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Abstract. We consider distributed private data analysis, where n par-
ties each holding some sensitive data wish to compute some aggregate
statistics over all parties’ data. We prove a tight lower bound for the pri-
vate distributed summation problem. Our lower bound is strictly stronger
than the prior lower-bound result by Beimel, Nissim, and Omri published
in CRYPTO 2008. In particular, we show that any n-party protocol com-
puting the sum with sparse communication graph must incur an additive
error of Ω(

√
n) with constant probability, in order to defend against po-

tential coalitions of compromised users. Furthermore, we show that in the
client-server communication model, where all users communicate solely
with an untrusted server, the additive error must be Ω(

√
n), regardless

of the number of messages or rounds. Both of our lower-bounds, for the
general setting and the client-to-server communication model, are strictly
stronger than those of Beimel, Nissim and Omri, since we remove the as-
sumption on the number of rounds (and also the number of messages in
the client-to-server communication model). Our lower bounds generalize
to the (ε, δ) differential privacy notion, for reasonably small values of δ.

1 Introduction

Dwork et al. [DMNS06] proposed (information theoretical) differential privacy,
which has become a de-facto standard privacy notion in private data analy-
sis. In this paper, we investigate the setting of distributed private data analy-
sis [BNO08], in which n parties each holds some private input, and they wish
to jointly compute some statistic over all parties’ inputs in a way that respects
each party’s privacy.

In a seminal work by Beimel, Nissim, and Omri [BNO08], they demonstrate
a lower bound result for distributed private data analysis. Specifically, they con-
sider the distributed summation problem, namely, computing the sum of all par-
ties’ inputs. They prove that any differentially-private multi-party protocol with
a small number of rounds and small number of messages must have large error.

This paper proves a strictly stronger lower bound than the result by Beimel,
Nissim, and Omri [BNO08]. We show that for the distributed summation
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problem, any differentially private multi-party protocol with a sparse communi-
cation graph must have large error, where two nodes are allowed to communicate
only if they are adjacent in the communication graph. In comparison with the
previous lower bound by Beimel et al. [BNO08], our lower bound relaxes the
constraint on the small number of messages or rounds. In this sense, our lower
bound is strictly stronger than that of Beimel et al. [BNO08].

We also consider a special setting in which only client-server communication
is allowed (i.e., the communication graph is the star graph with the server at
the center). Beimel et al. [BNO08] referred to this communication model as
local model. In the client-server communication setting, we prove a lower bound
showing that any differentially-private protocol computing the sum must have
large error. This lower bound has no restriction on the number of messages or
the number of rounds, and is also strictly stronger than [BNO08], who showed
that in the client-server setting, any differentially-private protocol with a small
number of rounds must have large error.

Furthermore, our lower-bound results hold for (ε, δ)-differential privacy where
δ is reasonably small. Since ε-differential privacy is a special case of this with
δ = 0, our lower bounds are also more general than those of Beimel et al. who
considered ε differential privacy.

The lower bounds proven in this paper hold for information theoretic differ-
ential privacy. By contrast, previous works have demonstrated the possibility of
constructing multi-party protocols with O(1) error and small message complex-
ity in the computational differential privacy setting [DKM+06, RN10, SCR+11].
Therefore, our lower-bound results also imply a gap between computational and
information theoretic differential privacy in the multi-party setting.

1.1 Informal Summary of Main Results

Lower Bound for the General Setting (Corollary 2). Informally, we show
that any n-party protocol computing the sum, which consumes at most 1

4n(t+1)
messages must incur Ω(

√
n) additive error (with constant probability), in order

to preserve differentially privacy against coalitions of up to t compromised users.

Lower Bound for Client-Server Model (Corollary 1). Informally, we show
that in the client-servermodel, an aggregatorwouldmake an additive errorΩ(

√
n)

on the sum fromany n-user protocol that preserves differential privacy. This lower-
bound holds regardless of the number of messages or number of rounds.

Tightness of the Lower Bounds. Both of the above lower bounds are tight
in the following sense. First, for the client-server model, there exists a naive
protocol, in which each user perturbs their inputs using Laplace or geometric
noise with standard deviation O(1ε ), and reveals their perturbed inputs to the
aggregator. Such a naive protocol has additive error O(

√
n); so in some sense,

the naive protocol is the best one can do in the client-server model.
To see why the lower bound is tight for the general multi-party setting, we

combine standard techniques of secure function evaluation [CK93] and
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distributed randomness [SCR+11] and state in Section 5 that there exists a
protocol which requires only O(nt) messages, but achieves o(

√
n) error.

Techniques.Toprove the above-mentioned lower-bounds,we combine techniques
from communication complexity and measure anti-concentration techniques used
in themetric embedding literature.Our communication complexity techniques are
inspired by the techniques adopted by McGregor et al. [MMP+10] who proved a
gap between information-theoretic and computational differential privacy in the
2-party setting. The key observation is that independent inputs remain indepen-
dent even after conditioning on the transcript of the protocol. This eliminates the
dependence on the number of rounds of communication in the lower bound.

As argued by in [BNO08], if a party communicates with only a small number of
other parties, then there must still be sufficient randomness in that party’s input.
Then, using anti-concentration techniques, we show that the sum of these inde-
pendent random variables is either much smaller or much larger than the mean,
both with constant probability, thereby giving a lower bound on the additive er-
ror. The anti-concentration techniques are inspired by the analysis of the square
of the sum of independent sub-Gaussian random variables [IN07], which gener-
alizes several Johnson-Lindenstrauss embedding constructions [DG03, Ach03].
Moreover, we generalize the techniques to prove the lower bound for (ε, δ)-
differentially private protocols (as opposed to just ε-differential privacy). The
challenge is that for δ > 0, it is possible for some transcript to break a party’s
privacy and there might not be enough randomness left in its input. However,
we show that for small enough δ, the probability that such a transcript is
encountered is small, and hence the argument is still valid.

2 Related Work

Differential privacy [DMNS06, Dwo06, Dwo10] was traditionally studied in a set-
ting where a trusted curator, with access to the entire database in the clear, wishes
to release statistics in a way that preserves each individual’s privacy. The trusted
curator is responsible for introducing appropriate perturbations prior to releasing
any statistic. This setting is particularly useful when a company or a government
agency, in the possession of a dataset, would like to share it with the public.

In many real-world applications, however, the data is distributed among users,
and users may not wish to entrust their sensitive data to a centralized party
such as a cloud service provider. In these cases, we can employ distributed pri-
vate data analysis – a problem proposed and studied in several recent works
[MMP+10, BNO08, DKM+06, RN10, SCR+11] – where participating parties are
mutually distrustful, but wish to learn some statistics over their joint datasets.
In particular, the client-server communication model [BNO08, RN10, SCR+11]
where all users communicate solely with an untrusted server, is especially desir-
able in real-world settings.

This work subsumes the distributed private data analysis setting previously
studied by Beimel, Nissim, and Omri [BNO08], and improves their lower-bounds
for information-theoretic differentially private multi-party protocols.
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While this work focuses on lower bounds for information theoretic differ-
ential privacy, computational differential privacy is an alternative notion first
formalized by Mironov et al. [MPRV09], aiming to protect individual user’s
sensitive data against polynomially-bounded adversaries. Previous works have
shown the possibility of constructing protocols with O(1) error and small message
complexity in the computational differential privacy setting [DKM+06, RN10,
SCR+11]. This demonstrates a gap between information theoretic and computa-
tional differential privacy in the multi-party setting. In particular, the construc-
tions by Rastogi et al. [RN10] and Shi et al. [SCR+11] require only client-server
communication, and no peer-to-peer interactions.

3 Problem Definition and Assumptions

Consider a group of n parties (or nodes), indexed by the set [n] := {1, 2, . . . n}.
Each party i ∈ [n] has private data xi ∈ U , where U := {0, 1, 2, . . . , Δ} for some
positive integer Δ. We use the notation x := (x1, x2, . . . , xn) ∈ Un to denote
the vector of all parties’ data, also referred to as an input configuration. The n
parties participate in a protocol such that at the end at least one party learns
or obtains an estimate of the sum, denoted sum(x) :=

∑
i∈[n] xi. For a subset

S ⊆ [n], we denote sum(xS) :=
∑

i∈S xi.
Given a protocolΠ and an input x ∈ Un, we useΠ(x) to denote the execution

of the protocol on the input. A coalition is a subset T of nodes that share their
information with one another in the hope of learning the other parties’ input.
The view Π(x)|T of the coalition T consists of the messages, any input and
private randomness viewable by the nodes in T . In contrast, we denote by π(x)
the transcript of the messages and use π(x)|T to mean the messages sent or
received by nodes in T .

Trust and Attack Model. As in Beimel et al. [BNO08], we assume that all
parties are semi-honest. A subset T of parties can form a coalition and share
their input data, private randomness and view of the transcript with one another
in order to learn the input data of other parties. Since we adopt the semi-honest
model, all parties, whether within or outside the coalition, honestly use their true
inputs and follow the protocol. The data pollution attack, where parties inflate
or deflate their input values, is out of the scope of this paper. Defense against
the data pollution attack can be considered as orthogonal and complementary
to our work, and has been addressed by several works in the literature [PSP03].

Communication Model. Randomized oblivious protocols are considered in
[CK93, BNO08], where the communication pattern (i.e., which node sends mes-
sage to which node in which round) is independent of the input and the random-
ness. We relax this notion by assuming that for a protocolΠ , there is a communi-
cation graph GΠ (independent of input and randomness) on the nodes such that
only adjacent nodes can communicate with each other. For a node i, we denote
by NΠ(i) its set of neighbors in GΠ . The subscript Π is dropped when there is
no risk of ambiguity. Observe that the number of messages sent in each round is



Optimal Lower Bound for Differentially Private Multi-party Aggregation 281

only limited by the number of edges in the communication graph, and to simply
our proofs, we only assume that there is some finite upper bound on the number
of rounds for all possible inputs and randomness used by the protocol.

3.1 Preliminaries

Intuitively, differential privacy against a coalition guarantees that if an individual
outside the coalition changes its data, the view of the coalition in the protocol
will not be affected too much. In other words, if two input configurations x and
y differ only in 1 position outside the coalition, then the distribution of Π(x)|T
is very close to that of Π(y)|T . This intuition is formally stated in the following
definition.

Definition 1 (Differential Privacy Against Coalition). Let ε > 0 and
0 ≤ δ < 1. A (randomized) protocol Π preserves (ε, δ)-differential privacy
against coalition T if for all vectors x and y in Un that differ by only 1 po-
sition corresponding to a party outside T , for all subsets S of possible views by
T , Pr[Π(x)|T ∈ S] ≤ exp(ε) · Pr[Π(y)|T ∈ S] + δ.

A protocol Π preserves ε-differential privacy against a coalition if it preserves
(ε, 0)-differential privacy against the same coalition.

Two noise distributions are commonly used to perturb the data and ensure
differential privacy, the Laplace distribution [DMNS06], and the Geometric dis-
tribution [GRS09]. The advantage of using the geometric distribution over the
Laplace distribution is that we can keep working in the domain of integers.

Definition 2 (Geometric Distribution). Let α > 1. We denote by Geom(α)
the symmetric geometric distribution that takes integer values such that the prob-
ability mass function at k is α−1

α+1 · α−|k|.

Proposition 1. Let ε > 0. Suppose u and v are two integers such that |u−v| ≤
Δ. Let r be a random variable having distribution Geom(exp( ε

Δ)). Then, for any
integer k, Pr[u+ r = k] ≤ exp(ε) · Pr[v + r = k].

The above property of Geom distribution is useful for designing differentially
private mechanisms that output integer values. In our setting, changing one
party’s data can only affect the sum by at most Δ. Hence, it suffices to consider

Geom(α) with α = e
ε
Δ . Observe that Geom(α) has variance 2α

(α−1)2 . Since
√
α

α−1 ≤
1

lnα = Δ
ε , the magnitude of the error added is O(Δε ).

Naive Scheme. As a warm-up exercise, we describe a Naive Scheme, where each
party generates an independent Geom(e

ε
Δ ) noise, adds the noise to its data, and

sends the perturbed data to one special party called an aggregator, who then
computes the sum of all the noisy data. As each party adds one copy of indepen-
dent noise to its data, n copies of noises would accumulate in the sum. It can be

shown that the accumulated noise is O(Δ
√
n

ε ) with high probability. In compar-
ison with our lower-bound, this shows that under certain mild assumptions, if
one wishes to guarantee small message complexity, the Naive Scheme is more or
less the best one can do in the information theoretic differential privacy setting.
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4 Lower Bound for Information-Theoretic Differential
Privacy

This section proves lower-bounds for differentially private distributed summation
protocols. We consider two settings, the general settings, where all nodes are
allowed to interact with each other; and the client-server communication model,
where all users communicate only with an untrusted server, but not among
themselves.

We will prove the following main result, and then show how to extend the
main theorem to the afore-mentioned two communication models.

Theorem 1 (Lower Bound for Size-t Coalitions). Let 0 < ε ≤ ln 99 and
0 ≤ δ ≤ 1

4n . There exists some η > 0 (depending on ε) such that the following
holds. Suppose n parties, where party i (i ∈ [n]) has a secret bit xi ∈ {0, 1},
participate in a protocol Π to estimate

∑
i∈[n] xi. Suppose further that the proto-

col is (ε, δ)-differentially private against any coalition of size t, and there exists
a subset of m parties, each of whom has at most t neighbors in the protocol’s
communication graph. Then, there exists some configuration of the parties’ bits
xi’s such that with probability at least η (over the randomness of the protocol),

the additive error is at least Ω(
√
γ

1+γ · √m), where γ = 2eε.

Note that the assumption that 0 ≤ δ ≤ 1
4n is not a limitation. Typically, when

we adopt (ε, δ) differential privacy, we wish to have δ = o( 1
n ), to ensure that no

individual user’s sensitive data is leaked with significant probability.
The following corollaries are special cases of Theorem 1, corresponding to the

client-server communication model, and the general model respectively. In both
settings, our results improve upon the lower bounds by Beimel et al. [BNO08].
We will first show how to derive these corollaries from Theorem 1. We then
present a formal proof for Theorem 1.

Corollary 1 (Lower Bound for Client-Server Communication Model).
Let 0 < ε ≤ ln 99 and 0 ≤ δ ≤ 1

4n . Suppose n parties, each having a secret
bit, participate in a protocol Π with a designated party known as the aggregator,
with no peer-to-peer communication among the n parties. Suppose further that
the protocol is (ε, δ)-differentially private against any single party (which forms
a coalition on its own). Then, with constant probability (depending on ε), the
aggregator estimates the sum of the parties’ bits with additive error at least at

least Ω(
√
γ

1+γ · √n), where γ = 2eε.

Proof. The communication graph is a star with the aggregator at the center. The
protocol is also differentially private against any coalition of size 1, and there
are n parties, each of which has only 1 neighbor (the aggregator). Therefore, the
result follows from Theorem 1. ��
Corollary 2 (Lower Bound for General Setting). Let 0 < ε ≤ ln 99 and
0 ≤ δ ≤ 1

4n . Suppose n parties participate in a protocol that is (ε, δ)-differentially
private against any coalition of size t. If there are at most 1

4n(t+1) edges in the



Optimal Lower Bound for Differentially Private Multi-party Aggregation 283

communication graph of the protocol, then with constant probability (depending
on ε), the protocol estimates the sum of the parties’ bits with additive error at

least Ω(
√
γ

1+γ · √n), where γ = 2eε.

Proof. Since there are at most 1
4n(t+1) edges in the communication graph, there

are at least n
2 nodes with at most t neighbors (otherwise the sum of degrees over

all nodes is larger than 1
2n(t+1)). Hence, the result follows from Theorem 1. ��

Proof Overview for Theorem 1. We fix some ε > 0 and 0 ≤ δ ≤ 1
4n , and

consider some protocol Π that preserves (ε, δ)-differential privacy against any
coalition of size t.

Suppose that the bits Xi’s from all parties are all uniform in {0, 1} and in-
dependent. Suppose M is the subset of m parties, each of whom has at most t
neighbors in the communication graph. For each i ∈ M , we consider a set P(i)

of bad transcripts for i, which intuitively is the set of transcripts π under which
the view of party i’s neighbors can compromise party i’s privacy.

We consider the set P := ∪i∈MP(i) of bad transcripts (which we define for-
mally later), and show that the probability that a bad transcript is produced is at
most 3

4 . Conditioning on a transcript π /∈ P , for i ∈ M , each Xi still has enough
randomness, as transcript π does not break the privacy of party i. Therefore, the
conditional sum

∑
i∈M Xi still has enough variance like the sum ofm = |M | inde-

pendent uniform {0, 1}-random variables. Using anti-concentration techniques,
we can show that the sum deviates above or below the mean by Ω(

√
m), each

with constant probability. Since the transcript determines the estimation of the
final answer, we conclude that the error is Ω(

√
m) with constant probability.

Notation. Suppose that each party i’s bit Xi is uniform in {0, 1} and inde-
pendent. We use X := (Xi : i ∈ [n]) to denote the collection of the random
variables. We use a probabilistic argument to show that the protocol must, for
some configuration of parties’ bits, make an additive error of at least Ω(

√
m) on

the sum with constant probability.
For convenience, given a transcript π (or a view of the transcript by certain

parties) we use Pr[π] to mean Pr[π(X) = π] and Pr[·|π] to mean Pr[·|π(X) = π];
given a collection P of transcripts (or collection of views), we use Pr[P ] to mean
Pr[π(X) ∈ P ].

We can assume that the estimate made by the protocol is a deterministic func-
tion on the whole transcript of messages, because without loss of generality we can
assume that the last message sent in the protocol is the estimate of the sum.

We will define some event E where the protocol makes a large additive error.

Bad Transcripts. Denote γ := 2eε. For i ∈ M , defineP(i)
0 := {π : Pr[π|N(i)|Xi =

0] > γ ·Pr[π|N(i)|Xi = 1]} and P(i)
1 := {π : Pr[π|N(i)|Xi = 1] > γ ·Pr[π|N(i)|Xi =

0]}. We denote by P(i) := P(i)
0 ∪ P(i)

1 the set of bad transcripts with respect to
party i. Let P := ∪i∈MP(i).

Proposition 2 (Projection of Events). Suppose U is a subset of the views of
the transcript by the neighbors of i, and define the subset of transcripts byPU := {π :
π|N(i) ∈ U}. Then, it follows that PrX,Π [π(X) ∈ PU ] = PrX,Π [π(X)|N(i) ∈ U ].
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Lemma 1 (Most Transcripts Behave Well). Let ε > 0 and 0 ≤ δ ≤ 1
4n .

Suppose the protocol is (ε, δ)-differentially private against any coalition of size t,
and P is the union of the bad transcripts with respect to parties with at most t
neighbors in the communication graph. Then, PrX,Π [P ] ≤ 3

4 .

Proof. From definition ofP(i)
0 and using Proposition 2, we have Pr[P(i)

0 |Xi = 0] >

γ · Pr[P(i)
0 |Xi = 1]. Since the protocol is (ε, δ)-differentially private against any

coalition of size t, we have for each i ∈ M , Pr[P(i)
0 |Xi = 0] ≤ eε Pr[P(i)

0 |Xi = 1]+δ.

Hence, we have (γ−eε) Pr[P(i)
0 |Xi = 1] ≤ δ, which implies that Pr[P(i)

0 |Xi = 1] ≤
e−εδ, since γ = 2eε.

Hence, we also have Pr[P(i)
0 |Xi = 0] ≤ eε Pr[P(i)

0 |Xi = 1]+ δ ≤ 2δ. Therefore,

we have Pr[P(i)
0 ] = 1

2 (Pr[P(i)
0 |Xi = 0] + Pr[P(i)

0 |Xi = 1]) ≤ 3δ
2 .

Similarly, we have Pr[P(i)
1 ] ≤ 3δ

2 . Hence, by the union bound over i ∈ M , we
have Pr[P ] ≤ 3nδ ≤ 3

4 , since we assume 0 ≤ δ ≤ 1
4n . ��

We perform the analysis by first conditioning on some transcript π /∈ P . The
goal is to show that PrX[E|π] ≥ η, for some η > 0. Then, since Pr[P ] ≤ 3

4 , we can
conclude PrX[E ] ≥ η

4 , and hence for some configuration x, we have Pr[E|x] ≥ η
4 ,

as required.

Conditioning on Transcript π. The first step (Lemma 2) is analogous to the
techniques of [MMP+10, Lemma 1]. We show that conditioning on the transcript
π /∈ P , the random variables Xi’s are still independent and still have enough
randomness remaining.

Definition 3 (γ-random). Let γ ≥ 1. A random variable X in {0, 1} is γ-

random if 1
γ ≤ Pr[X=1]

Pr[X=0] ≤ γ.

Lemma 2 (Conditional Independence and Randomness). Suppose each
party’s bit Xi is uniform and independent, and consider a protocol to estimate the
sum that is (ε, δ)-differentially private against any coalition of size t, where 0 ≤
δ ≤ 1

4n . Then, conditioning on the transcript π /∈ P, the random variables Xi’s
are independent; moreover, for each party i ∈ M that has at most t neighbors
in the communication graph, the conditional random variable Xi is γ-random,
where γ = 2eε.

Proof. The proof is similar to that of [MMP+10, Lemma 1]. Since our lower
bound does not depend on the number of rounds, we can without loss of gen-
erality sequentialize the protocol and assume only one node sends a message
in each round. The conditional independence of the Xi’s can be proved by in-
duction on the number of rounds of messages. To see this, consider the first
message m1 sent by the party who has input X1, and suppose X ′ is the joint
input of all other parties. Observe that (X1,m1) is independent of X

′. Hence, we
have Pr[X1 = a,X ′ = b|m1 = c] = Pr[X1=a,X′=b,m1=c]

Pr[m1=c] = Pr[X1=a,m1=c] Pr[X′=b]
Pr[m1=c]

= Pr[X1 = a|m1 = c] ·Pr[X ′ = b|m1 = c], which means conditioning on m1, the
random variables X1 and X ′ are independent. After conditioning on m1, one can
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view the remaining protocol as one that has one less round of messages. There-
fore, by induction, one can argue that conditioning on the whole transcript, the
inputs of the parties are independent.

For each party i having at most t neighbors, the γ-randomness of each condi-
tional Xi can be proved by using the uniformity of Xi and that π /∈ P(i) is not
bad for i.

We first observe that the random variable Xi has the same conditional distri-
bution whether we condition on π or π|N(i), because as long as we condition on
the messages involving node i, everything else is independent of Xi.

We next observe that if party i ∈ M has at most t neighbors in the communi-

cation graph and π /∈ P(i), then by definition we have
Pr[π|N(i) |Xi=1]

Pr[π|N(i) |Xi=0] ∈ [γ−1, γ].

Hence, Pr[Xi=1|π]
Pr[Xi=0|π] =

Pr[Xi=1|π|N(i)]

Pr[Xi=0|π|N(i)]
=

Pr[π|N(i) |Xi=1]·Pr[Xi=1]

Pr[π|N(i) |Xi=0]·Pr[Xi=0] =
Pr[π|N(i) |Xi=1]

Pr[π|N(i) |Xi=0]

∈ [γ−1, γ]. ��
We use the superscripted notation X ′ to denote the version of the random vari-
able X conditioning on some transcript π. Hence, Lemma 2 states that the
random variables X ′

i’s are independent, and each X ′
i is γ-random for i ∈ M . It

follows that the sum
∑

i∈M X ′
i has variance at least mγ

(1+γ)2 .

The idea is that conditioning on the transcript π, the sum of the parties’ bits
(in M) has high variance, and so the protocol is going to make a large error with
constant probability. We describe the precise properties we need in the following
technical lemma, whose proof appears in Section 4.1, from which Theorem 1
follows.

Lemma 3 (Large Variance Dichotomy). Let γ ≥ 1. There exists η > 0
(depending on γ) such that the following holds. Suppose Zi’s are m independent
random variables in {0, 1} and are all γ-random, where i ∈ [n]. Define Z :=∑

i∈[m] Zi and σ2 := mγ
2(1+γ)2 . Then, there exists an interval [a, b] of length σ

2

such that the probabilities Pr[Z ≥ b] and Pr[Z ≤ a] are both at least η.

Proof of Theorem 1: Using Lemma 3, we set γ := exp(ε) and Zi := X ′
i, for each

i ∈ M . Suppose η > 0 (depending on γ and hence on ε), σ2 := mγ
2(1+γ)2 and the

interval [a, b] are as guaranteed from the lemma. Suppose s is the sum of the
bits of parties outside M . Let c := a+b

2 + s.
Suppose the protocol makes an estimate that is at most c. Then, conditioning

on π, the system still has enough randomness among parties in M , and with
probability at least η, the real sum is at least b + s, which means the additive
error is at least σ

4 . The case when the protocol makes an estimate greater than c
is symmetric. Therefore, conditioning on π /∈ P , the protocol makes an additive
error of at least σ

4 with probability at least η in any case. Note that this is true
even if the protocol is randomized.

Let E be the event that the protocol makes an additive error of at least σ
4 .

We have just proved that for π /∈ P , PrX,Π [E|π] ≥ η, where the probability is
over the X = (Xi : i ∈ [n]) and the randomness of the protocol Π .

Observe that PrX,Π [E|π] ≥ η for all transcripts π /∈ P , and from Lemma 1,
Pr[P ] ≤ 3

4 . Hence, we conclude that PrX,Π [E ] ≥ η
4 . It follows that there must
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exist some configuration x of the parties’ bits such that PrΠ [E|x] ≥ η
4 . This

completes the proof of Theorem 1. ��

4.1 Large Variance Dichotomy

We prove Lemma 3. For i ∈ M , let pi := Pr[Zi = 1]. From the γ-randomness of
Zi, it follows that

1
1+γ ≤ pi ≤ γ

1+γ . Without loss of generality, we assume that

there are at least m
2 indices for which pi ≥ 1

2 ; otherwise, we consider 1−Zi. Let
J ⊆ M be a subset of size m

2 such that for each i ∈ J , pi ≥ 1
2 .

Define for i ∈ J , Yi := Zi − pi. Let Y :=
∑

i∈J Yi, and Z ′ :=
∑

i∈J Zi. It
follows that E[Yi] = 0 and E[Y 2

i ] = pi(1 − pi) ≥ γ
(1+γ)2 . Denote σ2 := mγ

2(1+γ)2 ,

μ := E[Z ′] =
∑

i∈J pi and ν2 := E[Y 2] =
∑

i∈J pi(1− pi). We have ν2 ≥ σ2.
The required result can be achieved from the following lemma.

Lemma 4 (Large Deviation). There exists η0 > 0 (depending only on γ)
such that Pr[|Y | ≥ 9σ

10 ] ≥ η0.

We show how Lemma 4 implies the conclusion of Lemma 3. Since Pr[|Y | ≥ 9σ
10 ] =

Pr[Z ′ ≥ E[Z ′] + 9σ
10 ] + Pr[Z ′ ≤ E[Z ′]− 9σ

10 ], at least one of the latter two terms
is at least η0

2 . We consider the case Pr[Z ′ ≥ E[Z ′] + 9σ
10 ] ≥ η0

2 ; the other case is
symmetric.

By Hoeffding’s Inequality, for all u > 0, Pr[Z ′ ≥ E[Z ′] + u] ≤ exp(− 2u2

n ).

Setting u := 2σ
5 , we have Pr[Z ′ < E[Z ′] + 2σ

5 ] ≥ 1− exp(− 8γ
25(1+γ)2 ) =: η1.

We set η := 1
2 min{ η0

2 , η1}. Let Ẑ :=
∑

i∈M\J Zi. Observe that Ẑ and Z are

independent. Hence we can take the required interval to be [median(Ẑ)+E[Z]+
2σ
5 ,median(Ẑ) + E[Z] + 9σ

10 ], which has width σ
2 .

Hence, it remains to prove Lemma 4.
Proof of Lemma 4: We use the method of sub-Gaussian moment generating
function in the way described in [IN07, Remark 3.1].

First, for each i ∈ M , for any real h,

E[ehYi ] = pi · eh(1−pi) + (1 − pi) · eh(0−pi)

= exp(−pih) · (1 + pi(e
h − 1)) ≤ exp(pih

2),

where the last inequality follows from 1+ p(eh − 1) ≤ exp(ph2 + ph), for all real
h and 1

2 ≤ p ≤ 1.
Let g be a standard Gaussian random variable, i.e., it has density function

x 
→ 1√
2π
e

1
2x

2

. It is assumed that g is independent of all other randomness in

the proof. Recall that E[ehg] = e
1
2h

2

and for h < 1
2 , E[ehg

2

] = 1√
1−2h

.

For 0 ≤ h ≤ 1
8μ , we have

E[ehY
2

] = EY [Eg[e
√
2hgY ]] = Eg[EY [e

√
2hg

∑
i Yi ]]

= Eg[
∏

i

EYi [e
√
2hgYi ]] ≤ Eg[

∏

i

e2hpig
2

]

= Eg[exp(2μhg
2)] =

1√
1− 4μh

≤
√
2.
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For − 1
8μ ≤ h ≤ 1

8μ , we have

E[ehY
2

] ≤ 1 + hE[Y 2] +
∑

m≥2

1

m!
(8μ|h|)m(

1

8μ
)mE[Y 2m]

≤ 1 + hν2 + (8μh)2
∑

m≥2

1

m!
(
1

8μ
)mE[Y 2m]

≤ 1 + hν2 + (8μh)2E[exp(
Y 2

8μ
)]

≤ 1 + hν2 + 100μ2h2 ≤ exp(hν2 + 100μ2h2)

Let 0 < β < 1. For − 1
8μ ≤ h < 0, we have

Pr[Y 2 ≤ (1− β)ν2] = Pr[hY 2 ≥ h(1− β)ν2]

≤ exp(−h(1− β)ν2) · E[exp(hY 2)]

≤ exp(hβν2 + 100μ2h2).

Observe that 1
1+γ ≤ ν2

μ =
∑

i pi(1−pi)∑
i pi

≤ γ
1+γ .

We can set h := − βν2

200μ2 ≥ − 1
8μ , and we have Pr[Y 2 ≤ (1−β)ν2]≤ exp(− β2ν4

400μ2 )

≤ exp(− β2

400(1+γ)2 ).

Setting β := 19
100 and observing that ν2 ≥ σ2, we have Pr[|Y | ≥ 9

10σ] ≥
1− exp(−( 19

2000(1+γ) )
2). ��

5 Differentially Private Protocols against Coalitions

We show that the lower bound proved in Section 4 is essentially tight. As noted by
Beimel et al. [BNO08], one can generally obtain differentially private multi-party
protocols with small error, by combining general (information theoretic) Secure
Function Evaluation (SFE) techniques with differential privacy. Although our
upper-bound constructions use standard techniques from SFE and differential
privacy, we include the main result here for completeness. The details are given
in the full version.

Theorem 2 (Differentially Private Protocols Against Coalitions). Given
ε > 0, 0 < δ < 1 and a positive integer t, there exists an oblivious protocol among
n parties each having a secret input xi ∈ U := {0, 1, 2, . . . , Δ}, such that the pro-
tocol uses only O(nt) messages to estimate the sum

∑
i∈[n] xi; the differential

privacy guarantees and error bounds of the protocols are given as follows.

(a) For ε-differential privacy against any coalition of size t, with probability at
least 1− η, the additive error is at most O(Δε · exp( ε

2Δ)
√
t+ 1 log 1

η ).

(b) For (ε, δ)-differential privacy against any coalition of size t, with probability

at least 1− η, the additive error is at most O(Δε · exp( ε
2Δ )

√
n

n−t log
1
δ log

1
η ).
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