0, 1]d is known to the algorithm only when item u arrives.
A set S ⊂ Ω of items is feasible if

∑
u∈S wu ≤ 1. The utility of S is f(S), where f is a

non-negative monotone submodular function. For a positive integer t, we use [t] to denote
{1, 2, . . . , t}. We say that an item u is discarded if it is not accepted when it arrives; it is
disposed of if it is accepted when it arrives, but later dropped to maintain feasibility.

Note that in general (without constant slack), no deterministic algorithm for the problem
is competitive, even with linear utility function and when d = k. A similar result when k = 1
has been shown by Iwama and Zhang [25].

I Lemma 5 (Generalization of [25]). Any deterministic algorithm has a competitive ratio
Ω(
√

k
ε ) for the Online Vector Packing Problem with weight vectors in [0, 1 − ε]d, even when

the utility function is linear and d = k.

Proof. Since the algorithm is deterministic, we can assume that the instance is adaptive.
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Consider the following instance with k = d. Let the first item have value 1 and weight
1− ε on all d dimensions; the following (small) items have value

√
ε
k and weight 2ε on one

of the d dimension (and 0 otherwise). Stop the sequence immediately if the first item is
not accepted. Otherwise let there be 1

2ε items on each of the d dimensions. Note that to
accept any of the “small” items, the first item must be disposed of. We stop the sequence
immediately once the first item is disposed of.

It can be easily observe that we have either ALG = 1 and OPT =
√

k
4ε , or ALG =

√
ε
k

and OPT ≥ 1, in both cases the competitive ratio is Ω(
√

k
ε ). J

Note that the above hardness result (when k = 1) also holds for the Online Generalized
Assignment Problem (with one offline node). We use OPT to denote both the optimal utility,
and the feasible set that achieves this value. The meaning will be clear from the context.

3 Online Algorithm for Weight Vectors with Slack

In this section, we give an online algorithm for weight vectors with constant slack ε > 0.
Specifically, the algorithm is given some constant parameter ε > 0 initially such that for all
items u ∈ Ω, its weight vector satisfies ‖wu‖∞ ≤ 1 − ε. On the other hand, the algorithm
does not need to know upfront the upper bound k on the sparsity of the weight vectors.

3.1 Deterministic Online Algorithm
Notation. During the execution of an algorithm, for each item u ∈ Ω, we use Su and
Au to denote the feasible set of maintained items and the set of items that have ever been
accepted, respectively, at the moment just before the arrival of item u.

We define the value of u as v(u) := f(u|Au) = f(Au ∪{u})− f(Au). Note that the value
of an item depends on the algorithm and the arrival order of items. For u ∈ Ω, for each
i ∈ [d], define the density of u at dimension i as ρu(i) := v(u)

wu(i) if wu(i) 6= 0 and ρu(i) :=∞
otherwise. By considering a lexicographical order on Ω, we may assume that all ties in values
and densities can be resolved consistently.

For a vector x ∈ [0, 1]Ω, we use x(u) to denote the component corresponding to coordinate
u ∈ Ω. We overload the notation dxe to mean either the support dxe := {u ∈ Ω : x(u) > 0}
or its indicator vector in {0, 1}Ω such that dxe(u) = dx(u)e.

Online Algorithm. The details are given in Algorithm 1, which defines the parameters
β := 1 − ε, α :=

√
β = 1 − Θ(ε) and γ := 1

2 (1 − β
α ) = Θ(ε). The algorithm keeps a

(fractional) vector s ∈ [0, 1]Ω, which is related to the actual feasible set S maintained by
the algorithm via the loop invariant (of the for loop in lines 2-24): S = dse. Specifically,
when an item u arrives, the vector s might be modified such that the coordinate s(u) might
be increased and/or other coordinates might be decreased; after one iteration of the loop,
the feasible set S is changed according to the loop invariant. The algorithm also maintains
an auxiliary vector a ∈ [0, 1]Ω that keeps track of the maximum fraction of item u that has
ever been accepted.

Algorithm Intuition. The algorithm solves a fractional variant behind the scenes using
a linear objective function defined by v. For each dimension i ∈ [d], it assumes that the
capacity is β < 1. Upon the arrival of a new element u ∈ Ω, the algorithm tries to increase
the fraction of item u accepted via the parameter θ ∈ [0, 1] in the do...while loop starting
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at line 16. For each dimension i ∈ [d] whose capacity is saturated (at β) and wu(i) > 0, to
further increase the fraction of item u accepted, some item uθi with the least density ρi will
have its fraction decreased in order to make room for item u. Hence, with respect to θ, the
value decreases at a rate at most

∑
i wu(i) · ρi(uθi ) due to disposing of fractional items. We

keep on increasing θ as long as this rate of loss is less than γ times v(u) (which is the rate
of increase in value due to item u).

After trying to increase the fraction of item u (and disposing of other items fractionally),
the algorithm commits to this change only if at least α fraction of item u is accepted, in
which case any item whose accepted fraction is less than β will be totally disposed of.

Parameters: α :=
√

1− ε, β := 1− ε, γ := 1
2 (1−

√
1− ε)

1 initialize s,a ∈ [0, 1]Ω as all zero vectors; . dse is the current feasible solution
2 for each round when u arrives do
3 Define v(u) := f(u|dae);
4 Initialize θ ← 0, x0 ← s;
5 do
6 Increase θ continuously (variables xθ and uθi all depend on θ):
7 for every i ∈ [d] do
8 if

∑
v∈Ω xθ(v)wv(i) = β and wu(i) > 0 then

9 Set uθi ← arg min{ρi(v) : v ∈ Ω \ {u},xθ(v)wv(i) > 0};
10 end
11 if

∑
v∈Ω xθ(v)wv(i) < β or wu(i) = 0 then

12 Set uθi ← ⊥ and ρi(uθi )← 0;
13 end
14 end
15 Change xθ(v) (for all v ∈ Ω) at rate:

dxθ(v)
dθ

=


1, v = u;

−maxi∈[d]:uθ
i
=v

{
wu(i)

w
uθ
i

(i)

}
, v ∈ {uθi }i∈[d];

0, otherwise.

16 while θ < 1 and γ · v(u) >
∑
i∈[d] wu(i) · ρi(uθi ) ;

17 if θ ≥ α then
18 s← xθ, a(u)← xθ(u); . update phase
19 for v ∈ Ω with s(v) < β do
20 s(v)← 0; . dispose of small fractions
21 end
22 end
23 . if θ < α, then s and a will not be changed
24 end
25 return dse.

Algorithm 1: Online Algorithm

3.2 Competitive Analysis
For notational convenience, we use the superscripted versions (e.g., su, au, Su = dsue,
Au = daue) to indicate the state of the variables at the beginning of the iteration in the for
loop (starting at line 2) when item u arrives. When we say the for loop, we mean the one
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1:8 Online Submodular Maximization Problem with Vector Packing Constraint

that runs from lines 2 to 24. When the superscripts of the variables are removed (e.g., S
and A), we mean the variables at some moment just before or after an iteration of the for
loop.

We first show that the following properties are loop invariants of the for loop.

I Lemma 6 (Feasibility Loop Invariant). The following properties are loop invariants of the
for loop:

(a) For every i ∈ [d],
∑
v∈Ω s(v) · wv(i) ≤ β, i.e., for every dimension, the total capacity

consumed by the fractional solution s is at most β.
(b) The set S = dse ⊂ Ω is feasible for the original problem.

Proof. Statement (a) holds initially because s is initialized to ~0. Next, assume that for some
item u ∈ Ω, statement (a) holds for su. It suffices to analyze the non-trivial case when the
changes to s are committed at the end of the iteration. Hence, we show that statement (a)
holds throughout the execution of the do...while loop starting at line 16. It is enough show
that for each i ∈ [d], gi(θ) :=

∑
v∈Ω xθ(v) ·wv(i) ≤ β holds while θ is being increased.

To this end, it suffices to prove that if gi(θ) = β, then dgi(θ)
dθ ≤ 0. We only need to consider

the case wu(i) > 0, because otherwise gi(θ) cannot increase. By the rules updating x, we
have in this case dgi(θ)

dθ ≤ dxθ(u)
dθ wu(i) + dxθ(uθi )

dθ wuθ
i
(i) ≤ 0, as required.

We next show that statement (b) follows from statement (a). Line 20 ensures that
between iterations of the for loop, for all v ∈ S = dse, s(v) ≥ β.

Hence, for all i ∈ [d], we have
∑
v∈S wv(i) ≤ 1

β

∑
v∈S s(v)·wv(i) = 1

β

∑
v∈Ω s(v)·wv(i) ≤

1, where the last inequality follows from statement (a). J

For a vector x ∈ [0, 1]Ω, we define v(x) :=
∑
u∈Ω v(u) · x(u); for a set X ⊂ Ω, we define

v(X) :=
∑
u∈X v(u). Note that the definitions of v(dxe) are consistent under the set and

the vector interpretations.
The following simple fact (which is similar to Lemma 2.1 of [9]) establishes the connection

between the values of items (defined by our algorithm) and the utility of the solution (defined
by the submodular function f).
I Fact 3.1 (Lemma 2.1 in [9]). The for loop maintains the invariants f(A) = f(∅) + v(A)
and f(S) ≥ f(∅) + v(S), where A = dae and S = dse.

Our analysis consists of two parts. We first show that v(a) is comparable to the value
of our real solution S in Lemma 7. Then, we compare in Lemma 8 the value of an (offline)
optimal solution with v(a). Combining the two lemmas we are able to prove Theorem 9.

I Lemma 7. The for loop maintains the invariant: (1− β
α ) ·v(S) ≥ (1− β

α −γ) ·v(a), where
S = dse. In particular, our choice of the parameters implies that v(a) ≤ 2 · v(S).

Proof. We prove the stronger loop invariant that:

v(s) ≥ (1− γ − β

α
)
∑
r∈A\S

v(r) · a(r) + (1− γ)
∑
r∈S

v(r) · a(r),

where S = dse is the current feasible set and A\S is the set of items that have been accepted
at some moment but are already discarded.

The invariant holds trivially initially when S = A = ∅ and s = ~0. Suppose the invariant
holds at the beginning of the iteration when item u ∈ Ω arrives. We analyze the non-trivial
case when the item u is accepted into S, i.e., s and a are updated at the end of the iteration.
Recall that su and au refer to the variables at the beginning of the iteration, and for the
rest of the proof, we use the ŝ and â to denote their states at the end of the iteration.



T-H. Hubert Chan et al. 1:9

Suppose in the do...while loop, the parameter θ is increased from 0 to a(u) ≥ α. Since
for all r 6= u, au(r) = â(r), we can denote this common value by a(r) without risk of
ambiguity. We use xu to denote the vector xθ when θ = a(u). Then, we have

v(xu)− v(su) ≥ v(u) · a(u)−
∫ a(u)

0

∑
i∈[d]:uθ

i
6=⊥

( wu(i)
wuθ

i
(i) · v(uθi ))dθ

> v(u) · a(u)−
∫ a(u)

0
γ · v(u)dθ = (1− γ) · v(u) · a(u),

where the second inequality holds by the criteria of the do...while loop.
Next, we consider the change in value v(ŝ)− v(xu), because some (fractional) items are

disposed of in line 20. Let D ⊆ Su be such discarded items. Since an item is discarded only
if its fraction is less than β, the value lost is at most β

∑
r∈D v(r) ≤ β

α

∑
r∈D v(r) · a(r),

where the last inequality follows because a(r) ≥ α for all items r that are ever accepted.
Therefore, we have

v(ŝ)− v(xu) ≥ −β
α

∑
r∈D

v(r) · a(r).

Combining the above two inequalities, we have

v(ŝ)− v(su) ≥ (1− γ) · v(u) · a(u)− β

α

∑
r∈D

v(r) · a(r).

Hence, using the induction hypothesis that the loop invariant holds at the beginning of
the iteration, it follows that

v(ŝ) ≥(1− γ − β

α
)
∑

r∈Au\Su
v(r) · a(r) + (1− γ)

∑
r∈Su

v(r) · a(r) + (1− γ) · v(u) · a(u)

− β

α

∑
r∈D

v(r) · a(r)

≥(1− γ − β

α
)
∑
r∈Â\Ŝ

v(r) · a(r) + (1− γ)
∑
r∈Ŝ

v(r) · a(r),

where Â = dâe and Ŝ = dŝe, as required.
We next show that the stronger invariant implies the result of the lemma. Rewriting the

invariant gives
v(s) ≥ (1−γ− β

α )
∑
r∈A v(r)·a(r)+ β

α

∑
r∈S v(r)·a(r) ≥ (1−γ− β

α )
∑
r∈A v(r)·a(r)+ β

α ·v(s),
where the last inequality follows because a(r) ≥ s(r) for all r ∈ S. Finally, the lemma follows
because v(S) = v(dse) ≥ v(s). J

The following lemma gives an upper bound on the value of the items in a feasible set
that are discarded right away by the algorithm.

I Lemma 8. The for loop maintains the invariant that if OPT is a feasible subset of items
that have arrived so far, then γ · v(OPT \A) ≤ k

β(1−α) · v(a), where A = dae. In particular,
our choice of the parameters implies that v(OPT \A) ≤ O( kε2 ) · v(S).

Proof. Consider some u ∈ OPT \ A. Since u /∈ A, in iteration u of the for loop, we know
that at the end of the do...while loop, we must have θ < α, which implies γ · v(u) ≤∑
i∈[d] wu(i) · ρi(uθi ) at this moment.
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Recall that by definition, ρi(uθi ) is either (i) 0 in the case
∑
v∈Ω xθ(v) · wv(i) < β and

wu(i) > 0, or (ii) the minimum density ρi(v) in dimension i among items v 6= u such that
xθ(v) ·wv(i) > 0.

Hence, in the second case, we have

ρi(uθi ) ≤
∑
v 6=u:xθ(v)wv(i)>0 xθ(v) · v(v)∑
v 6=u:xθ(v)wv(i)>0 xθ(v) ·wv(i)

=
∑
v 6=u:xθ(v)wv(i)>0 xθ(v) · v(v)

β − θ ·wu(i)

≤
∑
v:wv(i)>0 a(v) · v(v)

β(1− α) = Vi
β(1− α) ,

where Vi :=
∑
v:wv(i)>0 a(v) · v(v) depends only on the current a and i ∈ [d]. In the last

inequality, we use θ ·wu(i) ≤ αβ and a very loose upper bound on the numerator. Observe
that for the case (i) ρi(uθi ) = 0, the inequality ρi(uθi ) ≤ Vi

β(1−α) holds trivially.
Hence, using this uniform upper bound on ρi(uθi ), we have γ ·v(u) ≤

∑
i∈[d] wu(i)· Vi

β(1−α) .
Therefore, we have

γ · v(OPT \A) ≤
∑

u∈OPT\A

∑
i∈[d]

wu(i) · Vi
β(1− α) =

∑
i∈[d]

 ∑
u∈OPT\A

wu(i)

 · Vi
β(1− α)

≤
∑
i∈[d]

Vi
β(1− α) ≤

k · v(a)
β(1− α),

where the second to last inequality follows because OPT\A is feasible, and
∑
i∈[d] Vi ≤ k·v(a),

because for each v ∈ Ω, |{i ∈ [d] : wv(i) > 0}| ≤ k. J

I Theorem 9. Algorithm 1 is O( kε2 )-competitive.

Proof. Suppose OPT is a feasible subset. Recall that S is the feasible subset currently
maintained by the algorithm. Then, by the monotonicity and the submodularity of f , we
have f(OPT) ≤ f(OPT∪A) ≤ f(A) +

∑
u∈OPT\A f(u|A) ≤ f(∅) + v(A) + v(OPT\A), where

we use Fact 3.1 and submodularity f(u|A) ≤ f(u|Au) = v(u) in the last inequality.
Next, observe that for all u ∈ A, a(u) ≥ α. Hence, we have v(A) ≤ v(a)

α = O(1) · v(a).
Combining with Lemma 8, we have f(OPT) ≤ f(∅) +O( kε2 ) · v(a).

Finally, using Lemma 7 and Fact 3.1 gives f(OPT) ≤ O( kε2 ) · f(S), as required. J

3.3 Hardness Results: Proof of Theorem 2
We show that for the Online Vector Packing Problem with slack ε ∈ (0, 1

2 ), no deterministic
algorithm can achieve o(k)-competitive ratio, and no randomized algorithm can achieve
o( k

log k )-competitive ratio. To prove the hardness result for randomized algorithms, we ap-
ply Yao’s principle [29] and construct a distribution of hard instances, such that any de-
terministic algorithm cannot perform well in expectation. Specifically, we shall show that
each instance in the support of the distribution has offline optimal value Θ( k

log k ), but any
deterministic algorithm has expected objective value O(1), thereby proving Theorem 2.

In our hard instances, the utility function is linear, and all items have the same value, i.e.,
the utility function is f(S) := |S|. Moreover, we assume all weight vectors are in {0, 1− ε}d,
for any arbitrary ε ∈ (0, 1

2 ). Hence, we only need to describe the arrival order of items, and
the non-zero dimensions of weight vectors. In particular, we can associate each item u with
a k-subset of [d]. We use

([d]
k

)
to denote the collection of k-subsets of [d].
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Notations. We say that two items are conflicting, if they both have non-zero weights on
some dimension i (in which case, we say that they conflict with each other on dimension i).
We call two items non-conflicting if they do not conflict with each other on any dimension.

Our hard instances show that in some case when items conflict with one another on
different dimensions, the algorithm might be forced to make difficult decisions on choosing
which item to accept. By utilizing the nature of unknown future, we show that it is very
unlikely for any algorithm to make the right decisions on the hard instances. Although
accepted items can be later disposed of to make room for (better) items, by carefully setting
the weights and arrival order, we show that disposing of accepted items cannot help to get
a better objective (hence in a sense, disabling free-disposal).

Hard instance for deterministic algorithms. Let d := 2k2. Recall that each item is spe-
cified by an element of

([d]
k

)
, indicating which k dimensions are non-zero. Consider any

deterministic algorithm. An arriving sequence of length at most 2k is chosen adaptively.
The first item is picked arbitrarily, and the algorithm must select this item, or else the
sequence stops immediately. Subsequently, in each round, the non-zero dimensions for the
next arriving item u are picked according to the following rules.
1. Exactly k−1 dimensions from [d] are chosen such that no previous item has picked them.
2. Suppose û ∈

([d]
k

)
is the item currently kept by the algorithm. Then, the remaining di-

mension i is picked from û such that no other arrived item conflicts with û on dimension i.
If no such dimension i can be picked, then the sequence stops.

I Lemma 10. Any deterministic algorithm can keep at most 1 item, while there exist at
least k items that are mutually non-conflicting, implying that an offline optimal solution
contains at least k items.

Proof. By adversarial choice, every arriving item conflicts with the item currently kept by
the algorithm. Hence, the algorithm can keep at most 1 item at any time.

We next show that when the sequence stops, there exist at least k items in the sequence
that are mutually non-conflicting. For the case when there are 2k items in the sequence,
consider the items in reversed order of arrival. Observe that each item conflicts with only one
item that arrives before it. Hence, we can scan the items one by one backwards, and while
processing a remaining item, we remove any earlier item that conflicts with it. After we
finish with the scan, there are at least k items remaining that are mutually non-conflicting.

Suppose the sequence stops with less than 2k items. It must be the case that while we are
trying to add a new item u, we cannot find a dimension i contained in the item û currently
kept by the algorithm such that no already arrived item conflicts with û on dimension i.
This implies that for every non-zero dimension i of û, there is already an item ui conflicting
with û on that dimension. Since by choice, each dimension can cause a conflict between at
most 2 items, these k items ui’s must be mutually non-conflicting. J

Distribution of Hard Instances. To use Yao’s principle [29], we give a procedure to sample
a random sequence of items. For some large enough integer ` that is a power of 2, define
k := 100` log2 ` + 1, which is the sparsity of the weight vectors. Observe that ` = Θ( k

log k ),
and define d := ` + 400`2 log2 ` = O( k2

log k ) to be the number of dimensions. We express
the set of dimensions [d] = I ∪ J as the disjoint union of I := [`] and J := [d] \ I. The
items arrive in ` phases, and for each i ∈ [`], 4`− i+ 1 items arrive. Recall that each item
is characterized by its k non-zero dimensions (where the non-zero coordinates all equal
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1 − ε > 1
2 ). We initialize J1 := J . For i from 1 to `, we describe how the items in phase i

are sampled as follows.
1. Each of the 4`− i+ 1 items will have i ∈ I = [`] as the only non-zero dimension in I.
2. Observe that (inductively) we have |Ji| = (4` − i + 1) · 100` log2 `. We partition Ji

randomly into 4` − i + 1 disjoint subsets, each of size exactly k − 1 = 100` log2 `. Each
such subset corresponds to the remaining (k − 1) non-zero dimensions of an item in
phase i. These items in phase i can be revealed to the algorithm one by one.

3. Pick Si from those 4`− i+1 subsets uniformly at random; define Ji+1 := Ji \Si. Observe
that the algorithm does not know Si until the next phase i+ 1 begins.

I Claim 3.1. In the above procedure, the items corresponding to Si’s for i ∈ [`] are mutually
non-conflicting. This implies that there is an offline optimal solution containing ` = Θ( k

log k )
items. We say that those ` items are good, while other items are bad.

We next show that bad items are very likely to be conflicting.

I Lemma 11. Let E be the event that there exist two bad items that are non-conflicting.
Then, Pr[E ] ≤ 1

`2 .

Proof. An alternative view of the sampling process is that the subsets S1, S2, . . . , S` are
first sampled for the good items. Then, the remaining bad items can be sampled independ-
ently across different phases (but note that items within the same phase are sampled in a
dependent way).

Suppose we condition on the subsets S1, S2, . . . , S` already sampled. Consider phases
i and j, where i < j. Next, we further condition on all the random subsets generated in
phase j for defining the corresponding items. We fix some bad item v in phase j.

We next use the remaining randomness (for picking the items) in phase i. Recall that
each bad item in phase i corresponds to a random subset of size k−1 = 100` log2 ` in Ji \Si,
where |Ji \ Si| ≤ 4(k − 1)`. If we focus on such a particular (random) subset from phase i,
the probability that it is disjoint from the subset corresponding to item v (that we fixed
from phase j) is at most (1− k−1

4(k−1)` )k−1 ≤ exp(−25 log2 `) ≤ 1
`7 .

Observe that there are in total at most 4`2 items. Hence, taking a union over all possible
pairs of bad items, the probability of the event E is at most (4`2)2 · 1

`7 ≤ 1
`2 . J

I Lemma 12. For any deterministic algorithm ALG applied to the above random procedure,
the expected number of items kept in the end is O(1).

Proof. Let X denote the number of good items and Y denote the number of bad items kept
by the algorithm at the end.

Observe that the sampling procedure allows the good item (corresponding to Si) in
phase i to be decided after the deterministic algorithm finishes making all its decisions in
phase i. Hence, the probability that the algorithm keeps the good item corresponding to Si
is at most 1

4`−i+1 ≤
1
3` . Since this holds for every phase, it follows that E[X] ≤ 1

3` · ` = 1
3 .

Observe that conditioning on the complementing event E (refer to Lemma 11), at most
1 bad item can be kept by the algorithm, because any two bad items are conflicting. Fi-
nally, because the total number of items is at most 4`2, we have E[Y ] = Pr[E ]E[Y |E ] +
Pr[E ]E[Y |E ] ≤ 1

`2 · 4`2 + 1 · 1 ≤ 5.
Hence, E[X + Y ] ≤ 6, as required. J

I Corollary 13. By Claim 3.1 and Lemma 12, Yao’s principle implies that for any random-
ized algorithm, there exists a sequence of items such that the value of an offline optimum is
at least Θ( k

log k ), but the expected value achieved by the algorithm is O(1).
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