
DNA Indexing

Presented by
Cheng Lok Lam

Contents

� DNA
� Suffix Trees
� Hunt's Paper in VLDB 2001
� Proposed Algorithms
� Experiments
� Conclusion

The Structure of DNA
More about DNA

� A DNA sequence can be abstracted as a
sequence of 4 basic characters - - A, C, G and
T.

� In human, the total length of DNA is expected
to be 3.2G characters.

� DNA sequences have high entropy and can be
threated as pseudo-random.

Suffix Tree
� A suffix Tree T of a string S

with n characters is a rooted
directed tree with exactly n
leaves numbered 1 to n.

� All internal nodes in T has at
least 2 children.

� Each edge in T is labeled with
a nonempty substring of S.

� No two edges out of a node
can have edge- labels beginning
with the same character.

� Concatenation of the edge-
labels on the path from root to
the node i is S[i..n].

Advantages of Suffix Tree

� O(n) building time
� O(n) storage
� O(l + h) searching time, (l is query length and

h is number of hits)

Building Suffix Trees (1)
� Naïve Algorithm -- O(n2)

� Start with a tree contains root and a leave node 1.

� Adding ith suffix to the tree by search the longest
common prefix of (i-1)th in the tree.

Building Suffix Trees (2)
� Using suffix links -O(n)

� A suffix link exists for
each internal node and
points from node
indexing aw to node
indexing w

� This accelerates finding
next longest common
prefix

DNA + Suffix Tree

� DNA sequences are very large
� The best space efficient algorithm by S. Kurtz

is about 13 bytes per DNA character
� 3.2 G × 13 = 41.6G
� Impossible to build the suffix tree on Main

Memory only

Hunt's Approach
� Hunt's paper, A Database Index to Large

Biological Sequences, in Proc. VLDB 2001
� give up using suffix links
� Partition the suffix tree into approximately

equal size sub- trees such that each tree is
small enough to build within main memory
only.

� Partition based on the prefix of each suffix.
e.g. Sub- tree

1
 only contains the suffixes

starting with “ AA”, sub- tree
2
 only contains

suffixs starting with “ AB”....

Example of Hunt's Approach Disadvantages of Hunt's Approach

� Cannot using linear time tree building
algorithm. Can only using naïve algorithm.

� Required to load the whole sequence into
memory. If the size of the sequence is larger
than that of memory, the approach doesn't
work.

Our approach

� Use PC clusters to build index and search in
parallel.

� Improve the index building and searching time
without memory bottle-neck.

� We proposed 3 different algorithms for tree
building in clusters
� Algorithm TP - - (Tree partition)

� Algorithm DP -- (Data partition)

� Algorithm H -- (Hybrid)

Algorithm TP - - Tree Partition

� The idea is come from Hunt's approach.
� Assuming there are N PCs in the cluster.
� Each PC can support to build a suffix tree

with M suffixes
� So we partition it into L/M partitions where L

is the length of the sequence
� During tree building stage, the partitions will

be assigned to a PC in round robin fashion.
e.g. PC

1
 build P

1
, PC

2
 build P

2

Algorithm TP Algorithm DP - - data partition
� The main idea is to partition the sequence S

in to smaller subsequences so the suffix tree
of each subsequence can be built on main
memory only to avoid IO.

� O(n) algorithm can be used for building suffix
tree for each subsequences.

� Assuming there are N PCs in the clusters.
First, cut S in to N subsequeces and each PC
get one of the subsequences.

� The ith PC gets the subsequence S'
i
.

� If the suffix tree of S'
i
is too large, S'

i
 will be

further divided into smaller subsequences.

Algorithm DP - - data partition Algorithm H - - Hybrid
� It is a mixed version of algorithm TP and

algorithm DP
� First, similar to algorithm DP, divide the

sequence S in to N subsequences and each PC
get one of the subsequences.

� In each PC, it used Hunt's approach to
partition the suffix tree of S

i
, so that each tree

partition can be build in the main memory.

Algorithm H - - Hybrid Cross Boundary Cases

� In algorithm H and DP, we cut the sequence
S into smaller subsequences. We need to
handle the cross boundary cases.

Cross Boundary Cases
� The prefix of the query string may match the

suffix of S
i
. We define this match as prefix-

suffix hit (PSH). The length of the matched
part is called PSH length.

� If there exists PSH in S
i
, we need to search

whether the remaining characters match the
prefix of next sequence S

i+1
.

Partitioning with Windows
� To reduce the probability of the cross

boundary cases, a small overlap of partition is
introduced.

� The part of overlap is called window.
� Length of the overlap is called window size.
� When window exists, we don't need to

consider all PHS with length less than the
window size

Partitioning with Windows

� Due to the pseudo-random property of DNA
sequences, a small window size can greatly
reduce the number of cross boundary case.

� E < (q-x-1)(1/c)x+1,
� E is average number of PHS with length � x at

a cross boundary with window size of x and a
query with length q.

� c is the character set size. It is 4 in DNA.

� If Q = “ AGTTACTTCTTT” PSH length = 4
� If Q = “ AGTTAGTTCTTT” PSH length = 8

Experiment Environment

� 32 nodes
� 2 X PIII 1GHz CPU per node
� 2G RAM per node
� RedHat 7.2
� Linux 2.4.7 SMP kernel
� MPICH 1.2.1

Experiment 1 (Index Building)
� Building index for 500M, 1000M and 1500M

DNA sequences with the three algorithms
� The data is get from National Center for

Biotechnology Information
ftp://ncbi.nlm.nih.gov/genomes/H_sapiens

� Using 9 nodes, 1 for master node, 8
calculation nodes.

� We only use 1.7G RAM for storing the
building tree and the sequences.

� The window size is set to 10

Experiment 1 (Index Building)

Alg TP Alg DP Alg H
SEQ Length Total number of tree Building time Tree per Node Building time Tree per Node Building time

500M 8 6980s 1 733s 1 7375s
1000M 16 16389s 2 1514s 2 13443s
1500M 32 29765s 3 2394s 3 18085s

500 1000 1500
0

2500

5000

7500

10000

12500

15000

17500

20000

22500

25000

27500

30000

Indexing Building Time VS Seq length in Different Algorithm

Alg TP

Alg DP

Alg H

Sequence length

B
ui

ld
in

g
tim

e
 (

se
c.

)

Experiment 2 (Searching)
� Using the indexes built in experiment 1 for

searching.
� Different query length (10, 20, 50) were

tested.
� For each query length and algorithm, we got

average time from issuing a batch of 1000
queries.

� We found that there is no PHS in any
queries for a window size of 10

Number of Hit of Diffreent Query length
10 20 50

500M 1336608 6305 3150
1000M 2642128 14947 6011
1500M 4021869 17945 8003

Experiment 2 (Searching)

10 20 50
0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

Response Time VS Query Length in 500M DNA

Alg TP

Alg DP

Alg H

Query Length
A

ve
ra

g
e

re
sp

on
se

 t
im

e
(m

s)

Experiment 2 (Searching)

10 20 50
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Response Time VS Query Length in 1000M DNA

Alg TP

Alg DP

Alg H

Query Length

A
ve

ra
ge

 r
es

po
ns

e
tim

e
(m

s)

Experiment 2 (Searching)

10 20 50
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Response Time VS Query Length in 1500M DNA

Alg TP

Alg DP

Alg H

Query Length

A
ve

ra
ge

 r
es

po
ns

e
tim

e
(m

s)

PSH Rate

Alg DP Alg H
Seq Length(M) Q20 Q50 Q20 Q50

500 0 0 0 0
1000 0 0 0 0
1500 1 1 1 0

� The probability of PSH is very low
� The following table shows the number of PSH

for different query length, sequence length and
algorithm in a batch of 1000 queries.

Conclusion

� Alg. DP is the best in term of index building
time

� The query response time of Algorithm TP is
good for small number of hits, while Alg. DP
and Alg. H is good for large number of hits.

� A window can greatly reduce the cross
boundary effect in Alg. DP and Alg. H.

