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Abstract

Given a global picture of the system load and the average load, the load distribution problenis to find
a suitable schedule, consisting of the amount of excess load to transfer along every edge, so that the
system load can be balanced in minimal time by executing the schedule. We study this problem for the
ring topology. We discuss some existing algorithms, show how they fall short of being able to generate
optimal schedules, and present asimple a gorithm that would generate an optimal schedulefor any given
system load instance. This simple agorithm relies on an existing algorithm to create a search window in
which the optimal solutionis to be found.

Keywords: interconnection networks, load balancing, load distribution, multicomputers, parallel algo-
rithms, performance analysis, scheduling.

1 Introduction

We consider the problem of dynamic load balancing in distributed-memory paralel computers. One sys-
tematic approach to the problem is to divide the load balancing procedure into the following phases: |oad
measurement, calculation of load average, generation of load distribution schedule, and load redistribution
[8, 6, 1]. In the load measurement phase, the load in a processor is measured and captured in some abstract
load index (usually the number of units of workload in the processor); these abstract |oads across al the
processors are then used in a computation of the average load in the second phase; in the third phase, based
on the average load, a set of instructions are generated which dictate how much load each processor should
give away or receive along each of its links; these load distribution instructions collectively constitute what
werefer to as aload distribution scheduleA good schedule would lead to an efficient redistribution of load
in the final phase. The load distribution problentan be stated as. Given the current load situation (the set of
all abstract load indices) and the average load, find aload distribution schedule so that the load redistribution
phase would take minimum time to complete.

Our primary objective is to find the optimal schedule. Optimizing the time it takes (by an agorithm)
to find this schedule is secondary. Nonetheless, as shown in the experimentation section, the algorithm we
propose for finding optimal schedules is reasonably efficient.
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There are basically two approaches to computing the average load: decentralized and centralized. The
GDE (Generalized Dimension Exchange) method [7, 8] is an example of the decentralized approach, and
the DDE (Direct Dimension Exchange) method [6] is an example of the centralized approach. In terms
of time performance, the centralized approach has some clear advantages because the computation can be
carried out in asingle processor, thus saving the cost of much message passing which is characteristic of the
decentralized approach. But the decentralized approach would be more reliable. The GDE method actually
does not compute the average explicitly; with no knowledge of the load average, it starts constructing the
load distribution schedule in some iterative fashion immediately after the load measurement phase. By
contrast, the DDE method explicitly computes the average load. This paper is morein line with the latter—
we assume that the average load is available as an input parameter for the generation of the load distribution
schedule.

We show that an algorithm proposed in the DDE paper provides no guarantee on the time performance
of the load distribution schedules generated by the algorithm [6]. A good load balancing procedure really
cannot do without an efficient load distribution schedule because the redistribution of load via messages
could account for a substantial portion of the overall load balancing time. We propose an algorithm that
would solve the load distribution problem by generating an optimal schedule for any given system load
instance.

An example of a distribution schedule is shown in Fig. 1 where six processors are connected into a
ring. Each processor isidentified by the number of units of workload it has (its load index). The subscript
indicates the processor’s position within the ring. Let ¢ be the processor at position 4. For convenience v, is
drawn twice (onein brackets) so that 15 appearsto beits left-neighbor. The box around « will be explained
later. Above every link is an integer corresponding to the amount of load to be sent from one processor to
the next. For example, v; has to send two units of load to w, and three units to v5. These integers above
the links collectively form the distribution schedule. This schedule takes at least two timesteps to execute

The schedule:
0 0
71— 0y —— 35— 1y — 15<L<i (71)
4

After execution of the schedule:

2 — =2 — =23 — =24 — =25 — —2 — —(21)

Figure 1. An example of aload distribution schedule.

because vs has to send one unit of load to v5 but vg has zero load initially. It isnot difficult to seethat thisis
an optimal schedule in the sense that no other schedules can balance the load here in less than two timesteps.

In this paper, we concentrate on the ring topol ogy which isabuilding block for many other more complex
structures including the torus. The work presented here should serve as a good foundation on which to carry
on the study of the problem for other structures. We assume the following system model.

e It takes one time unit for a processor to send a message to one of its direct neighbors.

e Messages are delivered using the store-and-forward mode.
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e A message is large enough to carry any amount of workload being transferred according to the distri-
bution schedule.

e A processor operates in the al-port mode (i.e., al of its links can be active sending or receiving
simultaneously).

This model is the simplest and least-restrictive. It is not unrealistic, especially for those applications where
workload can be compactly encoded. For these applications, messages carrying various amounts of work-
load during the redistribution phase would be sufficiently small in size to justify the message-size assumption
above. On the other hand, if messages are small, the store-and-forward mode would differ very little from
the wormhole mode because of the network latency and startup times. But even for this simple model, the
load distribution problem is non-trivial. A future extension of the present work could put alimit on the size
of amessage, like what is done in gossiping research [2]. When a message can carry at most one unit of
load at atime, the problem degenerates into the token distribution probleniTDP) [5]. Many solutions exist
for the TDP, such as the one by JaJa and Ryu [3], which fitsinto our model of first computing the average
and then redistributing the load.

Section 2 defines the problem and introduces the notations. Section 3 presents two possible modes of
operation in which aschedule can be executed. Section 4 studies two existing algorithms. Section 5 proposes
a simple agorithm that can generate optimal schedules. Section 6 discusses the results from experiments
we carried out for the algorithms presented in the previous sections.

2 Preliminaries

Refer to Fig. 1. The collection of load indices congtitute the (initial) load instancean instance of the load
distribution problemthe set of integers above the edges, which dictates the amount of load to be transferred
along every edge, is the load distribution scheduléor simply schedul® The schedule is a solution to the
load distribution problem. After the execution of the schedule, a balanced system load emerges.

All processor indices are from the cyclic set {1,2,...,n}, where n is the number of nodes. For conve-
nience, we assume that a processor index is alwaysin modulo! We denote theinitial load in v; by ;, and the
excess load to be transferred between v; and v;11 by s;. Define L (i) to be the amount of load that v; will
receive from its neighbor(s), and L~ (i) the amount it will give away. For example, in the schedule shown
inFig. 1, LT (1) =0,L~(1) =2+3=5and L*(6) = 3, L (6) = 1.

We call a node a negativenode if it has some excess load to send to its left-neighbor but not its right-
neighbor; a positivenode if it has some excess load to send to its right-neighbor but not its left-neighbor;
or arich node if its excess load is to be sent to both its left- and right-neighbor. Note that a negative or
positive node is not necessarily an overloaded load in the given load instance; the excess load it will be
sending could actually be in transit from some node to some destination node. A rich node is definitely an
overloaded node. Referring againto Fig. 1, v isarich node, v3 isapositive node, and g is a negative node.

A schedule {s;} isavalid schedule if and only if by performing the operation | = I; + Lt (i) — L™ (),
l; = lavg, for al i, where l,,,4 is the average load.? Applying the above operation to the schedule in Fig. 1,

That is, v; isactuadly v; mod n, if # mod n # 0; otherwise v,,.
2For simplicity, we assume that [o,y = > 1;/n isawhole number throughout this paper; the case where l,.4 is non-integer is
asimple extension.



which is avalid schedule, we have [; = 1,,, = 2 for al i. By this definition of avalid schedule, there are
infinitely many valid schedules for any load instance. The proof of the following lemmaistrivial.

Lemmal For aload instance, if s;} is a valid schedule, thefss; + h} is also a valid schedule, whefeis
any integer.

For example, letting h = 3 and applying to the schedule in Fig. 1, we have a new schedule as shown in
Fig. 2. Nevertheless, in a set of infinitely many valid schedules, only a finite number of them can achieve

71 -2 [05] -2 3]~ [1a] - [15] -2 0 —— (71)
Figure 2: Another valid schedule.

optimal time when executed. The objective of this paper is to propose an algorithm that would generate one
of these time-optimal schedules. The proposed algorithm would start off with some initial schedule {5},
and then determine an h value so that {s; + h} isoptimal.

We use a further characteristic to classify the nodes. A node v is“in deficit” if [; < L™ (i)—we call
such anode ared node; al other nodes are greennodes. In Fig. 1, s isared node, and the others are green
nodes. In Fig. 2, ve,v3, v4, v5 are red nodes, vy, vg are green nodes. We put ared node in a box for easy
identification. A red node is either a positive or a negative node, but cannot be both. A red node is not
something to be welcome in aload instance because it does not have enough excess load initially to quickly
send away to its neighbor, implying there could be some delay being incurred, as we will see in the next
section.

3 Single- and Multi-send M odes

A schedule can be executed in either the single-sendmode or the multi-sendmode. In the single-send
mode of operation, each node will receive at most one message and will send at most one message along
an incident edge during the entire execution of the schedule. As aresult, a red node must wait until it has
received a message (carrying some load) from its neighbor (and the node turns green) before it can send its
own. The worst scenario is when red nodes are clustered together in aload instance, forming “chains’ of
red nodes. In such achain, the waiting is compounded. For example, for the schedule in Fig. 1, it takes two
timesteps to execute the schedule: one timestep for the only red node, v, in the initial load instance to turn
green, and another timestep to let v send its message carrying one unit of load. Whereas for the schedule
in Fig. 2, five timesteps are needed to complete the execution because of the chain of red nodes, », - - - , vs:
vy hasto wait for v, to send it some load, v, has to wait for v, and so on. Denote the number of timesteps
to execute a schedule S in the single-send mode by 7;(S). We have the following.

Proposition 1 Given a schedule to be executed in the single-send ripde, 1+ the length of the longest
chain of red nodes.

Therefore, T5(.S) depends on the length of the longest chain of red nodes, and not the total number of red
nodes in a load instance. For example, Fig. 3 shows two schedules for the same load instance, where the



0 0
(@: 9-51-53-20-——2——1[0][0]< (9

b: 95123 %0 2102 [0] (9

Figure 3: Two schedules for the same load instance: (@) with two red nodes, but I; = 3; (b) with three red
nodes, but T, = 2.

one that has more red nodes (Fig. 3(b)) actually would finish faster than the one that has fewer red nodes
(Fig. 3(8)), the reason being the longest chain in the latter is longer than that in the former.

The single-send mode is easy to implement and the number of messages that are sent is minimal. An
aternative to the single-send mode is the multi-sendmode in which a red node would send away all it
has in every timestep until it has sent enough of what the schedule requires. Thisis a “greedy” mode of
operation, and the time to execute a schedule in this mode is expected to be better than the previous mode.
For the schedule in Fig. 2, it takes three timesteps, instead of the previous five timesteps, if operating in the
multi-send mode. A trace of the execution is shown in Fig. 4.

t=0 Ty S [05] < [Bg] 2 [1a] < [15] 2 0 —— (71)

0 0

t=1 : 2) — 55 2 [03] 534 5 15— 16 —— (21)
0 0 1 0 0 0

t=2 : 20 ——29——33 — 1y —— 25 — 26 — (21)
0 0 0 0 0 0

t=3 : 2] —— 2 —— 23 —— 24 — 25 — 25 — (21)

Figure 4: An execution in the multi-send mode.

Given a schedule S to execute in multi-send mode, we use 7;,(.S) to denote the number of timesteps
needed for the execution. Studying what goes onin Fig. 4, we notice that 'I;, = 3 comes from the following
“thread” of actions, which we indicate using bold type in the figure: v sends five units to v (¢ = 0),
followed by v, sending three unitsto v3 (¢ = 1), followed by v3 sending one unit to vy (¢t = 2). We say that
thisis athread of length three, involving one green node (v) and two red nodes (v», v3) actively sending
some load. Informally, athread is a string of consecutive nodes leading to some s so that the collective
effort of these nodes would be just enough to cover 5. There are other threads in the schedule, but they are
shorter than this one. For example, there is a thread from v, to vg which in two steps would complete the
transfer (two units) required by s;. Formally, athread is defined as follows.

Definition 1 When operating in the multi-send mode, a thread for a positive red nodis the shortest
string of consecutive nodeg,, v,, . . ., vg,—wWherek; < ky < --- < ky, vk, IS @ green or a red node,
and v,, ..., vy, are all red nodes—such thaf,, < Iy, + lg, + -+ + Ik, , if vy, iS a red node, or
Sk < Sky + Uiy + -+ + 1k, if vg, iSagreen node. Athread for a negative red node is defined similarly.

Obvioudly, the minimum length of athread is 2.

Proposition 2 Given a schedule to be executed in the multi-send nifige= the length of the longest
thread.



Fig. 5 shows alarger example, n = 10, in which we highlight the chains and two of the threads. The thread
on the left hand side is in fact the longest thread, and hence 7, = 4. T = 4, for the single-send mode,
because the longest chain consists of three nodes. By Definition 1 and Propositions 1 and 2, it is easy to see

chain ) ) chain
7 | s 3 |1 o R B 3 |3
12?@%@%@/;17162%&@ 12
threed thread

Figure 5: Chains and threads.

that the following is true.
Proposition 3 Given a schedul& for any load instancel;(S) > T,,,(S).

Therefore, it is confirmed that the single-send mode cannot be better than the multi-send mode in terms
of time performance. The multi-send mode, however, has its disadvantages. it sends more messages than
the single-send mode, and the termination procedure would likely be more complicated because a series of
messages as opposed to one single message is being sent over an edge.

4 Some Existing Algorithms

The schedule in Fig. 2 actually can be generated using a rather intuitive algorithm which treats the ring as
alinear array (i.e., ignoring the wraparound link between v, and v1) [6]. The agorithm is shown in Fig. 6.

We refer to this as the Linear algorithm. By not using all the edges in aring, the Linear algorithm fails
to make use of all the available bandwidth. But as we will show in the following, the schedules generated
by the Linear algorithm can still be considered reasonable. Before we define reasonable schedule, we
introduce the measure of traffic, which isequal to>_ s;. Obviously, a schedule that generates less traffic is
more preferable than one that generates more. But in practice, when there is a conflict between optimizing
number of timesteps and optimizing traffic, the former is usualy given priority. In fact, it is often the case
that the reason for optimizing traffic is to minimize the time. The following lemma defines “ unreasonable”

fort =1ton —1:

i .
Sizzlli—langZ

Figure 6: The Linear algorithm.

schedule.

Lemma2 A schedulgs;} wheres; > 0 for all ¢, or wheres; < 0 for all 7, cannot be an optimal schedule
in terms of both time and traffic.

Proof: Consider the case of s; > 0 for al i (the case of s; < 0 issimilar). Let A = min(s;). We claim
that {s; — h} is a better solution. Let the given schedule be S, and the latter schedule §,. In terms of
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traffic, Sy, putsout n x h units less than that of S. Interms of time, in the single-send mode, ared node in
S could become a green node in S;, after its s; is reduced by h, but a green node could never turn red. In
the multi-send mode, athread in .S could become shortened in .S, because, referring to Definition 1, s, is
reduced by h, but none of I, , lk,, ..., l,, , isreduced. O

Here is an example of such an unreasonable schedule:

(1] =[] 2% [a] = [3] = 3] = (3] = ([1)

The load instance is aready balanced, but the schedule insists on having each node send 10 units to its
neighbor. If running in the single-send mode, this schedule would deadlock, because none of the nodes has
enough load to proceed! If running in the multi-send mode, this schedule would take 10 timesteps to execute
because the longest thread here would span 10 nodes (some nodes being spanned twice).

A schedule generated by the Linear algorithm does not bel ong to the category of unreasonable schedules
as defined by Lemma 2 because at least one of the s;’s, s,, is equal to zero. According to the proof of
Lemma 2, {s; — h} is a better schedule, but since h = min(s;) = 0 for any schedule generated by the
Linear algorithm, a better schedule is the original schedule itself. We say that a schedule generated by the
Linear algorithm is a reasonable schedule.

The Linear agorithm, however, provides on guarantee on the optimality of the execution time of the
schedules it produces. Wu and Shu have given an algorithm which is based on the Linear algorithm and
which minimizes the traffic [6]. We refer to this as the Traffic algorithm. The idea of this algorithm comes
from aminimum-cost flow algorithm described in [4], which can be explained pictorially, using for example
Fig. 7.2 In the following discussion, when we say that {s;} is adjusted by h, we mean the new schedule
{s; — h}. Fig. 7 shows a schedule generated by the Linear algorithm being visualized as a sorted “bar
chart”. The bars that are upright (above the horizontal axis) correspond to positive 5’'s—those emanating
from positive nodes; the barsthat are upside-down (below the horizontal axis) correspond to negative §'s—
those emanating from negative nodes; and s;’s that are zero appear as asmall dot. The s;'s are displayed in
sorted order with negative s;'s being treated as negative numbersin the sorting (e.g, s = —1inFig. 1). We
denote the sorted set by {s;}, where 5, isthe largest s;, s, the second largest s;, and so on. If the number
of positive 3;'s, n,, is greater than |n/2], the Traffic algorithm would apply an adjustment of & = 5, 2
to the schedule; similarly, for n, > |n/2], where n,, isthe number of negative s;'s, the Traffic algorithm
would set h to S[(n+1)/2]-

Lemma 3 The Traffic algorithm yields a schedule that is traffic-optimal.

Proof: Consider first the case of even n where n, > n/2, as shown Fig. 7(al). We use a vertical dashed
line to divide {5;} into the left and the right half. By adjusting {5;} by h = 3,, /> (represented by the dotted
linein Fig. 7(al), and the result is shown in Fig. 7(a2)), the traffic that is reduced in the left half minus the
traffic that is increased in the right half is equal to the sum of the positive §'s that are on the right half in
the unadjusted schedule. This saving in traffic is the maximum possible with any value of h. The case of
n, > n/2issymmetric to this case.

For the case of odd n where n,, > |n/2], as shown in Fig. 7(bl), the saving in traffic due to the
adjustment by h = 5[, /91 is equal to the sum of the positive 5;'s that are on the right half plus the 3; that is

A mathematical proof can be found in [6].



Figure 7: The idea of the Traffic algorithm.

in the middle. This saving in traffic is the maximum possible with any value dthe case ofy, > |n/2]
is symmetric.

For the case of neither, > [n/2]| norn, > [n/2], as shown in Fig. 7(c), an adjustment by dny
value will not improve the trafficO

Unfortunately, traffic-optimality does not imply time-optimality. Consider the following example, where
n = 10. The Traffic algorithm sets to 5, = 2.

0 0
Linear: 5-[1]-21-53-23-5[1]-50-——11 23— (5)
0 0 0
Traffic: 551 -——1<-3-——3-—"51——0[1][2] 32 (5)

The total traffic for the Linear schedule and the Traffic schedulé iand 13 respectively. But; for the
Linear schedule i8, which is better than that for the Traffic schedule, whicB.ig,, for either schedule is
2. The best schedule (in both traffic and time) turns out to be the following, WithT,,, = 1.

52113 b3t Lol oyl

This schedule could have been generated by the Traffic algorithm if the algorithm haeksgt, | = 1
instead ofs,, ;. As a matter of fact, the solution to the everease is not unique. Refer to Fig. 7(al) again—
it is not difficult to see that any value between the middle tw&s (i.e., 5,2 < h < 5,,/5,1) would give
rise to a traffic-optimal schedule. We refer to this rangé @hlues as theptimal-traffic window For odd
n, on the other hand, the solution generated by the Traffic algorithm is unique.

Although it happens that optimal schedule in the above example could have come from setting an
value which is within the optimal-traffic window, it is not true in general that time-optimality implies traffic-



optimality. The following is an example of an time-optimal schedule, whos@lue is outside of the
optimal-traffic window.

Optimal: 34 <2 40 2> 90 2, 40 % 50 25 60 22, 30 2% 0 L2 (34)

11

0
Traffic+: 34 <2 [40] <% 90 25 40 —— 50 -5 60 25 30 25 0 &2 (34)

The optimal-traffic window for this problem i82,35]. The Traffic+ schedule was generated by setting
h = 32, as opposed to settirfg= 35 if the original Traffic algorithm had been used; the latter would result
in more red nodes in the schedule. The Optimal schedule, however, was from &ettint, which is
outside of the window. This schedule has a total traffieGsf, whereas that of the Traffic+ schedulel &.

The following summarizes our findings.

Lemma4 For arandom load instance, time-optimality and traffic-optimality are not equivalent.

The Linear algorithm tries to generate schedules that are reasonable, and the Traffic algorithm tries to opti-
mize the generated traffic, but neither of them aims at producing a schedule that is time-optimal. For certain
load instances, optimizing the traffic could make the time worse, as we will see in Section 6.

As optimizing time rather than traffic is the primary objective, we present in the following an algorithm
for finding the time-optimal schedule.

5 An Algorithm for Finding Time-optimal Schedules

Given an initial schedule, say a Linear schedule, to find the time-optimal schedule means adjusting the
schedule with a suitablé value. Thish value represents a good balance between two kinds of chains:
negative chains and positive chains. A negative chain is one that contains only negative nodes, and a positive
chain contains only positive nodes. A positivevalue {.e., {s; — h}) might shorten the length of existing
positive chains (possibly destroying some) and at the same time extend the length of existing negative chains
(possibly creating some new ones).

Define thedeficit of a red node, say;, to be (L~ (i) — [;) if v; is positive, and— (L~ (i) — ;) if v;
is negative. The deficits form a set. Lé}.. andd,.;, be the largest and the smallest element in the
set, respectively. If there is no red node, then the set is not defined, and the initial schedule is an optimal
schedule; if there is only one red node, thgl.,. = dnin.

Lemma5 Theh value leading to the time-optimal schedule lies within the Win@w.., dmin] if dimaz
andd,,;, are defined.

Proof: Without loss of generality, suppose thai,, is positive (Fig. 8). If settingh = d,,4.., then all the
positive red nodes would become green. Therefore, séitingi,,.,, would not turn any more positive red
nodes into green nodes, but might turn some green negative nodes and/or zero nodes into redeodes—
extending some of the existing negative chains. By symmetry,;if is negative (Fig. 8(b))k cannot be
smaller thard,,;,,. If d..., iS positive (Fig. 8(a)), then those red nodes with minimum deficit would turn
green wherh is set tod,,;,,. Settingh < d,,;, would not produce any more green nodes but might change
some of those nodes with minimum deficit back to red.



Therefore, setting: to be outside of the said window might extend existing chains and/or creating
new chains, and increase existing deficits, and h@hcannot be better. Fdf,,, refer to Definition 1 and
consider positive threads without loss of generality. A thread is of either thesoraa I, +15, +- - -+1k,,,_,
if v, is a red node, or the forms,,, < sp, + lg, + -+ + i, _, if vg, is @ green node. For either form,
the I’s would not change. By choosing @noutside of the window, eitheg,  would become larger (for
the first form above) ory,, would become a red node (for the second form), |f becomes larger, then it
might take some extrés to satisfy the condition—hence, a longer thready, [fbecomes a red node, then
it becomes a case of the first form; otherwiseyjfremains as a green node, the length of the thread would
not change because boff), andsg, would be changed by the same amount by the choicde of

] window

D load a processor has

I load to give away

window

(b)

Figure 8: Finding the time-optimal schedule.

The above lemma lets us confine the searching for a solution to a smaller search space. The algorithm
for finding an optimal schedule for the single-send mode is given in Fig. 9—we refer to this as the Optimal
schedule. For the multi-send mode, simply substifijidor T in the algorithm.

generate a schedu{e; } using the Traffic algorithm;
h =0;
if djnee aNdd,,;, are defined then
computeTy for everyh in [dyaz, dminl;
choose thé whoseT, is minimum;
the optimal schedule i§s; — h};

Figure 9: The Optimal algorithm.

The following lemma points out that the two timég,andT;,,, are not related in general; minimizing
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one does not necessarily minimize the other.
Lemma6 A T,-optimal schedule is not necessarilyl,g-optimal schedule, and vice versa.

Proof: By example. Consider the following load instanee £ 10) and its7;-optimal and7;,-optimal
schedule.

T,-optimal: 1oi>i>3i>i2i2i>0—0—08<i@<i<i(10)

T,.-optimal: 10 - [1] -5 [3] 5 [1] -2 [2] 2 [2] 2= [0] = 0 < [0] & [1] <X (10)

For theT;-optimal scheduleT; = 3, butT,,, = 3 (considersg) is hon-optimal. For thd,,-optimal sched-
ule, T,, = 2 (because the longest thread is of lengjttiout 7; = 9 is non-optimal.O

In the Optimal algorithm, we choose the Traffic algorithm instead of the simpler Linear algorithm to
be used in generating the initial schedule which contains the search window. The reason is that the Linear
algorithm could generate very large search windows for highly unbalanced load instances, such as the one
shown in Fig. 10. The Optimal algorithm requires going throuyh= d,,.. — dmin + 1 Steps, each of
which entailing examining: elements to determine the longest chain or thread. For the one in Figute 10,
is very close to the total number of load units in the system: the total lo&@Digvhich is all concentrated
in one noded, .. = 98 andd,.;, = 1, andA = 98. Therefore, if we had used the Linear algorithm for
the initial schedule in the Optimal algorithm, the worst-case complexity of the Optimal algorithm would be
O(n x L), whereL is the total load of the system. Now, using the Traffic algorithm, at least extreme cases
like the one just discussed would be much less of a problem. In fact, if we apply the Traffic algorithm to the
load instance in Fig. 10, we get an optimal schedule right away bedawseld be equal tal5 and so the
node holdingl 00 units would send4 through one edge anth through another edge.

100 2% [0] % ...[0] 0]~ (100)

Figure 10: Worst scenario.

6 Simulation Experiments

We implemented the algorithms (the Linear algorithm, the Traffic algorithm, and the Optimal algorithm)
presented in previous sections and conducted a humber of experiments in order to answer the following
guestions. We refer to a schedule generated by the Linear algorithm as a Linear schedule, one by the Traffic
algorithm a Traffic schedule, and a time-optimal schedule by the Optimal algorithm an Optimal schedule.
In the following when we say optimal, we mean time-optimality.

1. What is the probability that a Linear schedule or a Traffic schedule is optimal? (If the probability is
high, then the Linear algorithm or the Traffic algorithm perhaps is acceptable for real implementation.)
For those non-optimal Linear or Traffic schedules, by how much are they worse than the optimal
schedule?
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2. Will the single-send mode be close enough in performance to the multi-send mode? (If yes, then the
single-send mode being somewhat easier to implement should be preferred in real implementation.)

3. What is the time cost (in real seconds) of running the Optimal algorithm?

We considered five sizes of a ring,= 4, 10, 20, 30, 50 For each of these rings we generai®d000
random load instances, and for each instance, we applied the three algorithms to generate three schedules
for comparison. The individual load assigned to a processor in a load instance rang@stérdf units.

We measured a schedule’s execution timéss<; or T,,,, or both.

The results from first set of experiments answer Question 1 above. Table 1 summarizes the results for
the single-send mode, and Table 2 summarizes the results for the multi-send mode. The first column of
the tables (Linear=0Opt) corresponds to the number of Linear schedules, out of 50,000 schedules, whose
execution time turned out to be optimal; the second column (Traffic=Opt) the number of Traffic schedules
whose execution time turned out to be optimal; the third column (All) the number of times for which all three
algorithms yield an optimal schedule; the fourth column (Opt) the number of times in which the schedule
generated by the Optimal algorithm was the only optimal one, and we include the amount of extra traffic
(+traffic) that the Optimal schedule would incur using the optimal traffic amount as a base; and the last
column (Y%worse) corresponds to the average amount by which a non-optimal schedule (Linear or Traffic) is
worse than the optimal schedule—a 100% means that the non-optimal schedule uses two times the optimal
time to execute. The relationship between these various parameters is as follows.

Opt = 100% — ([Linear=Opt]+ [Traffic=Opt] — All )
The following can be easily observed from the figures in the tables.

e The Linear algorithm is worse than the Traffic algorithm in terms of the probability of generating an
optimal schedule, especially for large rings.

e Where the Linear algorithm would generate an optimal schedule but the Traffic algorithm would not
(which is equal to [Linear=Opt} All) is a rare event.

e The amount of extra time (on top of the optimal time) that the non-optimal schedules would spend in
their execution is quite substantial, especially for small rings in the single-send mode.

e The performance differences between the algorithms are less acute in the case of using the multi-send
mode.

e The Optimal schedules generate only a little bit more traffic than the corresponding Traffic schedules.

The conclusion is that except for very small rings, the Optimal algorithm is the only reliable algorithm for
generating optimal schedules, and that the Optimal schedule is substantially better than the non-optimal
schedules generated by the other two algorithms.

The second set of experiments we conducted was for comparing the single-send and the multi-send
mode of operation. The result is summarized in Table 3, which answers Question 2 above. Recall that we
have proved that the single-send mode can never be better than the multi-send mode. The %worse column

“We picked all evem’s (for the sake of easier programming); the behavior of theoddses should be more or less the same.
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‘ n H Linear=0Opt ‘ Traffic=Opt ‘ All ‘ Opt / +traffic ‘ %worse‘
50 || 2607 (5.21%) | 17167 (34.33%) 1513 (3.03%) | 31739 (63.48%) /3% 87%
30| 4116 (8.23%) | 21574 (43.15%) 3090 (6.18%) | 27400 (54.80%) /3% 99%
20 || 6046 (12.09%)| 25802 (51.60%) 5186 (10.37%)| 23338 (46.68%) /4% 109%
10 || 13664 (27.33%) 34485 (68.97%) 13281 (26.56%) 15132 (30.26%) /5% 127%
4 || 36783 (73.57%) 46107 (92.21%) 36783 (73.57%) 3893 (7.79%)/6%| 107%

Table 1: single-send mode.

‘ n H Linear=Opt ‘ Traffic=Opt ‘ All ‘ Opt / +traffic ‘ %Worse‘
50 || 7271 (14.54%)| 24172 (48.34%) 6211 (12.42%)| 24768 (49.54%) /7% 43%
30 || 10187 (20.37%) 29608 (59.22%) 9399 (18.80%)| 19604 (39.21%) /8% 42%
20 || 13189 (26.38%) 33782 (67.56%) 12589 (25.18%) 15618 (31.24%) /10% 43%
10| 17156 (34.31%) 39179 (78.36%) 16857 (33.71%) 10522 (21.04%)/11% 46%
4 || 36783 (73.57%) 46107 (92.21%) 36783 (73.57%) 3893 (7.79%) / 6% 50%

Table 2: multi-send mode.

corresponds to the amount of extra time the optimal schedule in single-send mode would spend on average
when compared with the schedule in multi-send mode; the #equal column corresponds to the number of
cases, out of the 50,000 we simulated, in which the two times are equal. For large rings, the multi-send
mode is the clear winner, but nonetheless, in those cases where the single-send mode loses out, the single-
send mode is not substantially worse: even for the largest ring we tried 50, the increase in execution

time is only aboutl3%. Our conclusion is that the single-send mode, which is a simpler method, is viable

for real implementation because its performance is not far from that of the multi-send mode.

We carried out the final set of experiments to obtain execution timings of the Optimal algorithm. We
present only those for the single-send mode. The timings for the multi-send mode are approximately the
same, since they both use the same window to search for an optimal solution for a given load instance. The
result is shown in Table 4, which answers Question 3 above. The implemented algorithm begins with a
random load instance, executes the Traffic algorithm to create an initial schedule, calculates the deficits, and
then tries every: value within the search window. We ran the algorithm on a SPARCserver with a single
SPARC chip running at 167 MHz. The measured execution times range0f@3milliseconds for small
workload (up to40 units/processor) and small ring (= 10) to 22.2 milliseconds for large workload (up

‘ n H %worse‘ #equal‘

4 0% 50000
10| 3.79% | 33000
20| 7.94% | 9185
50 || 13.39% | 87

Table 3: Comparing single-send and multi-send mode.
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‘ n H max. load / proc| mean total Ioacj window (Linear)‘ time (msec)‘

10 200 1170 79 (95) 1.05
20 200 1860 182 (191) 4.41
50 200 4690 386 (391) 22.2
10 100 470 39 (48) 0.54
20 100 760 90 (95) 2.2

50 100 2090 192 (195) 11.25
10 40 170 16 (19) 0.23
20 40 300 36 (38) 0.95
50 40 770 79 (80) 477

Table 4: Runtimes of the Optimal algorithm for the single-send mode.

to 200 units/processor) and large ring & 50). We also measured the mean window size for each of the
runs. For comparison, we include also the window size for using the Linear algorithm instead of the Traffic
algorithm for the initial schedule. It appears that the Traffic algorithm as well as the Linear algorithm would
generate larger window sizes (relative to the total workload) as the size of the ring increases= Hor
the window size is equal to about one-third to one-half of the maximum initial load of a processor, whereas
for n = 50, the window size is twice the maximum initial load. We note also that the Traffic algorithm has
only a slight advantage over the Linear algorithm in terms of the search window size.

We claim that the algorithm is reasonably efficient. Consider for instance the case-020 in the
middle section of Table 4. The load balancing procedure would spend atléastimesteps in computing
the average and then broadcasting the schedule to all the nodes, which could translate easily into several
milliseconds or more in a processor ring using state-of-the-art routing hardware (where latencies and startup
times are in the order of tens or hundreds of microseconds). Thereforz2thelliseconds to compute the
schedule should not be a major concern. Also, the SPARC processor running at 167 MHz is a rather modest
piece of hardware. The overhead thus added to the load balancing procedure should not in any way affect
the performance of the application which initiates load balancing only occasionally.

7 Concluding Remarks

We have shown that the problem of finding an optimal schedule for load distribution is non-trivial even for a
structure as simple as a ring. Results of our experiments clearly indicate that a non-optimal schedule could
be much worse than an optimal schedule in terms of execution time, and that only the proposed Optimal
algorithm, among the three algorithms discussed, is reliable as far as producing an optimal schedule is
concerned.

The Optimal schedule is based on the Traffic algorithm which is a “reasonable” algorithm. But the
Traffic algorithm does not seem to be able to yield a narrow-enough window in which to search for the
solution. The size of the window is an important parameter that affects the time spent in executing the
Optimal algorithm. Future pursuits could try to replace the Traffic algorithm by a smarter algorithm that
would produce a smaller window for searching. For more specific load instances or load instances exhibiting
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a certain pattern, there might exist methods that could zero in on a solution more directly instead of having
to exhaustively search through a window. An example of such a method can be found in [9]. Our solution
for the ring does not seem to adaptable to work for other structures that are composed of rings, such as the
torus, because in a torus there are many paths that join a pair of nodes (instead of just two in a ring).
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