DNA Indexing

Presented by
Cheng Lok Lam

Contents

The Structure of DNA

THE STRISCTUEE OF Dmd

g gl
= Ll

!F

More about DNA

£+ A DNA sequence can be abstracted as a

sequence of 4 basic characters -- A, C, G and
T.

#+ In human, the total length of DNA is expected

to be 3.2G characters.

%+ DNA sequences have high entropy and can be

threated as pseudo-random.

Suffix Tree

e A suffix Tree T of astring S | LA I4LETE
with n characters is a rooted S——
directed tree with exactly n
leaves numbered 1 to n. '

e All interna nodes in T has at -
least 2 children.

e Each edge in T is labeled with
a nonempty substring of S i W1

e No two edges out of a node
can have edge-labels beginning |.,
with the same character.

e Concatenation of the edge-
labels on the path from root to
the node i is Ji..n].

AYELIINT

(5o 5]
£ rELTS
|42

Advantages of Suffix Tree

* O(n) building time
* O(n) storage

* O(l + h) searching time, (I is query length and
h is number of hits)

Building Suffix Trees (1)
* Naive Algorithm -- O(n?)

common prefix of (i-1)" in the tree.

AT

FRLIZCR
PECTETTO
i
L= L
FLre.
I
[| FRET W)
L B
AR)

- Start with a tree contains root and a leave node 1.
- Adding i" suffix to the tree by search the longest

Building Suffix Trees (2)
» Using suffix links -O(N) acatacscs
- A suffix link exists for

each internal node and -
points from node ne o H ST
indexing aw to node =
indexing w T ‘
[¥ ~
- This accelerates finding l .
next longest common = .
prefix ¥ |ae =
] -]
acd [

DNA + Suffix Tree

* DNA sequences are very large

* The best space efficient algorithm by S. Kurtz
is about 13 bytes per DNA character

* 32 G X 13 = 416G

* Impossible to build the suffix tree on Main
Memory only

Hunt's Approach
* Hunt's paper, A Database Index to Large
Biological Sequences, in Proc. VLDB 2001
* give up using suffix links
* Partition the suffix tree into approximately
equal size sub-trees such that each tree is

small enough to build within main memory
only.

* Partition based on the prefix of each suffix.
eg. Sub-tree only contains the suffixes
starting with “ AA”, sub-tree, only contains
suffixs starting with “ AB”....

Example of Hunt's Approach

RCE ACE ATE L]

Disadvantages of Hunt's Approach

* Cannot using linear time tree building
algorithm. Can only using naive algorithm.

* Required to load the whole sequence into
memory. If the size of the sequence is larger
than that of memory, the approach doesn't
work.

Our approach

e Use PC clusters to build index and search in
parallel.

e Improve the index building and searching time
without memory bottle- neck.

* We proposed 3 different agorithms for tree
building in clusters

- Algorithm TP -- (Tree partition)

- Algorithm DP -- (Data partition)

- Algorithm H -- (Hybrid)

Algorithm TP -- Tree Partition

* The idea is come from Hunt's approach.

#° Assuming there are N PCs in the cluster.
* Each PC can support to build a suffix tree

with M suffixes

* So we partition it into L/M partitions where L
is the length of the sequence

3+ During tree building stage, the partitions will

be assigned to a PC in round robin fashion.
e.g. PC, build P, PC, build P,

§ Algorithm TP

Algorithm DP -- data partition

S * The main idea is to partition the sequence S

in to smaller subsequences so the suffix tree
of each subsequence can be built on main
memory only to avoid I0O.

S * O(n) agorithm can be used for building suffix

tree for each subsequences.

P« Assumi ng there are N PCs in the clusters.

First, cut S in to N subsequeces and each PC
get one of the subsequences.

3« The i PC gets the subsequence S.

3« If the suffix tree of S is too large, S, will be

further divided into smaller subsequences.

Algorithm DP -- data partition

5 5 5 5
...... =]
- 3
H'xh 'H.HH |
T K Hh"l " w -, llﬁ:
y
k!
L
' L
£, m— E =
I =1 =
5, 5.8 5, 5,8,
' T

- =
-

Algorithm H -- Hybrid
* It is a mixed version of algorithm TP and
algorithm DP

* Fird, similar to algorithm DP, divide the
sequence S in to N subsequences and each PC
get one of the subsequences.

g In each PC, it used Hunt's approach to

partition the suffix tree of S, so that each tree
partition can be build in the main memory.

The $y

2

Cross Boundary Cases

* In algorithm H and DP, we cut the sequence
S into smaller subsequences. We need to
handle the cross boundary cases.

S 5, S

e 5 AGETCTGAL WGCTAGTTAGTT

Cross Boundary Cases

e The prefix of the query string may match the
suffix of S. We define this match as prefix-

auffix hit (PSH). The length of the matched
part is called PSH length.
« If there exists PSH in S, we need to search

whether the remaining characters match the
prefix of next sequence S,.,.

- Croaa boredsy oo
- ".‘--.d—
Guany Saparce =OCTRGTTAS
The i ok 8 1!in\.II-le.'l'II-l.l.' GETAGTTAGTT

5 5 5

v

2. Partitioning with Windows

¢ ° To reduce the probability of the cross

i boundary cases, a small overlap of partition is
introduced.

e
Thor s 5. ALLTTILAL ALATT ALY i

5 5

b

S« The part of overlap is called window.
* Length of the overlap is called window size.

¢ \WWhen window exists, we don't need to
consder all PHS with length less than the
window size

Partitioning with Windows
« If Q = AGTTACTTCTTT" PSH length = 4

* If Q=" AGTTAGTTCTTT” PSH length = 8
e

g1 lor o i 0. ATETTILIAL LIH R LTl

5 5

b

JThe mimire Sl b dimcsoy - TLAATL

e Due to the pseudo-random property of DNA
sequences, a small window size can greatly
reduce the number of cross boundary case.

* E < (-x-1)(Vcy*,

- E is average number of PHS with length > x a
a cross boundary with window size of x and a
query with length q.

- ¢ is the character set size. It is 4 in DNA.

T mamire Sl b dimcsoy - TLAATT

Experiment 1 (Index Building)

e Building index for 500M, 1000M and 1500M
DNA sequences with the three algorithms

* The data is get from National Center for
Biotechnology Information
ftp://ncbi.nim.nih.gov/genomes/H_sapiens

» Using 9 nodes, 1 for master node, 8
calculation nodes.

* We only use 1.7G RAM for storing the
building tree and the sequences.

e The window size is sat to 10

Experiment 1 (Index Building)

Alg TP Alg DP Alg H

SEQ Length| Total number of tree [Building time[Tree per Node[Building time[Tree per Node[Building time
500M 8 6980s 1 733s 1 7375s
1000M 16 16389s 2 1514s 2 13443s
1500M 32 29765s 3 2394s 3 18085s

Indexing Building Time VS Seq length in Different Algorithm

T Alg TP
— il Alg DP

[CJAlg H
5000 1
2500 1

500 1000 1500

Building time (sec.)

Sequence length

Experiment 2 (Searching)

* Using the indexes built in experiment 1 for

Experiment 2 (Searching)

1250
1000
750

500
250
0 EEEm—

* We found that there is no PHS in any
queries for a window size of 10

searching. Response Time VS Query Length in 500M DNA
3250 ——
* Different query length (10, 20, 50) were 2 00
27501
tested. ém_
* For each query length and agorithm, we got = oo
average time from issuing a batch of 1000 £ rso s o
queries. 8 ool | s
g
< el

10 20 ‘ 50
1336608 6305 3150 Query Length
2642128 14947 6011
4021869 17945 8003

Experiment 2 (Searching) Experiment 2 (Searching)

Response Time VS Query Length in 1000M DNA Response Time VS Query Length in 1500M DNA
20000 45000

’g 18000} ’g 40000 +—
: 16000 T : 35000 T
_g 14000 1— g 300001+
@ 120001 Q
j Mag TP 2 25000+ Dag TP
© 10000+ Il Alg DP [} W Alg DP
g— 80001 CAlg H gzoooo—— [Alg H
Q60001 g’lSOOO’*
g 40001 g 100001
< 20007 T 2 5000 r

0 T T 0 T T

10 20 50 10 20 50
Query Length Query Length
PSH Rate Conclusion

* The probability of PSH is very low

2°* The following table shows the number of PSH
for different query length, sequence length and
algorithm in a batch of 1000 queries.

* Alg. DP is the best in term of index building
time
3+ The query response time of Algorithm TP is

good for small number of hits, while Alg. DP
and Alg. H is good for large number of hits.

Alg DP Alg H .
Seq Length(M) | Q20 Q50 220 e * A window can greatly reduce the cross
1008 0 0 ; g boundary effect in Alg. DP and Alg. H.
1500 1 1 1 0

Q&A

