
1

1

Finding patterns of non-continuous
characters with a given gap region

from DNA sequences

July 23, 2003

PhD Annual Talk

Speaker: Minghua ZHANG

2

Content

l Motivation
l Problem definition
l Algorithms
l Performance
l Future work
l Conclusion

3

Background

l The development of bioinformatics provides us
with a lot of data.

– DNA sequences, protein sequences
l The data contains lots of information.
l One way to discover the information is to use

the data mining technology.

4

Motivation

l A DNA sequence: l The subsequences of
nucleotides in the similar
orientation may carry useful
information.

l Find such subsequences
appear often enough.

l Property: Gaps between 2
consecutive nucleotides are
not fixed, but within a small
region. E.g: [10,11].

5

Problem Definition

l Σ: the alphabet of the characters
– E.g: for DNA sequences, Σ={A,C,G,T}.

l Gap:
– A sequence of wild-cards (“.”)
– Length: Number of wild-cards in the gap.

l x(n) = a gap of length n.
l x(n,m) = a gap whose length is in [n, m].

6

Problem Definition (cont’d)

l Pattern:
– A sequence of characters in Σ, and gaps;

l Gaps cannot be at the beginning or end of the sequence.
l E.g: Ax(1)G is a pattern; AGx(1) is not.

– Length
l No. of characters in a pattern P.
l E.g: |Ax(1)G|=2.

– Subpattern
l A substring of pattern P, which itself is also a pattern.

2

7

Problem Definition (cont’d)

l Match
– Given a sequence s, a pattern P
– If we can find an occurrence of P in s, we say s

matches P.
– E.g: s=ACGGACT, P=Cx(2)A, then s matches P at

offset 2.

8

Problem Definition (cont’d)

l Support
– Given a sequence database D={s1, s2, … , sn}, a

pattern P
– sup(P) = No. of sequences in D that match P.

l Frequent
– If support (P) > = K

9

Problem Definition (cont’d)

l Problem:
– Given D, K, N, M
– Find all frequent patterns of form

l c1x(N,M)c2x(N,M)…cl-1x(N,M)cl

– ci in Σ, l is any integer.
– c1c2…cl-1c l

10

Property

l If p is frequent, all its subpatterns are frequent.
l However, its subsequences are not necessarily

be frequent.
l E.g:

– if ACGT is frequent,
– then ACG is frequent,
– but AGT may be infrequent.

11

Related Works

l Works on finding other types of patterns from
biology sequences

– TEIRESIAS
l Find patterns composed of characters and wild-cards, but

not flexible gaps.
– Only x(n) can appear in the pattern, not x(n,m).

l A requirement on the ratio of characters w.r.t wild-cards.
l Roughly a depth-first search method.

12

Related Works (cont’d)

– Pratt:
l Finding patterns with flexible gaps
l other restrictions, e.g:

– The longest length of a pattern
– The maximal length of a gap, or m in x(n, m)

– The maximal gap region size, or m-n+1 in x(n, m)

l By way of graph
– Scan database and builds a graph according to some

regulations
– Traverses the graph to get patterns

3

13

Related Works (cont’d)

l Mining frequent patterns from transactional
databases (MFP):

– Difference 1
l Here: a sequence of characters
l MFP: a sequence of itemsets

– Difference 2
l Here: the gap size between 2 consecutive characters are in

a given region [N, M]
l MFP: order only, no gap size requirement

14

Algorithms

l Algorithm A
– Ci ={candidate patterns of length i}
– L i ={frequent patterns of length i}

i=1;

Ci = {i | i is in Σ};

While (| Ci | >0)

{

scan database to get L i from Ci ;

Ci+1 = Gen(Li);

i++;

}

15

Algorithm A (cont’d)

l Count support
– Given s and P, check whether s matches P.
– Symbols:

l P[i]: the i-th character in pattern P
l S[i]: the i-th character in sequence s

– Begins with going forward:
l 1. Find p[1] in s, record the position as off[1]
l 2. Find the first appearance of p[2] in s with offset no less than

off[1]+N, recorded by off[2].
l 3. If off[2]-off[1] <= M, continue with p[3], etc.
l 4. Otherwise, going back

16

Algorithm A (cont’d)

– Going back:
l If off[i]-off[i-1] > M, find a new appearance of P[i-1] in s with

offset no less than off[i]-M.
l If the new value of off[i-1] still meets off[i-1]-off[i-2] <= M,

return to the going forward phase;
l Otherwise, find new positions for P[i-2].

– If we can not find an appearance of a character,
l s does not matches P.

– If all characters in P are processed successfully
l s matches P.

17

Algorithm A (cont’d)

l Candidate generation
– For every pair of patterns p1 and p2 in L i

– If suffix of p1 = prefix p2, then a candidate is got.
l E.g: p1= CACG, p2= ACGT, c=CACGT

l Here we should do subpattern comparison for
|Li |2 times.

– not efficient

18

Algorithm A (cont’d)

l Observation:
– When a candidate is generated, we know its prefix and suffix.

l Keep them for later use.

– Store Li as a union of some subsets.
l All patterns in a subset have the same prefix or suffix.

l Spu
: a subset, all patterns in it has the same prefix u

l Ssv
: a subset, all patterns in it has the same suffix v

– After scan the database, if a candidate is found to be frequent,
insert it into the right subset Spu

and Ssv
.

4

19

Algorithm A (cont’d)

l When generating Ci+1 from Li
– For each subset Ssu

, check if there is a subset Spu
l Yes: generate candidates for every pair of patterns p1 (in

Ssu
) and p2 (in Spu

).

– the generation condition is checked UV times
l U = the number of subsets Spu

l V = the number of subsets Ssv
l UV < |Li| 2

20

Algorithm B

l Terminologies:
– id-list of a pattern

l Given a sequence database D={s1, s2, … , sn}, a pattern P
l List(P) = {(x,y) | sx matches P and in the match p[1]=sx[y]}

– List (P) -> sup(P)

21

Algorithm B (cont’d)

l id-list calculation
– Given a pattern R, its prefix P, suffix Q

l E.g: R=ACGT, P=ACG, Q=CGT

– List(R) = {(x,y) | (x,y) in List(P) & ∃(x, z) in List(Q)
s.t. z-y-1 in [N, M]}

y
sx

z-y-1

z

22

Algorithm B (cont’d)

– Sort id-lists with x value as the major key and y
value as a minor key.

– A linear scan of List(P) and List(Q)
l a,b : current position of List(P), and List(Q)
l If (a.x < b.x) a++;
l else if (a.x > b.x) b++;
l else if (b.y-a.y > M) a++;
l else if (b.y-a.y < N) b++;
l else insert a into List (R), a++;
l until reach the end of List(P) or List(Q)

23

Algorithm B (cont’d)

l An iterative method
– Scan the database to obtain the id-lists of all

characters, and get L1

– Calculating the id-lists of C2 (from L1) and get L2

– Calculating the id-lists of C3 (from L2) and get L3

– Etc.

24

Performance

l Data generation
– Download a DNA sequence from a bioinformatics

site.
– Consider a piece of it with length 200 base pairs.

l s

– Generate 100 derivative DNAs from s
l With a X% similarity to s

– D = The 100 derivative DNA sequences

5

25

Performance (cont’d)

Running time under different support thresholds
|s|=200, |D|=100, gap region[10,11]

0

1

2

3

4

5

6

7

8

9

50 60 70 8 0 90 1 0 0

support

ru
n

n
in

g
 t

im
e

(s
)

A B

26

Performance (cont’d)

Running time under different gap region sizes
|s|=200, |D|=100, support=100

0

50

100

150

200

250

2 3 4 5

Gap region size

ru
nn

in
g

tim
e

(s
)

A B

27

Performance (cont’d)

Running time under different database sizes
|s|=200, gap region [10,11], support=100

0

0 . 0 5

0.1

0 . 1 5

0.2

0 . 2 5

0.3

0 . 3 5

0.4

0 . 4 5

5 0 100 150 200 250 300

Database size

ru
n

n
in

g
 t

im
e

(s
)

A B

28

Performance (cont’d)

Running time under different X valuess
|s|=200, gap region [10,11], support=100

0

0 . 0 5

0.1

0 . 1 5

0.2

0 . 2 5

0.3

0 . 3 5

0.4

5 0 6 0 7 0 8 0 9 0

X value

ru
n

n
in

g
 t

im
e

(s
)

A B

29

Performance (cont’d)

Running time under different sequence lengths
|D|=100, gap region [10,11], support=100

0

0.5

1

1.5

2

2.5

3

3.5

100 2 0 0 300 400 500 600

Sequence length

ru
nn

in
g

tim
e

(s
)

A B

30

Future work

l Algorithms A and B are not efficient when the
frequent patterns are very long.

– They are step by step methods.
l Algorithms with a jump step may be more

efficient.

6

31

Future work (cont’d)

l Idea:
– L1 -> L2 -> L4 -> L8, etc.

l Goodness:
– E.g: if all candidates of length 8 are frequent, we

don’t need to check patterns of length 5, 6, 7.
l Badness: trace back

32

Future work (cont’d)

l Step size
– L i -> L j (Cj)
– j is in [i+1, i+i]
– j-i: [1, i]
– based on current situation.

33

Future work (cont’d)

l Candidate generation (L i -> Cj)
– Given 2 patterns p1, p2 in Li

– If j=i+1, the suffix of p1 should be equal to the prefix of p2 .
l same as algorithms A and B
l E.g: acgt and cgtt -> acgtt

– If j=i+i, no requirement.
l E.g: acgt and cgtt -> acgtcgtt

– Otherwise, the length-(i+i-j) suffix of p1 is equal to the length-
(i+i-j) prefix of p2.
l E.g: i=6, j=9, then i+i -j=3. acgtgc and tgctac -> acgtgctac

34

Future work (cont’d)

l Support counting when step size > 1
– Like algorithm A: not efficient
– Like algorithm B

l The id-list of candidates cannot be computed from its
generating subpatterns.

l acgtgc and tgctac -> acgtgctac

– A mixed way
l Make use of gap region requirement and id-lists
l scan the part of the original sequence related

35

Future work (cont’d)

l Backward
– E.g: when L4 -> L8, if not all patterns in C8 are frequent
– For such infrequent candidates

l get their prefix and suffix of length 7
l If they are not subpatterns of some patterns in L8

– Insert them into C7

– If not all patterns in C7 are frequent
l get their prefix and suffix of length 6
l If they are not subpatterns of some patterns in L7 and L8

– Insert them into C6

– Until we deal with C5

36

Future work (cont’d)

l Analysis
– Efficiency depends on

l How many candidates can be known as frequent without
calculating their supports (jump successfully)

l How many more candidates are generated than algorithms
A and B (jump unsuccessfully)

7

37

Conclusion

l Finding patterns of non-continuous characters with a
given gap region from DNA sequences is a new
research topic.

l Both algorithms A and B can successfully find out such
patterns.

l Algorithm B is more efficient than A.
– It uses a kind of index, while algorithm A does not.

l The two algorithms are not very efficient when the
frequent patterns are very long.

l Future research: a jump method with back retrieval.

38

?

