Finding patterns of non-continuous characters with a given gap region from DNA sequences

PhD Annual Talk
Speaker: Minghua ZHANG

July 23, 2003

Content

- Motivation
- Problem definition
- Algorithms
- Performance
- Future work
- Conclusion

Background

- The development of bioinformatics provides us with a lot of data.
- DNA sequences, protein sequences
- The data contains lots of information.
- One way to discover the information is to use the data mining technology.

Problem Definition (cont'd)

- Match

- Given a sequence s, a pattern P
- If we can find an occurrence of P in s, we say s matches P.
- E.g: $s=A C G G A C T, P=C x(2) A$, then s matches P at offset 2.

Property

- If p is frequent, all its subpatterns are frequent.
- However, its subsequences are not necessarily be frequent.
E.g:
- if ACGT is frequent,
- then ACG is frequent,
- but AGT may be infrequent.

Problem Definition (cont'd)

- Support
- Given a sequence database $D=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$, a pattern P
$-\sup (P)=$ No. of sequences in D that match P.
- Frequent
- If support $(P)>=K$

8
8

Related Works

- Works on finding other types of patterns from biology sequences
- Find patterns composed of characters and wild-cards, but
- A requirement on the ratio of characters w.r.t wild-cards.
- Pratt:
- Finding patterns with flexible gaps
- other restrictions, e.g:
- The longest length of a pattern
- The maximal length of a gap, or m in $x(n, m)$
- The maximal gap region size, or $m-n+1$ in $\times(n, m)$
- By way of graph
- Scan database and builds a graph according to some
regulations
- Traverses the graph to get patterns

Related Works (cont'd)

而

Related Works (cont'd)

- Mining frequent patterns from transactional databases (MFP):
- Difference 1
- Here: a sequence of characters
- MFP: a sequence of itemsets
- Difference 2
- Here: the gap size between 2 consecutive characters are in a given region [N, M]
- MFP: order only, no gap size requirement

Algorithms

- Algorithm A

- $\mathrm{C}_{\mathrm{i}}=$ \{candidate patterns of length i\}
- $L_{i}=\{$ frequent patterns of length i\}

```
i=1;
C
While ( | C | >0)
|
    scan database to get L. from C;
    Ci+1}=\operatorname{Gen}(\mp@subsup{L}{\textrm{i}}{1
    i++;
}
```


Algorithm A (cont'd)

- Count support

Given s and P, check whether s matches P.

- If off[i]-off[i-1] $>M$, find a new appearance of $P[i-1]$ in s with offset no less than off[i]-M.
- Pili the i -th character in pattern P
- If the new value of off[$[1-1]$ still meets off $[i-1]$-off $[i-2]$ <= M, return to the going forward phase;
- Otherwise, find new positions for P[i-2].
- $S[i]$: the i-th character in sequence s
- 1. Find $\mathrm{p}[1]$ in s , record the position as off[1]
- If we can not find an appearance of a character,
- s does not matches P.
- 2. Find the first appearance of $p[2]$ in s with offset no less than
- 3. If off[2]-off[1] <= M, continue with p[3], etc.
- 4. Otherwise, going back

Algorithm A (cont'd)

- If all characters in P are processed successfully - s matches P.

Algorithm A (cont'd)

- Observation:
- When a candidate is generated, we know its prefix and suffix. - Keep them for later use.
- Store L_{i} as a union of some subsets.
- All patterns in a subset have the same prefix or suffix
- $S_{p_{u}}$: a subset, all patterns in it has the same prefix u
- $\mathrm{S}_{\mathrm{s}_{\mathrm{v}}}$: a subset, all patterns in it has the same suffix v
- After scan the database, if a candidate is found to be frequent insert it into the right subset $\mathrm{S}_{\mathrm{p}_{\mathrm{u}}}$ and $\mathrm{S}_{\mathrm{s}_{\mathrm{v}}}$

Algorithm A (cont'd)

- When generating G_{+1} from L_{i}
- For each subset $S_{s_{u}}$, check if there is a subset $S_{p_{u}}$
- Yes: generate candidates for every pair of patterns p_{1} (in $\mathrm{S}_{\mathrm{s}_{\mathrm{u}}}$) and p_{2} (in $\mathrm{S}_{\mathrm{p}_{4}}$).
- the generation condition is checked UV times
- $U=$ the number of subsets $S_{P_{u}}$
- $V=$ the number of subsets $S_{s_{v}}$ - $U V<|L|^{2}$

Algorithm B

- Terminologies:

- id-list of a pattern
- Given a sequence database $D=\left\{\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{n}}\right\}$, a pattern P
- $\operatorname{List}(P)=\left\{(x, y) \mid s_{x}\right.$ matches P and in the match $\left.p[1]=s_{x}[y]\right\}$
- List (P)-> $\sup (P)$

Algorithm B (cont'd)

- id-list calculation
- Given a pattern R, its prefix P, suffix Q
- E.g: R=ACGT, P=ACG, Q=CGT
$-\operatorname{List}(R)=\{(x, y) \mid(x, y)$ in $\operatorname{List}(P) \& \exists(x, z)$ in $\operatorname{List}(Q)$ s.t. $z-y-1$ in $[N, M]\}$

Algorithm B (cont'd)

- Sort id-lists with x value as the major key and y value as a minor key
- A linear scan of List(P) and List(Q)
- a,b : current position of List(P), and List(Q)
- If ($a . x<b . x$) $a++$;
- else if (a.x >b.x) b++;
- else if (b. y a. $y>M$) a++;
- else if (b.ya. $\mathbf{~ < ~ N}$) b++;
- else insert a into List (R), a++;
- until reach the end of $\operatorname{List}(\mathrm{P})$ or $\operatorname{List}(\mathrm{Q})$

Future work

- Algorithms A and B are not efficient when the frequent patterns are very long.
- They are step by step methods.
- Algorithms with a jump step may be more efficient.

Future work (cont'd)

- Idea:
$-L_{1} \rightarrow L_{2} \rightarrow L_{4} \rightarrow L_{8}$, etc.
- Goodness:
- E.g: if all candidates of length 8 are frequent, we don't need to check patterns of length $5,6,7$.
- Badness: trace back

Future work (cont'd)

- Step size
$-L_{i} \rightarrow L_{j}\left(C_{j}\right)$
$-j$ is in $[i+1, i+i]$
- j-i: [1, i]
- based on current situation.

Future work (cont'd)
Future work (cont'd)

- Candidate generation $\left(\mathrm{L}_{\mathrm{i}}->\mathrm{C}_{\mathrm{j}}\right)$
- Given 2 patterns p_{1}, p_{2} in L_{4}
- Support counting when step size > 1
- Like algorithm A: not efficient
- If $j=i+1$, the suffix of p_{1} should be equal to the prefix of p_{2}. - same as algorithms A and B
- Like algorithm B
- E.g: acgt and cgtt -> acgtt
- The id-list of candidates cannot be computed from its generating subpatterns.
- acgtg c and tg ctac -> acgtg ctac

If $\mathrm{j}=\mathrm{i}+\mathrm{i}$, no requirement.

- Otherwise, the length-($i+i-j)$ suffix of p_{1} is equal to the length-
- A mixed way
(i+i-j) prefix of p_{2}
- Make use of gap region requirement and id-lists
- E.g: $i=6, j=9$, then $i+i-j=3$. acgtgc and tgctac $->$ acgtgctac
- scan the part of the original sequence related

Future work (cont'd)

- Backward
- E.g: when $L_{4}->L_{8}$, if not all patterns in C_{8} are frequent
- For such infrequent candidates
- get their prefix and suffix of length 7
- If they are not subpatterns of some patterns in L_{8} - Insert them into C_{7}

Future work (cont'd)

- Analysis
- Efficiency depends on
- How many candidates can be known as frequent without calculating their supports (jump successfully)
- How many more candidates are generated than algorithms A and B (jump unsuccessfully)
- If not all patterns in C_{7} are frequent
- get their prefix and suffix of length 6
- If they are not subpatterns of some patterns in L_{7} and L_{8} - Insert them into C_{6}
- Until we deal with C_{5}

Conclusion

- Finding patterns of non-continuous characters with a given gap region from DNA sequences is a new research topic
- Both algorithms A and B can successfully find out such patterns
- Algorithm B is more efficient than A.
- It uses a kind of index, while algorithm A does not.
- The two algorithms are not very efficient when the frequent patterns are very long.
- Future research: a jump method with back retrieval.

