SYSTEMS RESEARCH GROUP

SITY OF

Towards Easy-to-use PGAS

Parallel Programming —
The Dlstrlbuted JVM Approach

Cho-Li Wang (£ 5.37)
The University of Hong Kong (F¥# K%)

CSO’'10, Huangsan, China

\/ Era of Petaflop Computing

Era of PetaFlop Computing

Top500 Supercomputer List (Nov/2009)

Rank Site Computer/Year Vendor # of cores |Linpack (Rya) [Rpeak (terafiopsis)
1 Oak Ridge National Laboratory (USA) Jaguar — Cray 2009, Cray Inc. 224162 1759.00 2331.00
2 DOE/NNSA/LANL, USA Roadrunner , 2009 IBM 122400 1042.00 1375.78
3 National Institute for Gomputational Kraken XT5 2009, Cray Inc. 98928 831.70 1028.85
Sciences/USA
4 s g 77| JUGENE - Blue Gene/P 2009 IBM | 294912 825.50 1002.70
5 DT china | Tianhe-1 i —%, 2009 NUDT| 71680 563.10 1206.19
6 NASA/USA Pleiades - SGI Altix ICE 8200EX,2009 SGl 56320 544.30 673.26
7 DOE/NNSA/LLNL (USA) BlueGenel/L/ 2007 IBM 212992 478.20 596.38
8 Argonne National Laboratory, USA Blue Gene/P Solution / 2007 IBM 163840 458.61 557.06
9 Texas Advanced Computing Center,USA Ranger - Sunslade x6420,2008, Sun 62976 433.20 579.38
Microsystems
10 Sandia National Laboratories,USA RECRELY = S B SRS, 2002 41616 423.90 487.74
Sun Microsystems
103 Kilo OE/NNSA/LLNL,USA Dawn - Blue Gene/P/ 2009 IBM 147456 415.70 501.35
bw State University, Russia Lomonosov - T-Platforms T-Blade2, 2009 35360 350.10 414.42
106 mega
1 09 giga hgszentrum Juelich, Germany JUROPA - Sun Constellation,2009 Bull SA 26304 274.80 308.28
12
10 tera upercomputing Center South Tachyonll - Sun Blade x6048, 2009, Sun 26232 274.80 307.44
10 15 peta Korea, Microsystems . .
1018 exa

Top 5 machines achieved PetaFlop computing power
3

China’s Tianhe-1 Petaflop Computers

Hybrid structure: 6,144 Intel 5th in TOP500
Xeon E5540 CPUs + 5,120 GPUs Peak performance: 1.2 PetaFLOPS
(ATI Radeon HD4870) LINPACK score : 563.1 TeraFLOPS

ok ol
O

#8 at Top500 Green List

512 Operation Nodes In 20 cabinets 2560 Compute Nodes In 80 cabinets A
Source: Institute of Computer, NUDT

Petaflop Supercomputers with >1M cores

100 Petaflops system most likely in the
year 2016

2010: Dawning6000

1Eflop/s 2011: IBM Blue Waters

10 petaflops league:
Cray Cascade (2010),
Fujitsu-RIKEN
(2011), IBM Sequoia
(2012), SGI Pleiades

N (2012)
100 Pflop/s | 2009: Jaguar (Cray), Kraken
XT5, JUGENE, Tianhe-1%
10 Pflop/s 06/2008 :
Roadrunner break the
1 Pflop/s | petaflop barrier
: fl
100 Tflop/s - ozji:f//s)’
_—
- SUM
10 Tflops/s = -
1 Tflop/s /—;»» #lo |
100 Gflop/s | ~ ~#00 |
10 Gflop/s | from top500.0rg
1 Gflop/s
10 MFlop/s +—+—"+"v "=+
1993 1996 1999 2002 2005 2008 2011 2014

IBM Sequoia (20 petaflops)

- %
o e

q
| .-
=AY
e ——

e F

= L

g5/ qy
"-'lll'-"'ll E

¢
.1-:;_'_. i Ml

X, .
B

To be installed at Lawrence
~ = Livermore National Laboratory
o S

L -
= —

A petascale Blue Gene/Q supercomputer : 1.6 million processor
cores divided into 98,304 nodes placed within 96 Racks, record
the amount of memory installed, equivalent to 1.6 petabytes

Dawning 6000 Petaflop Computer

= Dawning 6000 consists
of two parts,

m Dawning Nebulae (Ex*)

GPU cluster: 5000 blades,
each contains two six-core
INTEL 6-core X5650
2.66GHz processors and one 8-core .t 3
NVIDIA C2050 Fermi GPU
card. QDR Infiniband. Peak :
3.5 Petaflops. Linpack 1.27
Petaflops. (2" in TOP500,
May 30, 2010)

m Loongson (¥.;) cluster:
about 5000 blades w/ 8000
to 10,000 8-core Godson-3B

processor (under
development)

m Located at National

Supercomputing Shenzhen Hﬁéﬁ T {ﬂff =T
Center (EF@Z&itERYIF)
m Total investment: 800M RMB H— & 3%5@ i 40 #7 304E [A 2 80 &=
(81Zt) ZDO%EJ fﬁﬁ@ﬁﬁﬁéﬂ‘ﬁ@&ié&ﬁﬁm
HFE LR

New Landscape of Parallel Computer Architecture

m Multi-core Architectures
= Conventional multicore approach (2, 4, 8 cores) -

manycore technology (hundreds or even thousands of
cores)

= Employs simpler cores running at modestly lower clock

frequencies

s Hardware accelerators

FPGA (Cray XD1, SGI RASC), GPU (Tianhe-1, Dawning6000,

TSUBAME), Cell, ClearSpeed (TSUBAME) and vector
processors, LINPACK?

s Networking:

RDMA : A one-sided I|()ut/get message can be handled
directly by a network interface with RDMA support

s TCP Offload Engine (TOE)
= Most systems use either a 4X 10 Gbit/s (SDR), 20

Gbit/s (DDR) or 40 Gbit/s (QDR) connection.

= End-to-end MPI latency : 1.07 microseconds
= 10 Gigabit Ethernet go mainstream (fallen to $500 per

port)

From Multi-core to Manycore

Micro- Clock Rate Threads
architecture (GHz) Per Core
IBM 32KB+32KB Private L1
3.00 - 3.14 4-8 4 256KB Private L2
Power 7 4MB Shared L3
Sun/Oracle 8KB+8KB Private L1
Niagara2 1.2-1.6 4-8 8 4MB Shared L2
Intel 32KB+32KB Private L1
1.86 - 2.66 4-8 2 256KB Private L2
Westmere 12-24 MB Shared L3
Intel 32KB+32KB Private L1
Harpertown 2.00 - 3.40 4 2 2x6MB L2 Cache
AMD 64KB+64KB Private L1
1.7 -2.3 12 0or 16 1 512KB Private L2
Magny-Cours 2x6 MB Shared L3
Intel 16KB L1 Cache
Single-Chip 1.0 48 1 256KB Private L2 Cache
Cloud 16KB Msg Buffer per Tile
Intel ~ 4 30 12 3KB Instruction +
Terascale - 2KB Data on each Core
Tilera 32KB+32KB P_rivate L1
. 1.5 100 1? 256KB L2 Private L2
Tile-GX 26MB Distributed L3

\/ Era of Petaflop Computing

10 10

Predictions

Parallelism will explode

= Number of cores will
double every 12-24
months

m Petaflop (million
processor) machines will
be common in HPC by
2015

Performance will become a
software problem

= Parallelism and locality are
key

m Concurrency is the next
major revolution in how
we write software

A new programming model
will emerge for petaflop
computing

Do we put
enough
emphasis on
software?

Berkeley's Dr. Kathy Yelick
(director of NERSC) :

No. Unfortunately, the race
for each major
performance milestone,
has resulted in a de-
emphasis on software.

Source: The Software Challenges of
Petascale Computing

Parallel Programming

= Most parallel programs are written using:

m Message passing
e Examples: CM5’s CMMD, PVM, IBM’s MPL,

e Current standard: MPI (MPICH-1, MPICH-2,
LAM/MPI..

e Usually used for scientific applications with
C++ /Fortran, or Java (JavaMPI, G-JavaMPI)

e Scales easily: user controlled data layout
e Hard to use: send/receive matching, message
packing/unpacking
= Shared memory
o Examples: OpenMP, pthreads, Java
o Usually for non-scientific applications

e Easier to program: direct reads and writes to
shared data

e Hard to scale: (mostly) limited to SMPs, no
concept of locality

Optimizing is Hard !

= Tianhe-1 Experience: Scaling LINPACK
performance from 20% to 70% of each
CPU-GPU pair

350
300 o ,,_ |
250 —]
8200 | uge Human Effort __ -5
=150 T
L))
100 —— - _ﬁ — _ﬁ — —
50
0
-Opls +Sollware +Aulo-Splilling +Allinily +Slreaming
Pipealining Load/Slore

Source: Dr. Chunyuan Zhang, National University of Defense Technology

Parallel Programming environments since the 90's

Do you like to design another ONE ?

ABCPL CORRELATE GLU Mentat Parafrase2 pC++
ACE CPS GUARD Legion Paralation SCHEDULE
ACT++ CRL HAsL. Meta Chaos Parallel-C++ SciTL
Active messages CSP Haskell Midway Parallaxis POET
Adl Cthreads HPC++ Millipede ParC SDDA.
Adsmith CUMULVS JAVAR. CparPar ParLib++ SHMEM
ADDAP DAGGER HORUS Mirage ParLin SIMPLE
AFAPI DAPPLE HPC MpC Parmacs Sina
ALWAN Data Parallel C IMPACT MOSIX Parti SISAL.
AM DC++ ISIS. Modula-P pC distributed
AMDC DCE++ JAVAR Modula-2* pC++ smalltalk
AppLeS DDD JADE Multipol PCN SMI.
Amoeba DICE. Java RMI MPI PCP: SONiIC
ARTS DIPC javaPG MPC++ PH Split-C.
Athapascan-0b DOLIB JavaSpace Munin PEACE SR
Aurora DOME JIDL Nano-Threads PCU Sthreads
Automap DOSMOS. Joyce NESL PET Strand.
bb_threg QR Khoros NetClasses++ PETSc SUIF.
- Karma Nexus PENNY Synergy
KOAN/Fortran-S Nimrod Phosphorus Telegrphos
LAM NOwW POET. SuperPascal
Lilac Objective Polaris TCGMSG.
Linda Linda POOMA Threads.h++.
JADA Occam POOL-T TreadMarks
WWWinda Omega PRESTO TRAPPER
e ISETL-Linda OpenMP P-RIO uC++
3 Express ParLin Orca Prospero UNITY
CC++ Falcon Eilean OOF90 Proteus ucC
Chu Filaments P4-Linda P++ QPC++ \
Charlotte FM Glenda P3L PVM ViC*
Charm FLASH POSYBL p4-Linda PSI Visifold V-NUS
Charm++ The FORCE Objective-Linda Pablo PSDM VPE
Cid Fork LiPS PADE Quake Win32 threads
Cilk Fortran-M Locust PADRE Quark WinPar
CM-Fortran FX Lparx Panda Quick Threads WWWinda
Converse GA Lucid Papers Sage++ XENOOPS
Code GAMMA Maisie AFAPI. SCANDAL XPC
COOL Glenda Manifold Para++ SAM Zounds
Paradigm ZPL

Source: John Urbanic, Pittsburgh Supercomputing Center

The Software challenges of Petaflop computing

New algorithmic approaches to increase the levels of
concurrency on the order of 108

Developing effective methodologies for assessing
and exploiting data locality (high cache hit rates) in
the deep memory hierarchies

Hide latency by utilizing low-level parallelism (e.g.,
prefetch queues and multithreading)

Design algorithms and implementations that permit
easy recovery from system failures
Performance monitoring facilities (accurate timers and

operation counters, out-of-cache loads and stores) and
dynamic load balancing

Accuracy and stability of humerical methods: formal
methods to certify the correctness of petaflops algorithms
and hardware logic designs

New languages and constructs (alternatives to HPF,
OpenMP, MPI,..) ??

15

Programmability in HPC

= Relevant research area in the last years
= Growing interest on easier programming

= HPCS project (DARPA)

= High-performance High-Productivity Programming

= New languages that focus on programmability (IBM
X10, Cray CHAPEL, Sun Fortress)

= PGAS (Partitioned Global Address Space):

s Target global address space, multithreading platforms

= Aim for high levels of scalability

= Research languages :
e Co-Array Fortran (CAF) M High Productivity Computer Systems
e Unified Parallel C (UPC)
e Titanium (Java)

JAELO W
W : 8 .
G > & ({._;‘:“ Office of Hx : @
] RSPy —— 4 Science i

LLE. DEPARTH OF ENERG

Features of PGAS Languages

Explicitly-parallel programming model with SPMD

parallelism

m Fixed at program start-up, typically 1 thread per
processor

Global address space model of memory

= Allows programmer to directly represent distributed
data structures

m Can access local and remote data with same
mechanisms

Address space is logically partitioned

= Local vs. remote memory (two-level hierarchy) -
handled by users

Programmer control over performance critical
decisions (** burden to users **)

= Data layout and communication

Base languages differ: Co-Array Fortran (CAF)
Unified Parallel C (UPC), Titanium (Java)

17 Source: Yelick’s (UCB) CS267 Lecture

Global Address Space Eases Programming

Thread, Thread, Thread,
— X[0] X[1] X[P]
ERR _— | Shared
858 %;#}_
O%? ptri" ptr: ' eoeo ptl‘:I
Private

m The languages share the global address space abstraction
= Shared memory is partitioned by processors
= Remote memory may stay remote: no automatic
caching implied
s One-sided communication through reads/writes of
shared variables
= Both individual and bulk memory copies
m Differ on details
= Some models have a separate private memory area

= Distributed array generality and how they are
constructed

18 Source: Yelick’s (UCB) CS267 Lecture

Programmer Productivity?

Languages (or language technologies) that solve
real problems can succeed [Todd A. Proebsting,
Microsoft Research, 2002]:

Even if slow

Even with simple types

Even without academic significance (no papers?)
Even without rocket science

If useful

Programmer Productivity:

= Write programs correctly (50% of crashes caused by

= Write programs quickly
= Write programs easily
Why?

1% of bugs)

Decreases support cost

Decreases development cost
Decreases time to market/solution
Increases satisfaction

19

“New Language Fear”

m Long-Live Language Needed:
m Large-scale codes: portability is top
priority.
s Large-scale codes lifetimes : 10 to 30

years.
= High-performance computers : 3-5 years
between generations .
= They can't risk spending 5-10 years
writing their code in a new language only
to find that the new language didn't gain
general acceptance and support.
m Fear of learning new language:
= Some people say that "if there's a lot of
pain involved, they won't switch to a new
programming language.”
= How can you motivate people to migrate
to a more efficient new language? Or do
they have to ?

Why Java for HPC ?

Good programmability for G

potential HPC =

m Expressive grammar: simplified JAVA
C++ S

You can do it, Mia...
say 'Da-da’... say 'Da-da'... /

= Concurrent language:
multithreading support at language
level (Portable way of parallel
programming)

= Platform independence: bytecode
(write once, run everywhere!) . -

= Runtime: GC, safety checking, etc. vj,ya as the first anguge,

m Libraries: a huge increasing list

m Deliver 65%-90% of performance
of the best Fortran programs;

- Concurrent
compete with C++: Programming in Java"
m Java-based next-gen languages : X10 Second Edition
(IBM), Titanium, Fortress (Sun) VS DR A

m Easy to learn.
= Write Java programs quickly
= Write Java programs easily

m Less bugs (?)

@ Sun

21

JVM

< JVM <> JVM

Our Approach

Distributed Java
Virtual Machine

Single system image (SSI)
illusion to threads of a Java

________ program
O o
~
A ?
________ ;
________ ' 7 /
/7 |\ /

Hardware Hardware Hardware

High-Speed Network

22

Distributed Java Virtual Machine

class worker extends Thread {
private long n;
public worker(long N) {n =N; }
public void run() { long sum= 0;
for(longi=0;i<n;i++) sum +=1i;
System.out.printin("Sum = “ + sum);}

/\

}

public class test { static final int N=100;

public static void main(String args]]) {
worker[] w= new worker[N];
Random r = new Random();

for (inti=0; i<N; i++))
w[i] = new worker(r.nextLong()); _--7-

for (int i=0; i<N; i++) w]i].start(); “***~"

try{ for (int i=0; i<N; i++) w[i].join();}

catch (Exception e){}}

Java thread

programmer

Multithreaded Java application

DJVM hides the physical
boundaries between machines
Support thread migration

Hardware

Hardware

Hardware

Hardware

i BN B -

Network

History and Roadmap of JESSICA

m JESSICA V1.0 (1996-1999)
= Execution mode: Interpreter Mode
= JVM kernel modification (Kaffe JVM)

= Global Heap: built on top of TreadMarks
(Lazy Release Consistency + homeless)

m JESSICA V2.0 (2000-2006)

= Execution mode: JIT-Compiler Mode
(full speed)

= JVM kernel modification (Kaffe JVM)

= Lazy Release Consistency + migrating-
home protocol

m JESSICA V3.0 (2008~20107?)
= Built above JVM (JVMTI)
= Support Large Object Space

= For any JVM. Run @ full speed of the
underlying JVM.

m JESSICA v.4 (2009~) |
= Software transactional memory model Kinson Chan Ricky Ma

= Multicore/GPU cluster Current Members
24

JESSICA Distributed Java VM

Java

Enabled
Single
m A cluster-wide JVM with System
= Dynamic thread mobility in JIT mode insee
= Global Object Space (GOS) Computing

—_—

~

~

—

—_—

_—

Portable Java Frames

-~

Architectu re

~ Thread Migration - =~
Source \\\ 9 /// ~o
Code N e Remote Class Loading \\
\\ \
2 \ ',/ \
/ v/ X
. Thread \ 4 § . Thread v § I Thread v
§ Scheduler Scheduler Scheduler
Class Class Class
Load ‘ Load ‘ Load ‘
Monitor Loader Monitor Loader Monitor Loader
Daemon Thread 3 Daemon Thread 3 Daemon Thread 3
| Thread 2 v ll | Thread 2 v ll | Thread 2 Y ll
Thread 1 Java Thread 1 Java Thread 1 Java
Registers PC > Methofi Area Registers PC > Methofi Area Registers PC > Methofi Area
FStaCk | Execution FStaCk | Execution FStaCk '\\ | Execution
rames . rames rames
/P q Engine P \ Engine //‘ \ Engine
y4 \,
5 o 0 o 1 Yo A
A © A
(@) | (Global Object Space)
N\
s it it
Master JVM Host Manager Worker JVM Host Manager Worker JVM Host Manager
Zs Zs Zs
= = = Zz x
oS oS oS
Hardware Hardware Hardware

Communication Network

Problem 1: Memory Consistency

-|-2 T4 T5 T6 O Object [Variable
Read a Read b Read a Read b Per-Thread working
a=a+2 b=b+2 a=a+2 b=b+2 memory
Write a Write b Write a Write b :
Main memor
JVM Read b Read a Read b Read a Y

High Speed Network

‘ When a write becomes visible to another thread ? How ?

26

Solution: Global Object Space (GOS)

= Per-object granularity, no false sharing

m Home-based Lazy Release Consistency (HLRC)

= Home-based variant of LRC: always fetch latest
object/page from its home

= No traffic if object unchanged
m Object home migration: better locality

m Connectivity-based object prefetching: more
accurate

Shared heap Shared heap

Thread B

Source node Source node Source node

Problem 2: Thread migration under JITC Mode

NATIVE CODE

-COMPUTE _ _
MOVL EBP[0] EAX

MOVL [EAX] EBX
XORL EBX 0X1

N N

IFEQ L1

L2:
MOVL EBP[0] EAX
MOVL [EAX, 1] EBX

MOVL [EAX, 2] ECX

{MUL EBX ECX

MOVEEBXEAX

RET

.L1:

MOVL EBP[0] EAX
MOVL [EAX, 1] EBX
{D IV EBX ECX !
VOV ERRERK
RET

java -Xjit
x86 machine

JVM View

javac

o~ \

BYTECODE (3 BASIC BLOCKS)

Programmer View

JAVA SOURCE CODE

t .

_IC_8_Tn_pg &) int_ public class Test ({
LINENUMBER 8 LO \\ boolean multiple = true;
ALOAD 0: this . int a = 1000;
GETFIELD Test.multiple : ooIeaN\\\\ fias T = Bo

\ gEQ—__—_:’,' > R

‘(2: \a % b int compute () { >
LINENUMBER 9 L2 e if (mulidiple)
ALOAD 0:this | [77779=—--- C return a * b; D
GETFIELD Test.a : int Ll
ALOAD O0: this

_GETFIELD Testb : int ~geturn a / b; >
IMUL ! R

RR'ETU‘?N Y

}’1 \x/":. 1-:atic void ma%n
k'[\l()E/LVSJ JIT Compiler mode execution makes things complex

GETFIE

GRILIE
DIv !

RR'ETUR

Native code has no clear bytecode boundary
H ALoAD How to deal with machine registers?

How to organize the stack frames?

How to make extracted thread states
recognizable by the remote JVM?

Thread Migration in JIT Compiler Mode

Thread

A

»Frame parsing \
(o

»Restore execution

2y)

=

Method Area
>

(2) »Stack capturing
Thread Scheduler

»Stack analysis

JVM/

1) Alert

Source node

Load
Monitor

On-stack scanning
} | >
IZ> [,
>
Frame | >

Native thread stack —r

igration
Manager

(4a) Object Access

1

Method Area

(4b) Load metho
from NFS

Destination node

Java frame

C frame

Thread Migration in JIT Compiler Mode

m Dynamic Native Code Instrumentation

m Migration points selection
 Delayed to the head of loop basic block or method

m Register context handler

o Spill dirty registers at migration point without
iInvalidation so that native codes can continue the use
of registers

* Use register recovering stub at restoring phase

m Variable type deduction
o Spill type in stacks using compression

m Java frames linking
 Discover consecutive Java frames

30

Problem 3: Improve Locality

% Remote memory access is the scalability killer!

% Remote >> local latency (assume in 50-60ns)
Infiniband cluster (1-2us): 20 x slower!
Ethernet cluster (100pus): 2,000 x slower!!
Grid/Internet (av. 500ms): 10,000,000 x slower!!!

% "To speed up" = "Reduce as much remote
access as possible”

% The key is to improve locality

31

Solution: Profile-Guided PGAS (PG-AS)

m Profile-Guided PGAS (PG2AS)
= A built-in runtime profiler instead of humans for
digging out the locality hints
m Profile-guided adaptive locality
management
= Thread migration
= Object home migration
s Object prefetching

= Challenges:

= How does the runtime know which threads to migrate
can make the most locality benefit?

= Difficult to decide if no global inter-thread sharing
information

= Solution: Track sharing % threads

= T1 accesses 01, 03, 05, ...
m T2 accesses 01, 02, 03, ...
= Sharing % T1 & T2: 01, O3 39

\/ Era of Petaflop Computing

33 33

PG-JESSICA: Profile-Guided Version

m Access profiler: track object access over heap to
deduce inter-thread sharing -> thread-thread relation

m Stack profiler: track the set of frequent objects
accessed by each thread -> thread migration cost

m Correlation analyzer: profile-guided decisions on
dynamic thread migration -> global locality
improvement

@ Portable Java Frames
- =<
. Migration P >

plified View) Requests ———— ~ — — T ——_ / N

hster JVM - - Worker JVM 1 \/ﬂ - Worker JVM 2 N\ Worker JVM 3

AN
1~ — - 3 — — —
/,é T Thread | _ miginfout | Migration A Thread _mig infout | Migration Thread _mig infout | Migration

Global Load 7] Scheduler Engine Scheduler Engine Scheduler Engine

Balancer

Correlation
Map

Stack T Stack T Stack T
¢ 59 = | | 4<9s s | | 4999
Thread Space Profiler Thread Space Profiler Thread Space Profiler

Access == j \ bl Access == ‘ \ EEI:I Access == j \ _______ O)
Profiler O il Profiler O » . - Profiler T iy
Local Heap O \ Local Heap Local Heap
A 4 A 4 A 4
Correlation \ Correlation N Correlation N
Host Manager Collector Host Manager Collector Host Manager Collector Host Manager
oS 1 oS 1 oS 1 oS 1
Hardware Hardware Hardware Hardware

Interconnection Network

34

Thread Correlation Map (TCM)

m Thitikamol and Keleher; D-CVM (1999)
m Proposed “Active Correlation Tracking” (Page)
m Thread Correlation Map (TCM): a 2D histogram of
shared data volume between each pair of threads.

e Grayscale(x,y) = sharing amount of thread x and y
e TCM(1,1) = TCM(2,2) =TCM(3,3) =...=0

32

30 _m Challenge: Given M
objects shared by N
threads, TCM
building take O(MN?)
time. M can grow

Into a scalability

3 bottleneck in the
node system.

node 2 4

node I— g

.32 (threads)

Water-Spatial (32 threads placed on 8 nodes)

m Sticky Set (SS) : a 4
subset of working set of
a thread, includes only RS
those frequently used I
objects. B

= "Sticky” : if the thread is = =i\«
migrated, objects in SS are 7 /)"
more likely to be fetched SN -
again.

x SS should be detected and
moved along with the
thread to save most object
misses after migration.

36

Summary of Our Solution

= What we want to do:
1. Model thread sharing (inter-thread correlation)
2. Model indirect thread migration cost

= Profiling results:
1. Thread Correlation Map (TCM)
2. Per-thread Sticky Set (SS)

= Use both to designh new migration policy
1. Correlation-driven
2. Cost-aware

= How we profile them efficiently?
1. Adaptive object sampling > TCM
2. Adaptive stack sampling > SS

Details : King Tin Lam, Yang Luo, Cho-Li Wang, "Adaptive Sampling-Based Profiling Techniques for Optimizing
the Distributed JVM Runtime,” 24th IEEE International Parallel and Distributed Processing Symposium
(IPDPS2010), April 19-23, ATLANTA, USA

37

Adaptive Object Sampling (AOS)

m Each object has a "sequence number", unique
among objects within the same class.
m Sample the object if sequence # is divisible by the

current "sampling gap" (selected and changed at
runtime to strike a balance of cost and accuracy)

= Sampling rate:
m 1X = sample 1 object per page of heap
m 1024X means "full sampling"

s For a class of size s, sampling at rate nX, sampling
gap =S,/ (sxn), where S is the page size (usually
4KB).

gap=3 |1 || 2|3 (|4 ||5[[6|[7||8|9]|10{{11]][12] -

gap=5 |1 || 2|3 ||4||9]||6 |7 8] 9101112

gap=7 [1|[213]l4]|5]|6||7]||8] 9]/10][11|[12] -

=sampled =unsampled

Stack Invariants

m JVM is a “'stack machine”

s Stack variables can be hint of constantly
accessed objects

s Stack invariants : Those references
constantly stay in the stack across
snapshots taken. Good hints of SS.

s Usually stack invariants are the entry
points of SS and important data
structures like Hashmap, TreeMap,
Linked List

39

Stack Invariants (Cont’)

Invariant Sticky s

references @ Size
estimated via

llllll Object
> .
sampling

Key:

“A ‘ Sampled objects

‘ Objects referenced
A O invariantly by stack

Stack

O Unsampled objects

Adaptive Stack Sampling: Adjustable timer controlling
which period of time to do stack sampling. Stack frame
added with “visited” flag. If not touched across two sampling
rounds, no need to sample it.

40

\/ Era of Petaflop Computing

41 41

Testing Environment: HKU Gideon-1l Cluster

240 SMP blade servers
(19.43 TFlop/s)
= Expected to grow to 25+

TFlop/s upon Phase 2's
completion in late 2010.

Node configuration :
Dell PowerEdge R610/M610

= 2 X Intel Nehalem-based
Quad-core Xeon 2.53GHz

= 32 GB 1066MHz DDR3
RAM and SAS disks
Networking:

= 4X DDR Infiniband (20
Gbit/s): 80 nodes (not
used)

= Gigabit Ethernet (1
Gbit/s): 160 nodes

m OS: RedHat Enterprise
Linux, Scientific Linux,
Fedora Linux.

Production run in
September, 2009

Computer Science
(Systems Research Group)

SRG-GbE cluster

64 blades (32 GB 1066MHz DDR3 RAM)

SRG NFS Blade8l\iit;vork

server 24-port 10GbE
Switch

Brocade Fastlron
Backup SuperX 108-port
server Gigabit Switch

IB switch .-

SRG IB cluster
(48 1U IB nodes + Qlogic Silverstorm 9040 48-port DDR
switch)

A system-wide management sub-system

Speedup of JAVA applications on JESSICAZ

Speedup of different applications

18 1 ---+-- Linear

16 1 = CPl A 15.51

14 - —— Raytracing
12 1 TSP 11.92
= _ o 10.637
S 10 | —+—Matrix Multiplication 10.161
% 8 —e— Nqueen
ks
@ 6 -
<3
I

2 4

O T T T T

1 2 4 8 16
of nodes

Ray Tracing on JESSICA2 (64 PCs)

GD2EB0B
ztack S:rint,0:
§tack A :RayTracer; 225, 0245950250 5

| MatPanel ‘

File -] M
id=54{net_PlainSocketImpl_

[N processing i/o job OXEdd46e1s:
socketlrite), fd=180
processing ifo gob 0xB446218: id=54{net_PlainSocketImpl_
socketlrite), fd=180
processing ifo Job OxB446el18: id=54{net_PlainSocketImpl_
socketlrite), fd=86
processing ifo Job OxB446el18: id=54{net_PlainSocketImpl_
socketlrite), fd=193
processing ifo Job OxB446el18: id=54{net_PlainSocketImpl_

currentJThreac

stack=0x0:81c1540 S D v' d

Thread O=E203010 res I ' |‘ ' ‘ '
224708, sp=8202428, by ee e I e
Finish migration journey

20

et socketlrite), fd=153
GD2Z45B processing ifo job 0=B446fdR: id=50{net_PlainSocketImpl_
GD246E zocketClose), fd=190
- processing ifo gob OxB446fds: id=B0{net_PlainSocketImpl_
GD247E zocketCloze), fd=193
GD248EB Migration complete for theead 0xE73d010 aggregate msg=10
nz242
GD244B Migration complete for theead 0xE7c4010 aggregate msg=10
GD250B 0247
GD251B
GD253B -
| — . 64 nodes: 108 seconds
~ GD254B :
) GD252B
. GD257B 1 node: 4402 seconds
1 GD255B
GD26e5EB
GD277
GD269B
GD256B
GD273IE
GD259E

stack 3:int,0{
§tack 4:RayTrg

currend
stack=0xr0xE1c]
Thread O=E203
224708, =p=82(
Finish migrati

d
LI (e|l|C
LICIC

total time: 94s

11:27 AM

F_
=

1)1
=
=
=

e

| [
=
=
E1E 1
=
=
=
1)1
=
=
| [
=
=
1)1
=
=
=
1)1
=
=
E1E 1
=
=
=
1]
=
=

Dynamic Native Code Instrumentation

Time and space Overhead Analysis
Benchmarks Time (seconds) Space(native code/bytecode)
No migration | Migration No migration | Migration
compress 11.31 11.39(+0.71%) |6.89 7.58(+10.01%)
jess 30.48 30.96(+1.57%) |6.82 8.34(+22.29%)
raytrace 24.47 24.68(+0.86%) | 7.47 8.49(+13.65%)
db 35.49 36.69(+3.38%) | 7.01 7.63(+8.84%)
javac 38.66 40.96(+5.95%) |6.74 8.72(+29.38%)
mpegaudio 28.07 29.28(+4.31%) | 7.97 8.53(+7.03%)
mtrt 24.91 25.05(+0.56%) | 7.47 8.49(+13.65%)
jack 37.78 37.90(+0.32%) |6.95 8.38(+20.58%)
(Gideon-I)

45

Thread migration for irregular

applications (1) : TSP

TSP execution time distribution : : : : : :
(stdev:281.720) TSP machine execution time distribution
1000 - 1500
O (7p]
§ 800 - g = 1000 1 | |—|
~ ('5 - [>
é $ 600 o & 500 - u—L|i | L' -
~ (@) e S 7 l
(] i —
g |E 400 — 2 0] "_‘\ T T V‘lJ_!‘
— 2 | L a
00 » 2 3 4 5 6 7 8
0. O Initial placement
— <t N~ (@) m ©
m Workload R B Thread migration Node
Thread

8 nodes, 16 threads, TSP 13 cities, (object sharing: shortest path)

@ Initial placement Il Thread migration (5 times)

Time (sec) | 1203.10 793.317 (-33.6%)
Stdev 438,444.1 152,463.1

(Gideon-I)

Stack Profiling Overhead

= Timer-based control of stack sampling
phases saves over half of overheads

= Lazy extraction saves up to 1/3 overheads

+ Stack Sampling Overhead + Sticky-set Footprinting Overhead
Data | Baseline + Sticky-
Bench Set Exe | di set
mark Si i mmediate Lazy Extraction Nonstop Timer-based (100ms) | Resolution
1z€ Ime Extraction Overhead
4ms 16ms 4ms 16ms 4X Full 4X Full
6216 6207 6211 6206 6714 6707 6519 6480 6639

SOR | IKXIK | 8201 H 60a%) | (0.10%) || 0.17%) | 0.08%) || 828%) | 817%) | (5.13%) | (a.50%) | (1.85%)

Barnes |, oags; | 94947 | 94657 [94697 | 95200 | 98968 | 102190 | 93649 102334 97585

-Hut (1.16%) | (0.85%) || (0.89%) | (1.44%) || (5.45%) | (8.88%) | (-0.22%) | (9.03%) | (4.20%)
Water- | o, sor0s | 59232 | 59161 [l 59200 | 50124 | 59834 | 61985 59501 60313 60002
Spatial (0.21%) | (0.09%) || (0.17%) | (0.03%) || (1.23%) | (4.87%) | (0.67%) | (2.04%) | (0.84%)

47

Accuracy of A0S (Cont)

100% — = o e G 85% ’/\ A
95% 80% A,w -
90% 7506
85%
80% 70% - —e— Absolute/ABS L
0
750 65% - —&— Relative/ABS
° 60% - Absolute/EUC
70% +— —*— Absolute/ABS
55% — -—e—Relative/EUC
65% | -® Relative/ABS
0 50% T T T T T T T T T T 1
60% - Absolute/EUC 512X 256X 128X 64X 32X 16X 8X 4X 2X 1X
55% || -e—Relative/EUC
e toex eax oy 1w v ax oy x| (c) Water-Spatial
512X 256X 128X 64X 32X 16X 8X 4X 2X 1X

100% | m——= O—T—0
(a) SOR 95% &= — T~

g

(Euclidean distance)

90% -
N N 2 85% -
. \/zi=l j=1 (aij o bij) 80%
EUC — 75% ?
\/Z iN:1 Z lj\|:1 (bU) ’ 70% —— —*—Absolute/ABS \ /
65% — —® Relative/ABS \\ //
(Absolute distance) N <« N M T AbsolueRUC v
i1 j 1 ‘a” — olj ‘ 55% — —e—Relative/EUC
1= = 50% ‘ ‘ ‘ ‘ ‘ ‘ ‘
E ABS — N N b 512X 256X 128X 64X 32X 16X 8X 4X 2X 11X
=1 ,-:1‘ J (b) Barnes-Hut

48

Profile-Guided Thread Migration

m We assess this using a CRM application “"Customer
Analytics™ with dynamic change in sharing patterns.

T1 T4 T7
g § § Epoch 1
W W | W |
Data Data Data
segment 1 segment 2 segment 3
4 4 4 4 4 4
rlorl rlorl rlorl

%2 §T3 %—5 §T6 %8 §T9

Effect of Profile-Guided Thread Migration

m We assess this using a CRM application “"Customer
Analytics™ with dynamic change in sharing patterns.

T1 T4 T7
§ § § Epoch 2
w| W | W |
Data Data Data
segment 1 segment 2 segment 3
) roor //’ r/'/r'
2 3 5 6 T8 T9

Effect of Profile-Guided Thread Migration

= Without thread migration, locality is not preserved (out of
red boxes denoting node boundaries) as time goes by.

epochl . epoch2 : epoch3 Iepoc14
172,73 ! S
i
7 I I
|
\E’\ - i -
G 5_‘/ [| 5 i []
| | I |
epgch6 i epogh7) epocﬁ§
20 . -l 2| - I = - I |
i 1 - 1 .
* -l | * I | * I]
i | |
1 _ L.
L 5 - N
“1 i i

51

Effect of Profile-Guided Thread Migration

= With correlation-driven thread migration
T2,T3 migrated to node 2 T2,T3 migrated to node 3

epoch1l %\ epoch2 . lepoch3 . epoch4

epochS5 epoch6 _ epoch7 epoch8

Performance Gain

Correlation tracking + thread migration enabled

(Full sampling) 1024X

512X

256X

128X

64X

32X

16X

8X

4X

Adaptive rate (start at 4X)

No cor. and

migration

Stretch

21.7%

Round-robin

Random

50

100

150

Execution Time (sec)

200

250

300

53

Distributed Java Virtual Machine can
provide a high-performance platform for
running multithreaded Java applications on
clusters

Java thread migration helps to improve the
performance, flexibility, and scalability of
DJVM

A couple of advanced profiling strategies
for optimizing locality

m Adaptive object sampling

s Online stack sampling

Towards PGAS Parallel Programming — why
not JESSICA (V‘Easy-to-use”)

54

JESSICA Launched to CNGrid HKU Portal

G.RID

China National Grid gm Nm n, 4

R EMRET R B =3 8631T%l

Computer Network Information Cente

Tsinghua Universit . .
& v y Chinese Academy of Sciences

4 y
KA o 2205 LI 445
. . . Shandong Unl\;ez-1‘51ty
Institute of Applied Physics
IR K%

and Computational Mathematics

jtﬁﬁﬁﬁ%@gﬁgﬁﬁﬁfﬁﬁﬁ K‘n:a:nsn:m Win

Xian JiaoTong University

P %R A2 <k

i e "!‘k‘- — = -
\\% “ivmn =S
HKU Grid Point On-Line Bookstore

National University of

Home Page

Defense Technology e —
E %*4#&**% m Click on one of our latest books to llhtl ..-ur lnore.‘. L
ShenZhen Institute of Advanced Technology, Th l B- - —
Chinese Academy of Sciences € (e e [(BestSelers
2] 222 22 7, > > =4 ARTS HOH-FICTION ARTS HOH-FICTION

EP E $’|‘$ &n{’%ﬂ” %ﬁ&*ﬁ % &E RIOGRAPHIES PARENTING BIOGEAPHIES FPARENTING
BUSIMNESS POLITICS BUSINESS POLITICS
CHILDREM REFERENCE CHILDREEN REFERENCE

COMPUTERS EELIGION COMPUTERS EELIGION
g Intermet. A v

55

Thanks!

For more information:

JESSICA2 Project
http://www.cs.hku.hk/~clwang/projects/JESSICA2.html

C.L. Wang’s webpage:
http://www.cs.hku.hk/~clwang/

56

