
The Load Distribution Problem in a Processor Ring

Francis C.M. Lau∗

Department of Computer Science and Information Systems
The University of Hong Kong, Hong Kong

September 1998, August 2001

Abstract

Given a global picture of the system load and the average load, the load distribution problemis to find

a suitable schedule, consisting of the amount of excess load to transfer along every edge, so that the

system load can be balanced in minimal time by executing the schedule. We study this problem for the

ring topology. We discuss some existing algorithms, show how they fall short of being able to generate

optimal schedules, and present a simple algorithm that would generate an optimal schedule for any given

system load instance. This simple algorithm relies on an existing algorithm to create a search window in

which the optimal solution is to be found.

Keywords: interconnection networks, load balancing, load distribution, multicomputers, parallel algo-

rithms, performance analysis, scheduling.

1 Introduction

We consider the problem of dynamic load balancing in distributed-memory parallel computers. One sys-

tematic approach to the problem is to divide the load balancing procedure into the following phases: load

measurement, calculation of load average, generation of load distribution schedule, and load redistribution

[8, 6, 1]. In the load measurement phase, the load in a processor is measured and captured in some abstract

load index (usually the number of units of workload in the processor); these abstract loads across all the

processors are then used in a computation of the average load in the second phase; in the third phase, based

on the average load, a set of instructions are generated which dictate how much load each processor should

give away or receive along each of its links; these load distribution instructions collectively constitute what

we refer to as a load distribution schedule. A good schedule would lead to an efficient redistribution of load

in the final phase. The load distribution problemcan be stated as: Given the current load situation (the set of

all abstract load indices) and the average load, find a load distribution schedule so that the load redistribution

phase would take minimum time to complete.

Our primary objective is to find the optimal schedule. Optimizing the time it takes (by an algorithm)

to find this schedule is secondary. Nonetheless, as shown in the experimentation section, the algorithm we

propose for finding optimal schedules is reasonably efficient.
∗Correspondence: F.C.M. Lau, Department of Computer Science and Information Systems, The University of Hong Kong,

Hong Kong / Email: fcmlau@csis.hku.hk / Fax: (+852) 2559 8447

1

There are basically two approaches to computing the average load: decentralized and centralized. The

GDE (Generalized Dimension Exchange) method [7, 8] is an example of the decentralized approach, and

the DDE (Direct Dimension Exchange) method [6] is an example of the centralized approach. In terms

of time performance, the centralized approach has some clear advantages because the computation can be

carried out in a single processor, thus saving the cost of much message passing which is characteristic of the

decentralized approach. But the decentralized approach would be more reliable. The GDE method actually

does not compute the average explicitly; with no knowledge of the load average, it starts constructing the

load distribution schedule in some iterative fashion immediately after the load measurement phase. By

contrast, the DDE method explicitly computes the average load. This paper is more in line with the latter—

we assume that the average load is available as an input parameter for the generation of the load distribution

schedule.

We show that an algorithm proposed in the DDE paper provides no guarantee on the time performance

of the load distribution schedules generated by the algorithm [6]. A good load balancing procedure really

cannot do without an efficient load distribution schedule because the redistribution of load via messages

could account for a substantial portion of the overall load balancing time. We propose an algorithm that

would solve the load distribution problem by generating an optimal schedule for any given system load

instance.

An example of a distribution schedule is shown in Fig. 1 where six processors are connected into a

ring. Each processor is identified by the number of units of workload it has (its load index). The subscript

indicates the processor’s position within the ring. Let vi be the processor at position i. For convenience v1 is

drawn twice (one in brackets) so that v6 appears to be its left-neighbor. The box around v6 will be explained

later. Above every link is an integer corresponding to the amount of load to be sent from one processor to

the next. For example, v1 has to send two units of load to v2, and three units to v6. These integers above

the links collectively form the distribution schedule. This schedule takes at least two timesteps to execute

The schedule:

71
2−→ 02

0−− 33
1−→ 14

0−− 15
1←− 06

3←− (71)

⇓
After execution of the schedule:

21 −−22 −−23 −−24 −−25 −−26 −−(21)

Figure 1: An example of a load distribution schedule.

because v6 has to send one unit of load to v5 but v6 has zero load initially. It is not difficult to see that this is

an optimal schedule in the sense that no other schedules can balance the load here in less than two timesteps.

In this paper, we concentrate on the ring topology which is a building block for many other more complex

structures including the torus. The work presented here should serve as a good foundation on which to carry

on the study of the problem for other structures. We assume the following system model.

• It takes one time unit for a processor to send a message to one of its direct neighbors.

• Messages are delivered using the store-and-forward mode.

2

• A message is large enough to carry any amount of workload being transferred according to the distri-

bution schedule.

• A processor operates in the all-port mode (i.e., all of its links can be active sending or receiving

simultaneously).

This model is the simplest and least-restrictive. It is not unrealistic, especially for those applications where

workload can be compactly encoded. For these applications, messages carrying various amounts of work-

load during the redistribution phase would be sufficiently small in size to justify the message-size assumption

above. On the other hand, if messages are small, the store-and-forward mode would differ very little from

the wormhole mode because of the network latency and startup times. But even for this simple model, the

load distribution problem is non-trivial. A future extension of the present work could put a limit on the size

of a message, like what is done in gossiping research [2]. When a message can carry at most one unit of

load at a time, the problem degenerates into the token distribution problem(TDP) [5]. Many solutions exist

for the TDP, such as the one by JáJá and Ryu [3], which fits into our model of first computing the average

and then redistributing the load.

Section 2 defines the problem and introduces the notations. Section 3 presents two possible modes of

operation in which a schedule can be executed. Section 4 studies two existing algorithms. Section 5 proposes

a simple algorithm that can generate optimal schedules. Section 6 discusses the results from experiments

we carried out for the algorithms presented in the previous sections.

2 Preliminaries

Refer to Fig. 1. The collection of load indices constitute the (initial) load instance, an instance of the load

distribution problem; the set of integers above the edges, which dictates the amount of load to be transferred

along every edge, is the load distribution schedule(or simply schedule). The schedule is a solution to the

load distribution problem. After the execution of the schedule, a balanced system load emerges.

All processor indices are from the cyclic set {1, 2, . . . , n}, where n is the number of nodes. For conve-

nience, we assume that a processor index is always in modulo.1 We denote the initial load in vi by li, and the

excess load to be transferred between vi and vi+1 by si. Define L+(i) to be the amount of load that vi will

receive from its neighbor(s), and L−(i) the amount it will give away. For example, in the schedule shown

in Fig. 1, L+(1) = 0, L−(1) = 2 + 3 = 5 and L+(6) = 3, L−(6) = 1.

We call a node a negativenode if it has some excess load to send to its left-neighbor but not its right-

neighbor; a positivenode if it has some excess load to send to its right-neighbor but not its left-neighbor;

or a rich node if its excess load is to be sent to both its left- and right-neighbor. Note that a negative or

positive node is not necessarily an overloaded load in the given load instance; the excess load it will be

sending could actually be in transit from some node to some destination node. A rich node is definitely an

overloaded node. Referring again to Fig. 1, v1 is a rich node, v3 is a positive node, and v6 is a negative node.

A schedule {si} is a valid schedule if and only if by performing the operation li = li + L+(i)− L−(i),
li = lavg , for all i, where lavg is the average load.2 Applying the above operation to the schedule in Fig. 1,

1That is, vi is actually vi mod n, if i mod n �= 0; otherwise vn.
2For simplicity, we assume that lavg =

∑
li/n is a whole number throughout this paper; the case where lavg is non-integer is

a simple extension.

3

which is a valid schedule, we have li = lavg = 2 for all i. By this definition of a valid schedule, there are

infinitely many valid schedules for any load instance. The proof of the following lemma is trivial.

Lemma 1 For a load instance, if{si} is a valid schedule, then{si + h} is also a valid schedule, whereh is

any integer.

For example, letting h = 3 and applying to the schedule in Fig. 1, we have a new schedule as shown in

Fig. 2. Nevertheless, in a set of infinitely many valid schedules, only a finite number of them can achieve

71
5−→ 02

3−→ 33
4−→ 14

3−→ 15
2−→ 06

0−− (71)

Figure 2: Another valid schedule.

optimal time when executed. The objective of this paper is to propose an algorithm that would generate one

of these time-optimal schedules. The proposed algorithm would start off with some initial schedule {si},
and then determine an h value so that {si + h} is optimal.

We use a further characteristic to classify the nodes. A node vi is “in deficit” if li < L−(i)—we call

such a node a red node; all other nodes are greennodes. In Fig. 1, v6 is a red node, and the others are green

nodes. In Fig. 2, v2, v3, v4, v5 are red nodes, v1, v6 are green nodes. We put a red node in a box for easy

identification. A red node is either a positive or a negative node, but cannot be both. A red node is not

something to be welcome in a load instance because it does not have enough excess load initially to quickly

send away to its neighbor, implying there could be some delay being incurred, as we will see in the next

section.

3 Single- and Multi-send Modes

A schedule can be executed in either the single-sendmode or the multi-sendmode. In the single-send

mode of operation, each node will receive at most one message and will send at most one message along

an incident edge during the entire execution of the schedule. As a result, a red node must wait until it has

received a message (carrying some load) from its neighbor (and the node turns green) before it can send its

own. The worst scenario is when red nodes are clustered together in a load instance, forming “chains” of

red nodes. In such a chain, the waiting is compounded. For example, for the schedule in Fig. 1, it takes two

timesteps to execute the schedule: one timestep for the only red node, v6, in the initial load instance to turn

green, and another timestep to let v6 send its message carrying one unit of load. Whereas for the schedule

in Fig. 2, five timesteps are needed to complete the execution because of the chain of red nodes, v2, · · · , v5:

v5 has to wait for v4 to send it some load, v4 has to wait for v3, and so on. Denote the number of timesteps

to execute a schedule S in the single-send mode by Ts(S). We have the following.

Proposition 1 Given a schedule to be executed in the single-send mode,Ts = 1+ the length of the longest

chain of red nodes.

Therefore, Ts(S) depends on the length of the longest chain of red nodes, and not the total number of red

nodes in a load instance. For example, Fig. 3 shows two schedules for the same load instance, where the

4

(a) : 9 2−→ 1 1−→ 3 2−→ 0
0−− 2

0−− 1 1←− 0 3←− 0 5←− (9)

(b) : 9 3−→ 1 2−→ 3 3−→ 0 1−→ 2 1−→ 1
0−− 0 2←− 0 4←− (9)

Figure 3: Two schedules for the same load instance: (a) with two red nodes, but Ts = 3; (b) with three red

nodes, but Ts = 2.

one that has more red nodes (Fig. 3(b)) actually would finish faster than the one that has fewer red nodes

(Fig. 3(a)), the reason being the longest chain in the latter is longer than that in the former.

The single-send mode is easy to implement and the number of messages that are sent is minimal. An

alternative to the single-send mode is the multi-sendmode in which a red node would send away all it

has in every timestep until it has sent enough of what the schedule requires. This is a “greedy” mode of

operation, and the time to execute a schedule in this mode is expected to be better than the previous mode.

For the schedule in Fig. 2, it takes three timesteps, instead of the previous five timesteps, if operating in the

multi-send mode. A trace of the execution is shown in Fig. 4.

t = 0 : 71
5−→ 02

3−→ 33
4−→ 14

3−→ 15
2−→ 06

0−− (71)

t = 1 : 21
0−− 52

3−→ 03
1−→ 34

2−→ 15
1−→ 16

0−− (21)

t = 2 : 21
0−− 22

0−− 33
1−→ 14

0−− 25
0−− 26

0−− (21)

t = 3 : 21

0−− 22

0−− 23

0−− 24

0−− 25

0−− 26

0−− (21)

Figure 4: An execution in the multi-send mode.

Given a schedule S to execute in multi-send mode, we use Tm(S) to denote the number of timesteps

needed for the execution. Studying what goes on in Fig. 4, we notice that Tm = 3 comes from the following

“thread” of actions, which we indicate using bold type in the figure: v1 sends five units to v2 (t = 0),

followed by v2 sending three units to v3 (t = 1), followed by v3 sending one unit to v4 (t = 2). We say that

this is a thread of length three, involving one green node (v1) and two red nodes (v2, v3) actively sending

some load. Informally, a thread is a string of consecutive nodes leading to some si so that the collective

effort of these nodes would be just enough to cover si. There are other threads in the schedule, but they are

shorter than this one. For example, there is a thread from v4 to v6 which in two steps would complete the

transfer (two units) required by s5. Formally, a thread is defined as follows.

Definition 1 When operating in the multi-send mode, a thread for a positive red nodevkm is the shortest

string of consecutive nodesvk1, vk2 , . . . , vkm—wherek1 < k2 < · · · < km, vk1 is a green or a red node,

and vk2, . . . , vkm are all red nodes—such thatskm ≤ lk1 + lk2 + · · · + lkm−1 if vk1 is a red node, or

skm ≤ sk1 + lk2 + · · · + lkm−1 if vk1 is a green node. A thread for a negative red node is defined similarly.

Obviously, the minimum length of a thread is 2.

Proposition 2 Given a schedule to be executed in the multi-send mode,Tm = the length of the longest

thread.

5

Fig. 5 shows a larger example, n = 10, in which we highlight the chains and two of the threads. The thread

on the left hand side is in fact the longest thread, and hence Tm = 4. Ts = 4, for the single-send mode,

because the longest chain consists of three nodes. By Definition 1 and Propositions 1 and 2, it is easy to see

threadthread

12 1 1 2 12
7 5 3 1 0

chain chain

0 0 0 0 2 2
1 1 3 3 3

Figure 5: Chains and threads.

that the following is true.

Proposition 3 Given a scheduleS for any load instance,Ts(S) ≥ Tm(S).

Therefore, it is confirmed that the single-send mode cannot be better than the multi-send mode in terms

of time performance. The multi-send mode, however, has its disadvantages: it sends more messages than

the single-send mode, and the termination procedure would likely be more complicated because a series of

messages as opposed to one single message is being sent over an edge.

4 Some Existing Algorithms

The schedule in Fig. 2 actually can be generated using a rather intuitive algorithm which treats the ring as

a linear array (i.e., ignoring the wraparound link between vn and v1) [6]. The algorithm is shown in Fig. 6.

We refer to this as the Linear algorithm. By not using all the edges in a ring, the Linear algorithm fails

to make use of all the available bandwidth. But as we will show in the following, the schedules generated

by the Linear algorithm can still be considered reasonable. Before we define reasonable schedule, we

introduce the measure of traffic, which is equal to
∑

si. Obviously, a schedule that generates less traffic is

more preferable than one that generates more. But in practice, when there is a conflict between optimizing

number of timesteps and optimizing traffic, the former is usually given priority. In fact, it is often the case

that the reason for optimizing traffic is to minimize the time. The following lemma defines “unreasonable”

for i = 1 to n− 1:

si =
∑i

1 li − lavg × i

Figure 6: The Linear algorithm.

schedule.

Lemma 2 A schedule{si} wheresi > 0 for all i, or wheresi < 0 for all i, cannot be an optimal schedule

in terms of both time and traffic.

Proof: Consider the case of si > 0 for all i (the case of si < 0 is similar). Let h = min(si). We claim

that {si − h} is a better solution. Let the given schedule be S, and the latter schedule Sh. In terms of

6

traffic, Sh puts out n × h units less than that of S. In terms of time, in the single-send mode, a red node in

S could become a green node in Sh after its si is reduced by h, but a green node could never turn red. In

the multi-send mode, a thread in S could become shortened in Sh because, referring to Definition 1, skm is

reduced by h, but none of lk1 , lk2 , . . . , lkm−1 is reduced. ✷

Here is an example of such an unreasonable schedule:

1 10−→ 1 10−→ 1 10−→ 1 10−→ 1 10−→ 1 10−→ (1)

The load instance is already balanced, but the schedule insists on having each node send 10 units to its

neighbor. If running in the single-send mode, this schedule would deadlock, because none of the nodes has

enough load to proceed! If running in the multi-send mode, this schedule would take 10 timesteps to execute

because the longest thread here would span 10 nodes (some nodes being spanned twice).

A schedule generated by the Linear algorithm does not belong to the category of unreasonable schedules

as defined by Lemma 2 because at least one of the si’s, sn, is equal to zero. According to the proof of

Lemma 2, {si − h} is a better schedule, but since h = min(si) = 0 for any schedule generated by the

Linear algorithm, a better schedule is the original schedule itself. We say that a schedule generated by the

Linear algorithm is a reasonable schedule.

The Linear algorithm, however, provides on guarantee on the optimality of the execution time of the

schedules it produces. Wu and Shu have given an algorithm which is based on the Linear algorithm and

which minimizes the traffic [6]. We refer to this as the Traffic algorithm. The idea of this algorithm comes

from a minimum-cost flow algorithm described in [4], which can be explained pictorially, using for example

Fig. 7.3 In the following discussion, when we say that {si} is adjusted by h, we mean the new schedule

{si − h}. Fig. 7 shows a schedule generated by the Linear algorithm being visualized as a sorted “bar

chart”. The bars that are upright (above the horizontal axis) correspond to positive si’s—those emanating

from positive nodes; the bars that are upside-down (below the horizontal axis) correspond to negative si’s—

those emanating from negative nodes; and si’s that are zero appear as a small dot. The si’s are displayed in

sorted order with negative si’s being treated as negative numbers in the sorting (e.g., s5 = −1 in Fig. 1). We

denote the sorted set by {s̄i}, where s̄1 is the largest si, s̄2 the second largest si, and so on. If the number

of positive s̄i’s, np, is greater than �n/2
, the Traffic algorithm would apply an adjustment of h = s̄�n/2�
to the schedule; similarly, for nn > �n/2
, where nn is the number of negative s̄i’s, the Traffic algorithm

would set h to s̄�(n+1)/2�.

Lemma 3 The Traffic algorithm yields a schedule that is traffic-optimal.

Proof: Consider first the case of even n where np > n/2, as shown Fig. 7(a1). We use a vertical dashed

line to divide {s̄i} into the left and the right half. By adjusting {s̄i} by h = s̄n/2 (represented by the dotted

line in Fig. 7(a1), and the result is shown in Fig. 7(a2)), the traffic that is reduced in the left half minus the

traffic that is increased in the right half is equal to the sum of the positive s̄i’s that are on the right half in

the unadjusted schedule. This saving in traffic is the maximum possible with any value of h. The case of

nn > n/2 is symmetric to this case.

For the case of odd n where np > �n/2
, as shown in Fig. 7(b1), the saving in traffic due to the

adjustment by h = s̄�n/2� is equal to the sum of the positive s̄i’s that are on the right half plus the s̄i that is
3A mathematical proof can be found in [6].

7

4
3
2
1
0

−1
−2

4
3
2
1
0

−1
−2

4
3
2
1
0

−1
−2

2
1
0

−1
−2
−3
−4

(a1) optimal−traffic window (a2)

(b1) (b2)

(c)

h

h

2
1
0

−1
−2
−3
−4

Figure 7: The idea of the Traffic algorithm.

in the middle. This saving in traffic is the maximum possible with any value ofh. The case ofnn > �n/2

is symmetric.

For the case of neithernp > �n/2
 nor nn > �n/2
, as shown in Fig. 7(c), an adjustment by anyh

value will not improve the traffic.✷

Unfortunately, traffic-optimality does not imply time-optimality. Consider the following example, where

n = 10. The Traffic algorithm setsh to s̄s/2 = 2.

Linear : 5 3−→ 1 2−→ 1 1−→ 3 2−→ 3 3−→ 1 2−→ 0
0−− 1 1←− 2 1←− 3

0−− (5)

Traffic : 5 1−→ 1
0−− 1 1←− 3

0−− 3 1−→ 1
0−− 0 2←− 1 3←− 2 3←− 3 2←− (5)

The total traffic for the Linear schedule and the Traffic schedule is15 and13 respectively. ButTs for the

Linear schedule is2, which is better than that for the Traffic schedule, which is3. Tm for either schedule is

2. The best schedule (in both traffic and time) turns out to be the following, withTs = Tm = 1.

5 2−→ 1 1−→ 1
0−− 3 1−→ 3 2−→ 1 1−→ 0 1←− 1 2←− 2 2←− 3 1←− (5)

This schedule could have been generated by the Traffic algorithm if the algorithm had seth = s̄n/2+1 = 1
instead of̄sn/2. As a matter of fact, the solution to the even-n case is not unique. Refer to Fig. 7(a1) again—

it is not difficult to see that anyh value between the middle twōsi’s (i.e., s̄n/2 ≤ h ≤ s̄n/2+1) would give

rise to a traffic-optimal schedule. We refer to this range ofh values as theoptimal-traffic window. For odd

n, on the other hand, the solution generated by the Traffic algorithm is unique.

Although it happens that optimal schedule in the above example could have come from setting anh

value which is within the optimal-traffic window, it is not true in general that time-optimality implies traffic-

8

optimality. The following is an example of an time-optimal schedule, whoseh value is outside of the

optimal-traffic window.

Optimal : 34 22←− 40 25←− 90 22−→ 40 19−→ 50 26−→ 60 43−→ 30 30−→ 0 13←− (34)

Traffic+ : 34 41←− 40 44←− 90 3−→ 40
0−− 50 7−→ 60 24−→ 30 11−→ 0 32←− (34)

The optimal-traffic window for this problem is[32, 35]. The Traffic+ schedule was generated by setting

h = 32, as opposed to settingh = 35 if the original Traffic algorithm had been used; the latter would result

in more red nodes in the schedule. The Optimal schedule, however, was from settingh = 13, which is

outside of the window. This schedule has a total traffic of200, whereas that of the Traffic+ schedule is162.

The following summarizes our findings.

Lemma 4 For a random load instance, time-optimality and traffic-optimality are not equivalent.

The Linear algorithm tries to generate schedules that are reasonable, and the Traffic algorithm tries to opti-

mize the generated traffic, but neither of them aims at producing a schedule that is time-optimal. For certain

load instances, optimizing the traffic could make the time worse, as we will see in Section 6.

As optimizing time rather than traffic is the primary objective, we present in the following an algorithm

for finding the time-optimal schedule.

5 An Algorithm for Finding Time-optimal Schedules

Given an initial schedule, say a Linear schedule, to find the time-optimal schedule means adjusting the

schedule with a suitableh value. Thish value represents a good balance between two kinds of chains:

negative chains and positive chains. A negative chain is one that contains only negative nodes, and a positive

chain contains only positive nodes. A positiveh value (i.e., {si − h}) might shorten the length of existing

positive chains (possibly destroying some) and at the same time extend the length of existing negative chains

(possibly creating some new ones).

Define thedeficit of a red node, sayvi, to be(L−(i) − li) if vi is positive, and−(L−(i) − li) if vi

is negative. The deficits form a set. Letdmax and dmin be the largest and the smallest element in the

set, respectively. If there is no red node, then the set is not defined, and the initial schedule is an optimal

schedule; if there is only one red node, thendmax = dmin.

Lemma 5 Theh value leading to the time-optimal schedule lies within the window[dmax, dmin] if dmax

anddmin are defined.

Proof: Without loss of generality, suppose thatdmax is positive (Fig. 8). If settingh = dmax, then all the

positive red nodes would become green. Therefore, settingh > dmax would not turn any more positive red

nodes into green nodes, but might turn some green negative nodes and/or zero nodes into red nodes—i.e.,

extending some of the existing negative chains. By symmetry, ifdmin is negative (Fig. 8(b)),h cannot be

smaller thandmin. If dmin is positive (Fig. 8(a)), then those red nodes with minimum deficit would turn

green whenh is set todmin. Settingh < dmin would not produce any more green nodes but might change

some of those nodes with minimum deficit back to red.

9

Therefore, settingh to be outside of the said window might extend existing chains and/or creating

new chains, and increase existing deficits, and henceTs cannot be better. ForTm, refer to Definition 1 and

consider positive threads without loss of generality. A thread is of either the formskm ≤ lk1+lk2+· · ·+lkm−1

if vk1 is a red node, or the formskm ≤ sk1 + lk2 + · · · + lkm−1 if vk1 is a green node. For either form,

the l’s would not change. By choosing anh outside of the window, eitherskm would become larger (for

the first form above) orvk1 would become a red node (for the second form). Ifskm becomes larger, then it

might take some extral’s to satisfy the condition—hence, a longer thread. Ifvk1 becomes a red node, then

it becomes a case of the first form; otherwise, ifvk1 remains as a green node, the length of the thread would

not change because bothskm andsk1 would be changed by the same amount by the choice ofh. ✷

d_max
d_min

(a)

window

load a processor has

load to give away

window

(b)

Figure 8: Finding the time-optimal schedule.

The above lemma lets us confine the searching for a solution to a smaller search space. The algorithm

for finding an optimal schedule for the single-send mode is given in Fig. 9—we refer to this as the Optimal

schedule. For the multi-send mode, simply substituteTm for Ts in the algorithm.

generate a schedule{si} using the Traffic algorithm;

h = 0;

if dmax anddmin are defined then

computeTs for everyh in [dmax, dmin];
choose theh whoseTs is minimum;

the optimal schedule is{si − h};

Figure 9: The Optimal algorithm.

The following lemma points out that the two times,Ts andTm, are not related in general; minimizing

10

one does not necessarily minimize the other.

Lemma 6 A Ts-optimal schedule is not necessarily aTm-optimal schedule, and vice versa.

Proof: By example. Consider the following load instance (n = 10) and itsTs-optimal andTm-optimal

schedule.

Ts-optimal : 10 3−→ 1 2−→ 3 3−→ 1 2−→ 2 2−→ 2 2−→ 0
0−− 08

2←− 0 4←− 1 5←− (10)

Tm-optimal : 10 4−→ 1 3−→ 3 4−→ 1 3−→ 2 3−→ 2 3−→ 0 1−→ 0 1←− 0 3←− 1 4←− (10)

For theTs-optimal schedule,Ts = 3, butTm = 3 (considers8) is non-optimal. For theTm-optimal sched-

ule,Tm = 2 (because the longest thread is of length2) butTs = 9 is non-optimal.✷

In the Optimal algorithm, we choose the Traffic algorithm instead of the simpler Linear algorithm to

be used in generating the initial schedule which contains the search window. The reason is that the Linear

algorithm could generate very large search windows for highly unbalanced load instances, such as the one

shown in Fig. 10. The Optimal algorithm requires going through∆ = dmax − dmin + 1 steps, each of

which entailing examiningn elements to determine the longest chain or thread. For the one in Figure 10,∆
is very close to the total number of load units in the system: the total load is100 which is all concentrated

in one node;dmax = 98 anddmin = 1, and∆ = 98. Therefore, if we had used the Linear algorithm for

the initial schedule in the Optimal algorithm, the worst-case complexity of the Optimal algorithm would be

O(n × L), whereL is the total load of the system. Now, using the Traffic algorithm, at least extreme cases

like the one just discussed would be much less of a problem. In fact, if we apply the Traffic algorithm to the

load instance in Fig. 10, we get an optimal schedule right away becauseh would be equal to45 and so the

node holding100 units would send44 through one edge and45 through another edge.

100 99−→ 0 98−→ · · · 0 1−→ 0
0−− (100)

Figure 10: Worst scenario.

6 Simulation Experiments

We implemented the algorithms (the Linear algorithm, the Traffic algorithm, and the Optimal algorithm)

presented in previous sections and conducted a number of experiments in order to answer the following

questions. We refer to a schedule generated by the Linear algorithm as a Linear schedule, one by the Traffic

algorithm a Traffic schedule, and a time-optimal schedule by the Optimal algorithm an Optimal schedule.

In the following when we say optimal, we mean time-optimality.

1. What is the probability that a Linear schedule or a Traffic schedule is optimal? (If the probability is

high, then the Linear algorithm or the Traffic algorithm perhaps is acceptable for real implementation.)

For those non-optimal Linear or Traffic schedules, by how much are they worse than the optimal

schedule?

11

2. Will the single-send mode be close enough in performance to the multi-send mode? (If yes, then the

single-send mode being somewhat easier to implement should be preferred in real implementation.)

3. What is the time cost (in real seconds) of running the Optimal algorithm?

We considered five sizes of a ring,n = 4, 10, 20, 30, 50.4 For each of these rings we generated50, 000
random load instances, and for each instance, we applied the three algorithms to generate three schedules

for comparison. The individual load assigned to a processor in a load instance ranges from0 to 100 units.

We measured a schedule’s execution times—i.e., Ts or Tm, or both.

The results from first set of experiments answer Question 1 above. Table 1 summarizes the results for

the single-send mode, and Table 2 summarizes the results for the multi-send mode. The first column of

the tables (Linear=Opt) corresponds to the number of Linear schedules, out of 50,000 schedules, whose

execution time turned out to be optimal; the second column (Traffic=Opt) the number of Traffic schedules

whose execution time turned out to be optimal; the third column (All) the number of times for which all three

algorithms yield an optimal schedule; the fourth column (Opt) the number of times in which the schedule

generated by the Optimal algorithm was the only optimal one, and we include the amount of extra traffic

(+traffic) that the Optimal schedule would incur using the optimal traffic amount as a base; and the last

column (%worse) corresponds to the average amount by which a non-optimal schedule (Linear or Traffic) is

worse than the optimal schedule—a 100% means that the non-optimal schedule uses two times the optimal

time to execute. The relationship between these various parameters is as follows.

Opt = 100% − ([Linear=Opt]+ [Traffic=Opt]− All)

The following can be easily observed from the figures in the tables.

• The Linear algorithm is worse than the Traffic algorithm in terms of the probability of generating an

optimal schedule, especially for large rings.

• Where the Linear algorithm would generate an optimal schedule but the Traffic algorithm would not

(which is equal to [Linear=Opt]− All) is a rare event.

• The amount of extra time (on top of the optimal time) that the non-optimal schedules would spend in

their execution is quite substantial, especially for small rings in the single-send mode.

• The performance differences between the algorithms are less acute in the case of using the multi-send

mode.

• The Optimal schedules generate only a little bit more traffic than the corresponding Traffic schedules.

The conclusion is that except for very small rings, the Optimal algorithm is the only reliable algorithm for

generating optimal schedules, and that the Optimal schedule is substantially better than the non-optimal

schedules generated by the other two algorithms.

The second set of experiments we conducted was for comparing the single-send and the multi-send

mode of operation. The result is summarized in Table 3, which answers Question 2 above. Recall that we

have proved that the single-send mode can never be better than the multi-send mode. The %worse column
4We picked all evenn’s (for the sake of easier programming); the behavior of the odd-n cases should be more or less the same.

12

n Linear=Opt Traffic=Opt All Opt / +traffic %worse

50 2607 (5.21%) 17167 (34.33%) 1513 (3.03%) 31739 (63.48%) / 3% 87%

30 4116 (8.23%) 21574 (43.15%) 3090 (6.18%) 27400 (54.80%) / 3% 99%

20 6046 (12.09%) 25802 (51.60%) 5186 (10.37%) 23338 (46.68%) / 4% 109%

10 13664 (27.33%) 34485 (68.97%) 13281 (26.56%) 15132 (30.26%) / 5% 127%

4 36783 (73.57%) 46107 (92.21%) 36783 (73.57%) 3893 (7.79%) / 6% 107%

Table 1: single-send mode.

n Linear=Opt Traffic=Opt All Opt / +traffic %worse

50 7271 (14.54%) 24172 (48.34%) 6211 (12.42%) 24768 (49.54%) / 7% 43%

30 10187 (20.37%) 29608 (59.22%) 9399 (18.80%) 19604 (39.21%) / 8% 42%

20 13189 (26.38%) 33782 (67.56%) 12589 (25.18%) 15618 (31.24%) / 10% 43%

10 17156 (34.31%) 39179 (78.36%) 16857 (33.71%) 10522 (21.04%) / 11% 46%

4 36783 (73.57%) 46107 (92.21%) 36783 (73.57%) 3893 (7.79%) / 6% 50%

Table 2: multi-send mode.

corresponds to the amount of extra time the optimal schedule in single-send mode would spend on average

when compared with the schedule in multi-send mode; the #equal column corresponds to the number of

cases, out of the 50,000 we simulated, in which the two times are equal. For large rings, the multi-send

mode is the clear winner, but nonetheless, in those cases where the single-send mode loses out, the single-

send mode is not substantially worse: even for the largest ring we tried,n = 50, the increase in execution

time is only about13%. Our conclusion is that the single-send mode, which is a simpler method, is viable

for real implementation because its performance is not far from that of the multi-send mode.

We carried out the final set of experiments to obtain execution timings of the Optimal algorithm. We

present only those for the single-send mode. The timings for the multi-send mode are approximately the

same, since they both use the same window to search for an optimal solution for a given load instance. The

result is shown in Table 4, which answers Question 3 above. The implemented algorithm begins with a

random load instance, executes the Traffic algorithm to create an initial schedule, calculates the deficits, and

then tries everyh value within the search window. We ran the algorithm on a SPARCserver with a single

SPARC chip running at 167 MHz. The measured execution times range from0.23 milliseconds for small

workload (up to40 units/processor) and small ring (n = 10) to 22.2 milliseconds for large workload (up

n %worse #equal

4 0% 50000

10 3.79% 33000

20 7.94% 9185

50 13.39% 87

Table 3: Comparing single-send and multi-send mode.

13

n max. load / proc. mean total load window (Linear) time (msec)

10 200 1170 79 (95) 1.05

20 200 1860 182 (191) 4.41
50 200 4690 386 (391) 22.2

10 100 470 39 (48) 0.54

20 100 760 90 (95) 2.2
50 100 2090 192 (195) 11.25

10 40 170 16 (19) 0.23

20 40 300 36 (38) 0.95
50 40 770 79 (80) 4.77

Table 4: Runtimes of the Optimal algorithm for the single-send mode.

to 200 units/processor) and large ring (n = 50). We also measured the mean window size for each of the

runs. For comparison, we include also the window size for using the Linear algorithm instead of the Traffic

algorithm for the initial schedule. It appears that the Traffic algorithm as well as the Linear algorithm would

generate larger window sizes (relative to the total workload) as the size of the ring increases. Forn = 10,

the window size is equal to about one-third to one-half of the maximum initial load of a processor, whereas

for n = 50, the window size is twice the maximum initial load. We note also that the Traffic algorithm has

only a slight advantage over the Linear algorithm in terms of the search window size.

We claim that the algorithm is reasonably efficient. Consider for instance the case ofn = 20 in the

middle section of Table 4. The load balancing procedure would spend at leastO(n) timesteps in computing

the average and then broadcasting the schedule to all the nodes, which could translate easily into several

milliseconds or more in a processor ring using state-of-the-art routing hardware (where latencies and startup

times are in the order of tens or hundreds of microseconds). Therefore, the2.2 milliseconds to compute the

schedule should not be a major concern. Also, the SPARC processor running at 167 MHz is a rather modest

piece of hardware. The overhead thus added to the load balancing procedure should not in any way affect

the performance of the application which initiates load balancing only occasionally.

7 Concluding Remarks

We have shown that the problem of finding an optimal schedule for load distribution is non-trivial even for a

structure as simple as a ring. Results of our experiments clearly indicate that a non-optimal schedule could

be much worse than an optimal schedule in terms of execution time, and that only the proposed Optimal

algorithm, among the three algorithms discussed, is reliable as far as producing an optimal schedule is

concerned.

The Optimal schedule is based on the Traffic algorithm which is a “reasonable” algorithm. But the

Traffic algorithm does not seem to be able to yield a narrow-enough window in which to search for the

solution. The size of the window is an important parameter that affects the time spent in executing the

Optimal algorithm. Future pursuits could try to replace the Traffic algorithm by a smarter algorithm that

would produce a smaller window for searching. For more specific load instances or load instances exhibiting

14

a certain pattern, there might exist methods that could zero in on a solution more directly instead of having

to exhaustively search through a window. An example of such a method can be found in [9]. Our solution

for the ring does not seem to adaptable to work for other structures that are composed of rings, such as the

torus, because in a torus there are many paths that join a pair of nodes (instead of just two in a ring).

Acknowledgement

The author wishes to thank the referees for their constructive comments.

References

[1] Corradi, A., Leonardi, L., and Ambonelli, F. Diffusive load-balancing policies for dynamic applica-

tions.IEEE Concurrency7 (1999), 22–31.

[2] Gargano, L., Vaccaro, U., and Rescigno, A. Communication complexity of gossiping by packets.J. of

Parallel and Distributed Computing45 (1997), 73–81.

[3] JáJá, J. and Ryu, K.W. Load balancing and routing on the hypercube and related networks.J. of Parallel

and Distributed Computing14 (1992), 431–435.

[4] Lawler, E.L.Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and Winston, New

York, 1976.

[5] Peleg, D. and Upfal, E. The token distribution problem.SIAM Journal on Computing18 (1989), 229–

243.

[6] Wu, M.-Y. and Shu, W. DDE: A modified dimension exchange method for load balancing ink-ary

n-cubes.J. of Parallel and Distributed Computing44 (1997), 88–96.

[7] Xu, C.Z. and Lau, F.C.M. The generalized dimension exchange method for load balancing ink-ary

n-cubes and variants.J. of Parallel and Distributed Computing24 (1995), 72–85.

[8] Xu, C.Z. and Lau, F.C.M.Load Balancing in Parallel Computers: Theory and Practice. Kluwer Aca-

demic Publishers, Boston, 1996.

[9] Yau, J.C.K. Efficient solutions for the load distribution problem. M.Phil. thesis, Department of Com-

puter Science and Information Systems, The University of Hong Kong, 1999.

15

