Interesting Problems for Cardinal Direction Relations: Composition and Consistency

Spiros Skiadopoulos

Department of Computer Science and Technology University of Peloponnese Tripoli, Hellas http://www.uop.gr

Talk Overview

- Models of qualitative spatial information
- Formal definition of cardinal direction relations
- The composition problem
- The consistency problem

Models of Qualitative Spatial Information

 Models of spatial relations: <u>Directional relations</u> [Ligozat98, Frank96], Topological relations [Egenhofer91], Distance relations [Frank92]

• Approaches: Point-based models [Frank96, Ligozat98, Freksa92], Minimum bounding box-based models [Papadias94, Adbelmoty94, Mukerjee+Joe90]

Cardinal Direction Relations

Single-tile

• In (b): $a \ S \ b$

Multi-tile

- In (c): a NE:E b
- In (d): a B:S:SW:W:NW:N:E:SE b

Presented in [Goyal and Egenhofer00, Skiadopoulos and Koubarakis01].

Defining Cardinal Direction Relations Formally (Single-tile)

• Single-tile cardinal direction relations: *B*, *S*, *SW*, *W*, *NW*, *N*, *NE*, *E* and *SE*

 $a \ S \ b \ \text{iff} \ sup_y(a) \leq inf_y(b), \ inf_x(b) \leq inf_x(a) \ \text{and} \ sup_x(a) \leq sup_x(b)$

Defining Cardinal Direction Relations Formally (Multi-tile)

• $a \ NE:E \ b$ iff there exist regions a_1 and a_2 such that $a = a_1 \cup a_2$, $a_1 \ NE \ b$ and $a_2 \ E \ b$

• $a \ B:S:SW:W:NW:N:SE:E \ b \text{ iff there exist regions } a_1, \ldots, a_8 \text{ such}$ that $a = a_1 \cup a_2 \cup a_3 \cup a_4 \cup a_5 \cup a_6 \cup a_7 \cup a_8, \ a_1 \ B \ b, \ a_2 \ S \ b, \ a_3 \ SW \ b,$ $a_4 \ W \ b, \ a_5 \ NW \ b, \ a_6 \ N \ b, \ a_7 \ SE \ b \text{ and } a_8 \ E \ b$

Formal Definition: Multi-tile Relations (Cont'd)

General case:

• If R_1, \ldots, R_k are single-tile cardinal directions relations then $a \ R_1: \cdots: R_k \ b$ iff there exist regions a_1, \ldots, a_k such that $\underbrace{a_1 \ R_1 \ b, \ \ldots, \ a_k \ R_k \ b}_{\text{Single-tile cardinal direction constraints}}$ and $\underbrace{a = a_1 \cup \cdots \cup a_k}_{\text{Set-union constraints}}$

Interesting problems

- Composition
 - Given that $a R_1 b$ and $b R_2 c$ holds, what is the relations between a and c?
 - E.g., from $a \ N \ b$ and $b \ N \ c$ we have that $a \ N \ C$ holds
- Consistency
 - C a set of constrains in variables \bar{a} . Is there an assignment of regions to the variables of \bar{a} that satisfies all constrains of C?
 - E.g., set $\{a \ N \ b, \ b \ N \ c, \ a \ S \ b\}$ is inconsistent
- Use
 - Mechanism for inferring new spatial knowledge
 - Detecting inconsistencies
 - Preprocessing spatial queries

Composition of two cardinal direction relations

First problem

Composition (Consistency-based)

- Let R_1 and R_2 be binary relations. The **consistency-based** composition of relations R_1 and R_2 , denoted by $R_1 \circ R_2$, is another binary relation which satisfies the following. $R_1 \circ R_2$ contains **all** relations $Q \in \mathcal{D}$ such that there exist regions $a, b, c \in REG$ such that $a R_1 b, b R_2 c$ and a Q c hold
- For the rest of the talk composition refers to consistency-based composition

Composition Cases

- Single-tile with Single-tile
 - Transitivity table
- Single-tile with Multi-tile
 - Theorem
- Multi-tile with Multi-tile
 - Reduced to the composition of single with multi-tile

Single-tile with Single-tile

• Example

 $W \circ S \stackrel{(Table)}{=} \delta(S, SW) = \{S, SW, S:SW\}$

• Let R_1 be a single-tile and $R_2 = R_{21} : \cdots : R_{2l}$ be a multi-tile cardinal direction relation. Does

$$R_1 \circ (R_{21}: \cdots : R_{2l}) = \delta(R_1 \circ R_{21}, \dots, R_1 \circ R_{2l})$$

hold?

• Only for a very small fraction (11%) of the possible pairs!

• Example

Composing W and SW:W

 $W \circ SW: W = \delta(W \circ SW, W \circ W) = \delta(SW, W) = \{SW, W, SW: W\}$

• Example

15

• Theorem

Let R_1 be an single-tile cardinal direction relation and R_2 be a multi-tile cardinal direction relation. Then

 $R_1 \circ R_2 = R_1 \circ \mathcal{M}ost(R_1, \mathcal{B}r(R_2)).$

- $R_1 \circ \mathcal{M}ost(R_1, \mathcal{B}r(R_2))$ is always in the well-behaved 11%!
- $\mathcal{B}r(R)$:

if a R b then $mbb(a) \mathcal{B}r(R) b$

• $\mathcal{M}ost(R_1, R_2)$:

is the relation formed by the R_1 -most tiles of R_2

• Example

From $W \circ B:S:SW$ to $W \circ SW:W$

 $- \mathcal{B}r(B:S:SW) = B:S:SW:W.$

 $-\mathcal{M}ost(W, \mathcal{B}r(B:S:SW)) = SW:W$

• Thus $W \circ B:S:SW = W \circ SW:W$

Multi-tile with Multi-tile

• Theorem

Let $R_1 = R_{11}: \cdots : R_{1k}$ and R_2 be multi-tile cardinal direction relations, where R_{11}, \ldots, R_{1k} are single-tile cardinal direction relations. Then

$$R_1 \circ R_2 = \{ Q \in \mathcal{D} : (\exists s_1, \dots, s_k) \ (Q = tile - union(s_1, \dots, s_k) \land s_1 \in R_{11} \circ R_2 \land \dots \land s_k \in R_{1k} \circ R_2) \}.$$

• $tile-union(R_1, R_2)$ is the multi-tile cardinal direction relation that consists of all the tiles in R_1 and R_2

In the paper $[\mathbf{SK04}]$...

- Formal definitions of the cardinal direction relations model
- Transitivity table of single-tile relations
- Formal proofs for all Algorithms/Theorems
- [SK04] S. Skiadopoulos and M. Koubarakis. Composing Cardinal Direction Relations. *Artificial Intelligence*, 152(2):143–171, 2004.

Summary – Composition

- Formal definition of cardinal direction relations model
- Discussion of the composition operation
 - Considered several classes of cardinal direction relations and gave algorithms for composition
 - The above algorithms for composition also hold for connected regions, disconnected regions and regions with holes, points and lines

Consistency of a set of cardinal direction constraints

Second problem

Outline of the Consistency Algorithm

Algorithm CONSISTENCY

Input: A set C of single/multi-tile cardinal direction constraints Output: 'Consistent' if C is consistent; 'Inconsistent' otherwise

- Step 1 Considers each constraint c in C and maps the single-tile cardinal direction constraints into a set of order constraints O
- Step 2

Finds a "maximal" solution of the set of order constraints O

• Step 3

Checks whether the above solution satisfies the set-union constraints

 $a \ R_1: \dots: R_k \ b \text{ iff there exist regions } a_1, \dots, a_k \text{ such that}$ $\underbrace{a_1 \ R_1 \ b, \dots, a_k \ R_k \ b}_{\text{Single-tile cardinal direction constraints}} \quad \text{and} \quad \underbrace{a = a_1 \cup \dots \cup a_k}_{\text{Set-union constraints}}$

Running Example

 $C = \{a_1 \ S:SW \ a_2, \ a_1 \ NW:N:NE \ a_3\}$

Step 1

Considers the definition of every cardinal direction constraint $a_i R_1: \dots: R_k a_j$ in C

 $a R_1: \cdots: R_k b$ iff there exist regions a_1, \ldots, a_k such that

 $\underbrace{a_1 \ R_1 \ b, \dots, a_k \ R_k \ b}_{\text{Single-tile cardinal direction constraints}} \quad \text{and}$

and $a = a_1 \cup \dots \cup a_k$

Set-union constraints

- Introduces new region variables
- Introduces into *O* order constraints encoding all single-tile cardinal direction relations
- Introduce into O the obvious order constraints relating the endpoints
- Introduce into *O* additional order constraints that establish the **strictest possible** relation between the endpoints

Step 2

Finds a solution of set O [van Beek92, Delgrande et al99].
<u>If</u> no solution exists <u>then</u> return 'Inconsistent'
<u>else</u> extend the regions that correspond to component variables (find a "maximal" solution)

Step 3

 Checks if the "maximal" solution of O satisfies a special constraint NTB which is weaker than the set union constraints
<u>If</u> constraint NTB is satisfied <u>then</u> return 'Consistent' <u>else</u> return 'Inconsistent'

Results

• Theorem 1

Let C be a set of single/multi-tile cardinal direction constraints. Algorithm CONSISTENCY correctly decides whether C is consistent

- The proof is long

• Theorem 2

Checking the consistency of a set of single/multi-tile cardinal direction constraints in n variables can be done using Algorithm CONSISTENCY in $\mathcal{O}(n^5)$ time

- Easy to see

Results (Cont'd)

• Theorem 3

Checking the consistency of an **unrestricted** set of cardinal direction constraints is NP-complete

– A reduction that is based on the interval case

• An extension of the model that handles points and lines

Discussion

- The above algorithm can be applied for
 - Disconnected extended regions
 - Disconnected arbitrary region in \Re^2 (points lines)
- We believe that it also works for connected regions but we do not have a proof
- More details and proofs
 - S. Skiadopoulos and M. Koubarakis. On the Consistency of Cardinal Directions Constraints. *Artificial Intelligence*, 163(1):91–135, 2005.

Summary

- Formal Definition of Cardinal Direction Relations Model
- Discussion of the Composition Operation
 - Considered several classes of cardinal direction relations and gave algorithms for composition
- Consistency Problem for Cardinal Direction Constraints
 - Present the first algorithm for this problem and prove its correctness
 - Consistency checking of a set of single/multi-tile cardinal direction constraints can be done in $\mathcal{O}(n^5)$
 - Consistency checking of an **unrestricted** set of cardinal direction is NP-complete