
J Supercomput manuscript No.
(will be inserted by the editor)

Latency-aware DVFS for Efficient Power State Transitions on
Many-core Architectures

Zhiquan Lai · King Tin Lam ·
Cho-Li Wang · Jinshu Su

Received: date / Accepted: date

Abstract Energy efficiency is quickly becoming a first-class constraint in HPC de-
sign. We need more efficient power management solutions to save energy costs and
carbon footprint of HPC systems. Dynamic voltage and frequency scaling (DVFS)
is a commonly used power management technique for making a trade-off between
power consumption and system performance according to the time-varying program
behavior. However, prior work on DVFS seldom takes into account the voltage and
frequency scaling latencies, which we found to be a crucial factor determining the ef-
ficiency of the power management scheme. Frequent power state transitions without
latency awareness can make a real impact on the execution performance of applica-
tions. The design of multiple voltage domains in some many-core architectures has
made the effect of DVFS latencies even more significant. These concerns lead us to
propose a new latency-aware DVFS scheme to adjust the optimal power state more ac-
curately. Our main idea is to analyze the latency characteristics in depth and design a
novel profile-guided DVFS solution which exploits the varying execution and memory
access patterns of the parallel program to avoid excessive power state transitions. We
implement the solution into a power management library for use by shared-memory
parallel applications. Experimental evaluation on the Intel SCC many-core platform
shows significant improvement in power efficiency after using our scheme. Compar-
ing with a latency-unaware approach, we achieve 24.0% extra energy saving, 31.3%
more reduction in the energy-delay product (EDP) and 15.2% less overhead in execu-
tion time in the average case for various benchmarks. Our algorithm is also proved to
outperform a prior DVFS approach attempted to mitigate the latency effects.

Keywords Power management · DVFS · Power state transition ·Many-core systems

Z. Lai · J. Su
National Key Laboratory of Parallel and Distributed Processing (PDL),
College of Computer, National University of Defense Technology, Changsha, China
E-mail: {zqlai, sjs}@nudt.edu.cn

K. T. Lam · C. L. Wang
Department of Computer Science, The University of Hong Kong, Hong Kong, China
E-mail: {ktlam, clwang}@cs.hku.hk

2 Zhiquan Lai et al.

1 Introduction

The concern of sustainability has transformed the HPC landscape and now energy is
as important as performance. Nowadays supercomputers are not only ranked by the
Top500 List [1] but also the Green500 [10]. As computing systems are approaching
a huge scale, power consumption takes a great part in their total costs of ownership.
Power management is thus an increasingly important research focus in supercomput-
ing. Taking Tianhe-2, the fastest supercomputer on the TOP500 list (as of June 2014),
as an example, its total power consumption is up to 17,808 kW1 [1]. Running Tianhe-2
for a year consumes 156 GWh. To bridge our understanding of the figure, this amount
has equaled the annual household electricity consumption of over 312,800 persons
in China or 36,000 persons in US2. The electricity bill for Tianhe-2 runs between
$65,000-$100,000 a day [35]. Among the top ten supercomputers, seven of them have
similar power efficiencies ranging around 1,900 to 2,700 Mflops/watt. This implies
huge power consumption is not an exceptional but commonplace problem. The major
source of power consumption in these supercomputers stems from the many-core pro-
cessors. For example, Tianhe-2 consists of 32,000 Xeon E5 and 48,000 Xeon Phi pro-
cessors, totaling 3,120,000 cores, which contribute to over 60% of the system power3.
To save power costs and carbon footprint of data centers, how to improve the power
efficiency of the state-of-the-art many-core architectures becomes a pressing research
gap to fill.

It has been shown that the energy consumption of a program exhibits convex en-
ergy behavior, that means there exists an optimal CPU frequency at which energy con-
sumption is minimal [36]. Dynamic voltage and frequency scaling (DVFS) achieves a
trade-off between performance and power by dynamically and adaptively changing of
the clock frequency and supplied voltage of the CPUs. Existing works on DVFS [37,
12,26,33,8] have also experimentally confirmed its effectiveness to save about 15%
to 90% energy of the CPU chip. In view of increasingly more data-intensive HPC
workloads and multi-tenant cloud computing workloads, there are more energy saving
chances to scavenge from time to time, and DVFS is the core technology well suited
for the purpose. In other words, DVFS is quite an indispensable part of a green HPC
system. However, reaping power savings through frequency/voltage scaling without
causing a disproportionately large delay in runtime, i.e. to optimize the energy-delay
product (EDP), is still a research challenge. Most of the prior DVFS studies or solu-
tions did not consider the latency of voltage/frequency scaling. By our investigation,
the latency of voltage scaling is non-negligible, especially on the many-core architec-
tures with multiple voltage domains [14,16,34,29,32]. Scheduling power state transi-

1 Including external cooling, the system would draw an aggregate power of 24 megawatts.
2 In 2013, average annual residential electricity consumptions per capita in China and US are 498.6 kWh

and 4,327.6 kWh respectively. Detailed calculations and sources: Electricity consumption by China’s urban
and rural residents (Echina) is 6,793× 108 kWh [25]. China’s population (Pchina) as of September, 2013 is
1,362,391,579 [40]. Dividing Echina by Pchina gives 498.6 kWh. Power usage per household in US (Eus) in
2013 is 10,819 kWh [9]. Average household size in US (Pus) (or in most wealthy countries) is close to 2.5
persons [39]. Dividing Eus by Pus gives 4,327.6 kWh.

3 Our estimation is done as follows: Tianhe-2 is using Xeon E5 2692v2 and Xeon Phi 31S1P (with
125W and 270W TDPs). Assume their average power consumptions are 90W and 165W (reference [20])
respectively. 90W × 32000 + 165W × 48000 = 10800 kW. Divided by 17808 kW gives 60.65%

Latency-aware DVFS for Efficient Power State Transitions on Many-core Architectures 3

tions without awareness of the latencies involved would fall behind the expected power
efficiency; something even worse could happen if one performs power state transitions
too aggressively, introducing extra performance loss and energy dissipation.

In this paper, we explore the latency characteristics of DVFS and design a novel
latency-aware DVFS algorithm for many-core computing architectures in which the
DVFS latency becomes a notable issue. There have been a few existing studies consid-
ering the DVFS overheads. Ye et al. [41] proposed reducing the number of power state
transitions by introducing task allocation into learning-based dynamic power manage-
ment for multicore processors. However, program execution pattern usually changes
according to the workflow so that the optimal power settings for each phase of pro-
gram execution are likely to be different. Although task allocation reduces the times
of DVFS scaling, it could miss good opportunities for saving energy. Ioannou et al.
[15] realized the latency overhead problem, but they just made the voltage transitions
farther away from each other using a threshold of the least distance time. This allevi-
ating method is obviously suboptimal and there must be more efficient ways to deal
with the latency issue.

To bridge this gap, we propose a new latency-aware DVFS algorithm to avoid ag-
gressive power state transitions that would be unnecessary and overkill. “Aggressive”
here means too short the next power state transition is away from the last, and too
frequent voltage/frequency changes are not only unprofitable but also detrimental, in
view of the extra time and energy costs introduced. We implement our ideas into a
usable power management library on top of the Barrelfish multikernel operating sys-
tem [4] and evaluate its effectiveness on the Intel Single-chip Cloud Computer (SCC)
[14]. By calling the power management routines of the library at profitable locations
(usually I/O or synchronization points), an application program or framework, such
as our Rhymes Shared Virtual Memory (SVM) system [19], can reap energy savings
easily. Our current design of the library adopted a self-made offline profiler to obtain
a per-application execution profile for guiding power tuning decisions. Experimental
results using various well-known benchmarks (e.g. Graph 500 [13] and Malstone [5])
show that our latency-aware DVFS algorithm is capable of making significant energy
and EDP improvements over both the baseline power management scheme (without
latency-awareness) and the scheme proposed by Ioannou et al. [15] for amortizing
DVFS latency costs.

On top of our previous publication [18], this paper extends the work with a thor-
ough latency-aware DVFS algorithm, presents the design and implementation of a
new dynamic power management (DPM) solution based on the algorithm, and pro-
vides more complete and in-depth experimental evaluation results to prove its effec-
tiveness. While our study was performed on the Intel SCC which is only a research
processor consisting of Pentium P45C cores, its power-related design is very typical
and adopted in the state-of-the-art multicore or many-core chips with on-chip net-
works and fine-grained DVFS support (multiple clock/voltage domains). DVFS la-
tency causes issues not specific to Intel SCC alone but to almost all chip multiproces-
sors like Xeon Phi whose frequency/voltage scaling latency is in millisecond range.
So our findings and proposed solutions are insightful for the general development
of energy-efficient many-core computing architectures. Generic contributions of this
work that are independent of SCC or Barrelfish are listed as follows:

4 Zhiquan Lai et al.

– We carry out an in-depth study on the latency characteristics of voltage/frequency
scaling on a real many-core hardware platform. We confirm that the DVFS latency
is non-negligible (sometimes up to hundreds of milliseconds in reality) but ne-
glected or handled poorly by traditional DVFS schemes. Ignoring this factor will
bring about considerable side effects on the system performance and chip power
consumption in attempt to save energy by DVFS.

– Based on the experimental investigation of many-core DVFS latencies, we de-
vise a novel latency-aware DVFS control algorithm for a profile-guided phase-
based power management approach applicable to shared-memory programming.
The control algorithm is particularly useful for chip multiprocessors of multiple
clock/voltage domains and non-trivial DVFS latencies. It is in fact not restricted
to a profile-guided DPM approach but applicable to all other DVFS-based power
management approaches [15,23,26,24]. We present experimental results taken on
a real system with a working implementation to tell the effectiveness of the pro-
posed DVFS scheme.

The remainder of this paper is organized as follows. Section 2 discusses the basic
concept of DVFS latency and our investigation into its effect on many-core architec-
tures. We describe our new latency-aware DVFS algorithm and its implementation in
Section 3. Section 4 presents the experimental results and analysis we did. Section 5
reviews related work. Finally, we conclude the paper in Section 6.

2 DVFS Latency on Many-core Architectures

Before presenting the latency-aware DVFS algorithm, it is important to first investigate
the latency behaviors of voltage/frequency scaling on a typical many-core system. In
particular, we focus the study on many-core tiled architectures with multiple voltage
domains.

2.1 Basics of DVFS Latency

As a key feature for dynamic power management, many CPU chips provide multi-
ple power states (pairs of voltage/frequency, or V/ f henceforth) for the system to
adaptively switch between. Scheduling DVFS according to the varying program ex-
ecution behavior such as compute-intensiveness and memory access pattern can help
save energy without compromising the performance. One basic but important rule for
DVFS is that the voltage must be high enough to support the frequency all the time,
i.e. the current frequency cannot exceed the maximal frequency which the current
voltage supports. As shown in Fig. 1, we assume that there are three different fre-
quency values provided by the hardware, F0, F1 and F2, where F0 < F1 < F2. For
each frequency state, there is a theoretical least voltage value that satisfies this fre-
quency’s need. According to this condition, we can draw a line of “safe boundary” on
the voltage-frequency coordinate plane in Fig. 1. Thus, all the V/ f states above this
boundary are not safe (or dangerous) as they violate the basic condition, and could

Latency-aware DVFS for Efficient Power State Transitions on Many-core Architectures 5

Voltage

Fr
e

q
u

en
cy

F0

F1

F2

Vleast0 Vleast1 Vleast2

Power-efficient State

Not Power-efficient State

Dangerous State

Max frequency for
certain voltage

s0 s1 s2

s3
s4 s5

s6 s7
s8

Voltage

Fr
e

q
u

en
cy

F0

F1

F2

Vleast0 Vleast1 Vleast2

Energy-efficient State

Energy-inefficient State

Dangerous State

Safe Boundary

s0 s1 s2

s3
s4 s5

s6 s7
s8

Fig. 1 Relationship between voltage and frequency during dynamic scaling

damage the hardware. On the other hand, all the V/ f states under this boundary are
considered safe.

However, to ensure safe execution, we usually apply a slightly higher voltage than
the theoretical least voltage. As shown in Fig. 1, there is a margin between the least
voltage value and the theoretical safe boundary for each frequency. Actually, this mar-
gin is not optional but necessary for real safety in practice. We must consider whether
the power state will exceed the safe boundary during the scaling. For example, in
the case of scaling up voltage and frequency, if we scale the frequency first, then the
voltage may not be high enough to support the scaled frequency. Since the execution
performance only depends on frequency, keeping the voltage at the least operational
levels should be the most power-efficient states (the green states in Fig. 1). Of course,
we can apply much higher voltage than the least voltage for each frequency (the or-
ange states in Fig. 1). Although these states are safe, they unnecessarily consume more
power than those least-voltage states with the same frequency.

To change the power state (voltage and frequency values) from (Vs, Fs) to (Vd , Fd),
assuming they are both safe states, we indeed have to scale the voltage and frequency
separately. But the problem is that there exists some delay for both frequency and
voltage scaling. Moreover, the latency of voltage scaling is generally much higher
than that of frequency scaling. Voltage scaling usually happens on a millisecond scale
while frequency scaling takes only a handful of CPU cycles. This may explain how
power-inefficient states could be resulted in practice if one scales down the frequency
only in cases where long-latency voltage scaling is not desired.

We find that the latency of voltage scaling should be taken into account only when
both the frequency and voltage need to be scaled up. In other cases where min(Vs,
Vd) is high enough to support max(Fs, Fd), although latency is involved in scaling the
voltage from Vs to Vd (also for frequency from Fs to Fd), the program can actually
keep going during voltage (or frequency) scaling since the current voltage level is
high enough to support the both frequencies of Fs and Fd . To reap energy savings,
apart from the minuscule latency of scaling down the frequency, there is no noticeable
latency after scaling down the voltage. To restore or increase the CPU performance is,

6 Zhiquan Lai et al.

Table 1 DVFS latency in different scaling cases

Case Strategy of voltage/frequency scaling Latency

Fs > Fd &&

Vs >Vd

1. Scaling down frequency

2. Waiting till frequency scaled

3. Scaling down voltage

Latency(Fs→Fd)

Fs < Fd &&

Vs <Vd

1. Scaling up voltage fisrt

2. Waiting till voltage scaled

3. Scaling up frequency

4. Waiting till frequency scaled

Latency(Vs→Vd) +
Latency(Fs→Fd)

on the opposite, liable to some millisecond-scale latency penalty. Specifically, in the
case that Vs <Vd and Fs < Fd , after scaling up the voltage (which has to be done first
for the safety reason explained above), we should wait for a moment until the voltage
reaches the level of Vd , which is safe to support the new frequency Fd . If we scale the
frequency to Fd when the voltage level is not high enough to support it, the CPU will
stop working. This situation is very dangerous and could damage the chip.

In conclusion, we have the strategies for voltage/frequency scaling and the asso-
ciated latency costs as shown in Table 1. For better power efficiency, we assume the
power states switch among power-efficient states. So under this assumption, Fs > Fd
only if Vs >Vd . In the case of lowering the power state, we scale down the voltage af-
ter scaling down the frequency so that the program needs not wait for voltage scaling
to finish. When lifting the power state, the program has to suspend and wait until the
voltage gets scaled up, and then continues on scaling up the frequency.

2.2 DVFS Latency on Many-core Architectures

A complete lack of a model characterizing DVFS latency for many-core architecture
with multiple voltage domains is a crucial research gap to fill. In this section, we in-
vestigate the DVFS latency behavior and contribute an experimental model on a rep-
resentative many-core x86 chip, the Intel SCC [14], which was designed as a vehicle
for scalable many-core software research. The SCC is a 48-core CPU consisting of
six voltage domains and 24 frequency domains. Each 2-core tile forms a frequency
domain, while every four tiles form a voltage domain (a.k.a. voltage island). The fre-
quency of each tile can be scaled by writing the Global Clock Unit (GCU) register
shared by the two cores of the tile. The SCC contains a Voltage Regulator Controller
(VRC) that allows independent changes to the voltage of an eight-core voltage island.
An island’s voltage can be scaled by writing the VRC’s configuration register which
is shared among all voltage islands [2].

According to Intel’s documentation [3], a voltage change is of the order of mil-
liseconds whereas a frequency change can finish within 20 CPU cycles on the SCC.
We also conducted experiments to measure the latencies accurately. We found that the
latency of frequency scaling is nearly unnoticeable, so we can concentrate on the volt-
age switching time alone. To measure it, we design a microbenchmark which performs
a series of power state transitions among various possible power states (V/ f pairs).

Latency-aware DVFS for Efficient Power State Transitions on Many-core Architectures 7

 0

 50

 100

 150

 200

1 2 3 4 5 6

La
te

nc
y

of
 s

ca
lin

g
up

 v
ol

ta
ge

 (
m

s)

of voltage domains scaling voltage simultaneously

0.8V->0.9V
0.9V->1.1V

Fig. 2 Latency of voltage scaling on a chip with multiple voltage domains

Adjacent transitions are separated by sufficiently long computation time to avoid in-
terference in measurements. We adopt a commonly used method in the community
for measuring voltage scaling latencies. We call it “double write”—writing the VRC
register twice when it is needed to wait for the voltage transition. It is the second write
on the VRC register introducing the latency. As soon as the voltage reaches the de-
sired value, the second write of the VRC register will return. During the execution
of the microbenchmark, we record the wall-clock times of all “double writes” on the
VRC register and take them as the voltage scaling latencies. The timestamps for wall-
clock time measurement are taken from the global timestamp counter based on the 125
MHz system clock of the SCC board’s FPGA (off the chip). We do not use on-chip
GCUs because their clock frequencies are being affected by the dynamic V/ f scaling.
We launch the microbenchmark program on 4, 8, 12, 28, 32 and 36 cores to produce
simultaneous voltage scaling on 1, 2, 3, 4, 5 and 6 voltage domains respectively.

Figure 2 shows the average latency of voltage scaling measured in two cases: from
0.8V to 0.9V and from 0.9V to 1.1V. For a single voltage domain, the latencies of
voltage scaling in the two cases are both about 30ms. However, when there are mul-
tiple voltage domains scaling their voltages simultaneously, the latency seen by each
domain surges to a much higher level and increases linearly with the number of do-
mains. We experimented that scaling all the six voltage domains simultaneously from
0.8V to 0.9V takes about 195ms. This is a very high overhead in on-die DVFS-speak.
Voltage switching time in millisecond range may be SCC-specific, but the latency
surge due to concurrent voltage requests represents a common problem. We attribute
the cause of the linear latency increase to a single VRC (located at a corner of the on-
chip mesh) to control voltages of all the domains. Despite simplifying VRC circuitry
and saving die area, this presents a bottleneck against high frequency of concurrent
voltage switching activities which may be found useful for certain kinds of work-
loads. We believe that many (predominantly Intel) chip multiprocessors, e.g. Intel Ivy
Bridge, are prone to this scalability issue since their DVFS designs are like the SCC’s
case—having a global chip-wide voltage regulator for all cores or domains. While we
agree fine-grained DVFS offers more power savings, it is hard to scale the number

8 Zhiquan Lai et al.

of on-chip regulators for a many-core processor for compounded reasons related to
regulator loss, inductor size and die area. This is where latency-aware software-level
DVFS techniques can help address this architectural problem.

3 Latency-aware Power Management

3.1 Baseline Power Management Scheme

Our baseline dynamic power management (DPM) scheme adopts a profile-guided ap-
proach to determining the optimal power states for different portions of the program
execution. The scheme is implemented into a power management library and a kernel-
level DVFS controller. We employ the library to optimize the power efficiency of
Rhymes SVM [19], which is a Shared Virtual Memory (SVM) runtime system we
developed for running parallel applications on the SCC port of Barrelfish as if they
were running on a cache-coherent shared-memory machine. In the SVM programming
environment, application codes generally employ the synchronization routines (lock
acquire, lock release and barrier) provided by the SVM library to enforce memory
consistency of shared data across parallel threads or processes. So the parallel pro-
gram execution is typically partitioned by locks and/or barriers. Moreover, the code
segments across a barrier or a lock operation are likely to perform different computa-
tions and exhibit different memory access patterns. Thus the program execution could
be divided into phases by these barriers and locks. The phases can be classified into
stages performing the real computation and the busy waiting stages corresponding to
barrier or lock intervals. A per-application phase-based execution profile recording
the execution pattern of each phase could be derived by an offline profiling run of a
program. Note that the latency-aware DVFS algorithm that we are going to propose
will be evaluated based on, but not limited to, this power management approach.

One of the key problems of the profile-guided DVFS scheme is how to determine
the optimal power state for each phase. We designed prediction models [17] for the
optimal power and runtime performance in each phase. The power model and perfor-
mance model are based on two indexes, instructions per cycle (IPC) and bus utiliza-
tion (ratio of bus cycles), which are derived from the performance monitor counters
(PMCs) provided by the CPU. As the power/performance models are not the focus of
this work, their details are not included in this paper.

Assuming the goal of power management is to minimize the energy-delay product
(EDP) or energy-performance ratio [38], which is a commonly used metric to evaluate
the power efficiency of DPM solutions. We can predict the EDP of each phase at a
certain power state f ,v (henceforth, we will use the frequency alone to represent the
power state as we assume the voltage keeps to be the least value) using the power and
performance model as follows:

EDP(f) = Energy(f) ·Runtime(f)

= Runtime(f) ·Power(f) ·Runtime(f)

= Power(f) ·Runtime(f)2

(1)

Latency-aware DVFS for Efficient Power State Transitions on Many-core Architectures 9

Algorithm 1: Latency-aware Algorithm to Determine the Optimal Power State
Input: ∆s: max. voltage scaling latency

∆i : time cost of issuing a power request
Pk : the kth phase of the application profile
Tk : time length of the kth phase in the profile
N : the number of phases

Output: fk : the optimal frequency setting for phase Pk
vk : the optimal voltage setting for phase Pk

1 begin
2 for k from 0 to N−1 /* First loop */ do
3 if Pk is a busy-waiting phase then
4 if Tk 6 ∆i then
5 fk = fk−1, vk = vk−1

6 else if Tk 6 ∆s then
7 fk = fmin, vk = vk−1

8 else
9 fk = fmin, vk = vmin

10 else
11 /* Compute the optimal frequency fk using Eq. 3 */
12 fk = f s.t. min(sumEDP(f))

13 for k from 0 to N−2 /* Second loop */ do
14 if Pk is a busy-waiting phase then
15 if vk > vk+1 then
16 vk = vk+1

17 if fk > fk+1 then
18 fk = fk+1

Then we can choose the optimal power state for each phase to achieve the minimal
EDP. However, this method does not consider the latency of voltage/frequency scaling.
If the power state before the phase begins is different from the predicted optimal power
state for this phase, we have to scale the power state first, and could introduce some
latency and extra power consumption. Thus, the method which does not take latency
into account could lead to wrong decisions.

3.2 Latency-aware DVFS

Based on our investigation in Section 2, DVFS latency is non-negligible and should
be taken into account for the optimal power state tuning. In essence, power states must
be altered with respect to the implicit deadlines imposed by phase transitions such that
performance boost or energy reduction effects can take place for a sufficient length of
time. As the latency of frequency scaling is minuscule, we just consider the latency
of scaling up voltage. Besides the voltage transition time, issuing power requests can
also incur some latency overhead as it entails context switching between user space
and the kernel.

10 Zhiquan Lai et al.

Our proposed latency-aware DVFS algorithm is shown in Algorithm 1. We denote
the latency of scaling up voltage as ∆s and the latency of issuing a power request as
∆i. For an application with a sequence of profiled phases Pk’s, we assume that the
execution time of each phase, Tk, can be obtained in the profiling run, during which
we can also get certain basic information of each phase, like whether it is busy waiting
or performing real computations. The algorithm is composed of two for-loops.

1st Loop: For each phase, there are two cases to determine the optimal power state.
On one hand, if the phase Pk is a busy waiting phase, what we need to do is to reduce
the power as far as possible without increasing the execution time of the phase. So we
check the length of the execution time (Tk) to choose the optimal power state. If Tk 6
∆i (meaning that the phase is not long enough to cover the time of issuing a request
to change the power level), the system will do nothing and keep using the current
power state. If Tk 6 ∆s (meaning the phase is not long enough to scale the voltage),
the system will keep the voltage and scale the frequency down to the lowest level fmin.
If the busy waiting time is long enough for scaling down the voltage, the algorithm
will scale both the frequency and voltage down to their lowest operation points. On
the other hand, if the phase is not busy waiting but performing real computation, we
compute the optimal power setting using Eq. 3 and the method of tuning is detailed as
follows.

2nd Loop: It is possible that the execution time of a busy waiting phase Pk is not
long enough to scale the frequency or voltage to the lowest level (so the system keeps
running in some high power state left by Pk−1 or Pk−2 ...) but the next phase Pk+1 does
not need such a high power setting. In this case, it is actually better to lower the power
state as early as possible to reduce energy wasted in busy waiting. Therefore, for each
busy waiting phase Pk, if the frequency (fk) and voltage (vk) settings are higher than
those of the next phase (which is supposedly performing real computation), frequency
or voltage will be scaled down in advance to the V/ f values of the next phase.

For a phase which is not busy waiting, assuming the optimization is targeted at
the least EDP, the optimal power state for the phase, denoted by foptm, should be the
frequency value (with the corresponding least voltage) that minimizes the sum of EDP
consumed in the phase being executed and the EDP consumed in voltage/frequency
scaling (from current power state fc to f), denoted by EDPphaseRun(f) and EDP(fc→ f)
respectively. The minimum sum of EDPs could be denoted by sumEDPmin as follows:

sumEDPmin

= min
fmin6 f6 fmax

(EDPphaseRun(f)+EDP(fc→ f))

= min
fmin6 f6 fmax

(p f · (t f)
2 +

1
2
(p fc + p f) · (∆i +∆s(fc→ f))

2

(2)

As shown in Eq. 2, the power during voltage and frequency scaling is estimated to
be the average of the powers before and after the scaling (1

2 (p fc + p f)). The runtime
overhead of DVFS consists of the latency of issuing power request (∆i) and the DVFS
latency (∆s(fc→ f)) of transiting from current power state fc to f . The DVFS latency
(∆s(fc→ f)) is derived according to different scaling cases described in Table 1. As
we ignore the latency of frequency scaling, ∆s(fc→ f) equals to zero for the first case

Latency-aware DVFS for Efficient Power State Transitions on Many-core Architectures 11

(scaling down frequency/voltage) in Table 1, while ∆s(fc→ f) equals to ∆s for the second
case.

Hence, the optimal power state foptm can be denoted by Eq. 3.

foptm = f s.t. sumEDP(f) = sumEDPmin (3)

The power (p fc) in the current power state fc , power (p f) at f and runtime (t f) at
f can be estimated by the performance/power model.

Our current design adopts an offline profile-guided DPM approach. As the num-
ber of possible power states (V/ f pairs) is usually limited, we do not consider the
complexity of the minimization process. Thus, the optimal power state for each phase
minimizing sumEDP can be chosen offline from Table 3 in the profiling run. These
optimal power settings will then be applied to subsequent production runs.

As we reveal in Section 2, the largest latency for voltage scaling measured through
microbenchmarking is about 195ms. But in full-load tests with real-world benchmark
programs like Graph 500, we observe the actual latency could reach 240ms. Voltage
scale-up events usually happen upon barrier exits, where all cores (all six voltage
islands) request for power state transition simultaneously. So it is an effectual heuristic
to set ∆s to be 240ms in Eq. 2. This setting was also experimentally validated to be
the most effective choice in our tests. Although the latency for the local core to issue
a power request is of the order of thousands of cycles, we set ∆i to be 2ms in our
experiments to take into account the context switching overheads.

3.3 Implementation on Barrelfish

We designed and implemented a DVFS controller and user library on Barrelfish, a
multikernel many-core operating system developed by ETH Zurich and Microsoft Re-
search [4], in order to assess the effectiveness of the latency-aware DVFS algorithm.
Our DVFS controller follows a domain-aware design adapted to many-core chips with
clustered DVFS support (Intel’s SCC is a typical example). In other words, each CPU
core has its role inside the whole controller. The roles include stub cores (SCore),
frequency domain masters (FMaster) and voltage domain masters (VMaster). All the
cores are SCore. Meanwhile, in each frequency or voltage domain, we assign one core
as the frequency or voltage master which is responsible for determining the domain-
optimal power level and scaling the power level of the domain. The domain-wide op-
timization policy is flexible and configurable according to different scenarios. In our
current implementation, the domain-wide power setting adopts an “arithmetic mean”
policy as Ioannou et al. [15] proposed. That means the power level of a domain is set
as the arithmetic mean of the frequencies or voltages requested by all the cores in the
domain.

As shown in Fig. 3, the design of the DVFS controller is made up of three main
modules, namely broker, synchronizer and driver respectively, which are implemented
at the kernel level. All the broker instances running on each CPU core are controlling
the frequency-voltage settings for the chip, using the capability provided by the syn-
chronizer and driver modules. Below we describe each module in more detail.

12 Zhiquan Lai et al.

API Driver

Broker

Synchronizer

VRC & GCU
registers

IPI interrupts

Core #0
Core #1

Core #N-1
...

User space Kernel Hardware

Fig. 3 Design of the DVFS controller on the Barrelfish OS

Table 2 The main functions of DVFS interface implemented on Barrelfish

API Functions and Descriptions
Parameter specification:

• Fdiv (input) - the requested value for the frequency divider

• Vlevel (input) - the requested value for the voltage level

• new_Fdiv (output) - the returned value of the new frequency divider

• new_Vlevel (output) - the returned value of the new voltage level

int pwr_local_power_request(int Fdiv, int* new_Fdiv, int* new_Vlevel)

This is a non-blocking function for the caller core to make a power request to the low-level power
management system. The voltage setting is assumed to be the least voltage value. However, the exact
frequency/voltage of a domain will be decided by the domain master according to all power requests
from all the cores in the domain. By this function, the master/slave roles of cores in the power manage-
ment system are made transparent to users, i.e. the cores are in peer-to-peer relation; each core makes
requests for its locally optimal power state.

int pwr_local_frequency_request(int Fdiv, int* new_Fdiv)

This is a non-blocking function that explicitly scales the frequency of the cores in the local frequency
domain. If the core calling this function is not the frequency domain master, this function will simply
execute without doing anything.

int pwr_local_voltage_request(int Vlevel, int* new_Vlevel)

This is a conditional blocking function that explicitly sets the voltage level of the local voltage domain.
If the core calling this function is not the voltage domain master, this function will do nothing. In the
case of scaling down the voltage level, this function is non-blocking. On the other hand, in the case of
scaling up voltage, it blocks in place until the voltage has reached the expected level.

– Broker is an event-driven subroutine that intelligently performs the DVFS actions.
When the system boots up, the broker is responsible for determining the role of
the local core and handling the DVFS requests made from the user space via the
API. If the local core is a FMaster or VMaster, it should handle the events for
synchronizing the DVFS requests from other cores in the domain.

– Synchronizer is the module where we designed an inter-core communication pro-
tocol to synchronize different power requests from different CPU cores. The pro-
tocol implementation on the Intel SCC has applied a real-time technique, making
use of the efficient inter-processor-interrupt (IPI) hardware support, to guarantee
better DVFS efficiency. This virtually real-time IPI-based inter-core communica-
tion mechanism can greatly reduce the response time of power tuning requests.

Latency-aware DVFS for Efficient Power State Transitions on Many-core Architectures 13

– Driver is a low-level layer of code that carries out the actual frequency and voltage
scaling operations supported by the many-core hardware. On the Intel SCC, the
frequency of a two-core tile is scaled by writing the configuration register of the
Global Clock Unit (GCU), which is shared by the two cores on the tile. The voltage
is changed by writing a 17-bit VRC register [2].

The API block in Fig. 3 refers to the user-space library provided for programmers
or execution environments to drive the DVFS controller. It is a lightweight DVFS
interface that facilitates development of high-level DPM policies at middleware or ap-
plication level. The main functions of the API are described in Table 2. A DPM policy
just needs this API for making local DVFS requests to interface with the DVFS con-
troller. In other words, the kernel parts of the DVFS controller are totally transparent
to users.

4 Experimental Evaluation

4.1 Experimental Environment and Testing Methodology

We evaluate the latency-aware DVFS solution on an Intel SCC machine (with 32GB
RAM) using several well-known benchmarks. The operating system is the SCC port
of Barrelfish. The instantaneous chip power can be measured by reading the power
sensors provided by the Intel SCC platform. Thus the energy consumption could be
obtained by integrating the instantaneous power over time. All the experiments were
conducted on 48 cores of the SCC. As the temperature of the SCC board was main-
tained at around 40 ◦C, we ignored the impact of the temperature on the power of the
CPU chip. The clock frequencies of both the mesh network and memory controllers
(MCs) of the SCC were fixed at 800MHz during the experiments.

As discussed in Section 2, a frequency change of a frequency domain is valid
only if the new frequency value is “safe” to reach at the current voltage. On the SCC
platform, the frequency is scaled by a frequency divider (Fdiv) with a value from 2
to 16, and the frequency value will equal 1600MHz / Fdiv. According to Intel’s SCC
documentation [3], voltage of 0.8V is enough to support 533MHz. However, in the
case of booting Barrelfish on 48 cores of the SCC, we find that the booting process
will always fail at bootstrap of the 25th core if the initial voltage is 0.8V while the
initial frequency is 533MHz. What’s more, we find that the system throws some weird
errors when the voltage is scaled down to 0.7V, especially when we launch programs
on a large number of cores (e.g. 48 cores). In order to keep the program run safely, we
set the least voltage for 533MHz to be 0.9V, and 0.8V for frequencies which are lower
than or equal to 400MHz. To put it simple, we derived a safe-frequency-least-voltage
(SFLV) table (see Table 3) that we used to tune the V/ f settings.

Based on the above experimental conditions, we set up four different power man-
agement (DPM) policies for comparison in terms of power, runtime performance, en-
ergy consumption and the EDP index. The four policies are denoted as “Static800M”,
“Latency-unaware”, “Latency-aware” and “Max-VSLatency” which are detailed as
follows:

14 Zhiquan Lai et al.

Table 3 Combinations of safe-frequency and least-voltage settings

Frequency Divider Frequency (MHz) Least Voltage (V) Least Voltage Level
2 800 1.1 4

3 533 0.9 2

≤ 4 = 1600/Fdiv 0.8 1

– Static800M: To evaluate the efficiency of various DPM schemes, we need a static
power policy for control experiment. This policy is using a static power model
with the highest power state. All CPU cores’ frequencies are set to 800MHz, and
their voltages are set to the least value of 1.1V during this control experiment. The
profile information of each benchmark program is also derived using this experi-
mental setting.

– Latency-unaware: This policy refers to our baseline profile-guided DPM scheme
without the latency-aware DVFS algorithm. All V/ f switching is done observing
the SFLV table. Although we do not consider the DVFS latency in this policy, we
set the latency of issuing a power request (∆i in Section 3.2) to 2ms to take into
account the overhead of power state switching.

– Latency-aware: Based on the latency-unaware policy, this is an enhanced policy
that considers the voltage scaling latency and adjusts the DVFS decisions accord-
ing to the algorithm presented in Section 3.2. The latency of scaling up voltage
(∆s) is set to be the maximum value (240ms).

– Max-VSLatency: Also based on latency-unaware policy, we emulate the solution
given by Ioannou et al. [15] and set a threshold of 240ms as the maximal volt-
age scaling latency. If the time distance between the current voltage scaling and
its prior one is less than this threshold, this policy will ignore the voltage scal-
ing request. This solution was considered effective for avoiding excessive (non-
profitable) power state transitions, and we are going to compare it with our latency-
aware scheme.

4.2 Benchmark Programs

Experimental comparison was done using four benchmark programs, namely Graph
500, LU, SOR and Malstone. We port these application programs to our Rhymes
Shared Virtual Memory (SVM) system [19] which leverages software virtualization to
restore cache coherence on the SCC machine with non-coherent memory architecture.
In this way, programmability at the application level won’t be much compromised,
compared with a traditional shared-memory programming model. Porting effort was
made only to convert the original memory allocation and synchronization code into
one using Rhymes’ provided malloc, lock and barrier functions. Among the bench-
mark programs, Graph 500 and Malstone are “big-data” computing applications while
the other two are classical scientific computing algorithms. In particular, Graph 500 is
the most complex but representative one. So it is worth more elaboration as follows.

Graph 500 is a project maintaining a list of the most powerful machines designed
for data-intensive applications [13]. Researchers observed that data-intensive super-

Latency-aware DVFS for Efficient Power State Transitions on Many-core Architectures 15

Algorithm 2: Algorithm of Graph 500 Benchmark
Input:

SCALE: the vertices scale, implying 2SCALE vertices
EDGE: the edge factor, implying EDGE ·2SCALE edges

1 begin
2 Step 1: Generate the edge list with SCALE and EDGE.
3 Step 2: Construct a graph from the edge list.
4 Step 3: Randomly sample 64 unique search keys with degree ≥ 1, not counting self-loops.
5 Step 4: for each search key do
6 Step 4.1: Compute the parent array.
7 Step 4.2: Verify that the parent array is a correct BFS tree for the given search key.

8 Step 5: Compute and output performance information.

computing applications are of growing importance to representing current HPC work-
loads, but existing benchmarks did not provide useful information for evaluating su-
percomputing systems for data-intensive applications. In order to guide the design of
hardware architectures and software systems to support such applications, the Graph
500 benchmark was proposed and developed. Data-intensive benchmarks are expected
to have more potential for energy saving than compute-intensive ones [6]. So Graph
500 is a suitable benchmark for evaluating our solution. The workflow of Graph 500
is described in Algorithm 2. Its kernel workload is performing breadth-first searches
(BFSes) over a large-scale graph. In our experiment, the execution of Graph 500 (in-
cluding 64 times of BFSes) is divided into 1700+ phases delimited by barrier and lock
operations using the profile-guided DPM approach described in Section 3.1. The prob-
lem size for every Graph 500 test is set as follows: SCALE = 18 (262,144 vertices) and
EDGE factor = 16 (4,194,304 edges). In the original Graph 500 benchmark, only step
2 and step 4.2 (a.k.a. kernels) are timed and included in the performance information.
Since our goal is not to compare the kernels’ performance with other machines, we
did not follow this way of timing and took the total execution time instead.

For the other three benchmark programs, LU implements the algorithm of fac-
toring a matrix as the product of a lower triangular matrix and an upper triangu-
lar matrix. The program performs blocked dense LU factorization with a problem
size of a 2048× 2048 matrix and 16× 16 block size. The program nature of LU is
highly compute-intensive. The SOR benchmark performs red-black successive over-
relaxation on a 4096× 2048 matrix. By our performance study, SOR is actually a
data-intensive or memory-bound program. Malstone [5] is a stylized benchmark for
data-intensive computing, which implements some data mining algorithm to detect
“drive-by exploits” (or malware) from log files. We used a log file of 300,000 records
for testing. It is also a data-intensive benchmark.

4.3 Results

Under the experimental settings described in Section 4.1, we monitor the power, run-
time, energy and EDP variations of the four benchmarks under different power man-

16 Zhiquan Lai et al.

Table 4 Results of average power, runtime, energy and EDP obtained during benchmark program execu-
tions under different power management policies. The items with * are values normalized to the static800M
figures

Static800M Latency-
Unaware

Latency-
Aware

Max-
VSLatecy

Graph 500

AvgPower (W) 69.62 21.79 21.54 36.20
Runtime (s) 365.51 692.35 535.17 481.07
Energy (J) 25446.73 15086.84 11527.81 17416.17
EDP (kJs) 9301.04 10445.36 6169.33 8378.41
AvgPower* 1.0000 0.3130 0.3094 0.5200
Runtime* 1.0000 1.8942 1.4642 1.3162
Energy* 1.0000 0.5929 0.4530 0.6844
EDP* 1.0000 1.1230 0.6633 0.9008

LU

AvgPower (W) 88.03 32.13 30.88 33.02
Runtime (s) 32.74 71.35 33.86 66.00
Energy (J) 2882.02 2292.57 1045.69 2179.34
EDP (kJs) 94.36 163.58 35.41 143.83
AvgPower* 1.0000 0.3650 0.3508 0.3751
Runtime* 1.0000 2.1793 1.0342 2.0158
Energy* 1.0000 0.7955 0.3628 0.7562
EDP* 1.0000 1.7336 0.3753 1.5243

SOR

AvgPower (W) 85.39 34.42 33.19 75.81
Runtime (s) 81.86 84.69 84.22 84.95
Energy (J) 6989.73 2914.60 2795.43 6440.37
EDP (kJs) 572.17 246.83 235.42 547.12
AvgPower* 1.0000 0.4031 0.3887 0.8879
Runtime* 1.0000 1.0345 1.0288 1.0378
Energy* 1.0000 0.4170 0.3999 0.9214
EDP* 1.0000 0.4314 0.4114 0.9562

Malstone

AvgPower (W) 90.16 37.24 27.91 38.36
Runtime (s) 62.11 63.66 73.09 63.65
Energy (J) 5599.97 2370.53 2040.19 2441.66
EDP (kJs) 347.82 150.91 149.12 155.41
AvgPower* 1.0000 0.4130 0.3096 0.4255
Runtime* 1.0000 1.0250 1.1768 1.0248
Energy* 1.0000 0.4233 0.3643 0.4360
EDP* 1.0000 0.4339 0.4287 0.4468

agement policies. The results are shown in Table 4. Note that the results were obtained
with the optimization target towards minimal EDP as described in Section 3.

In Table 4, “Runtime” denotes the total execution time of the benchmark program.
“AvgPower” refers to the average chip power of the SCC, including the power of the
CPU cores and the network-on-chip (NoC). “Energy” is the energy consumption of the
chip during the execution, i.e. the product of average power and runtime, and “EDP”
is the product of energy and runtime. We also present the results (the items marked
with *) normalized to the corresponding values of static800M. For ease of visualizing
the comparison, we plot the normalized values of runtime, average power, energy and
EDP as histograms as shown in Fig. 4.

From the experimental results of Graph 500 (Fig. 4(a)), we can see that all the
three policies using DVFS achieved big savings in energy or EDP compared with the
static power mode. Although the baseline profile-guided power management policy

Latency-aware DVFS for Efficient Power State Transitions on Many-core Architectures 17

(latency-unaware) achieves 40.7% energy saving, it gives the worse EDP result. The
latency-aware policy achieves 54.7% energy saving and 33.7% EDP reduction. That
means, our latency-aware DVFS algorithm achieves 23.6% and 40.9%, respectively,
more energy and EDP savings than the latency-unaware policy. This is indeed the best
result—a win-win case—that proves the effectiveness of our latency-aware DVFS
algorithm from both energy and performance viewpoints. The max-VSlatency pol-
icy achieves 31.6% energy saving and 9.9% EDP reduction compared with the static
power scheme. This implies much potential for energy saving in data-intensive appli-
cations exemplified by Graph 500. Compared with max-VSLatency, our latency-aware
algorithm reduces the energy and EDP further by 33.8% and 26.4% respectively. This
confirms that our latency-aware DVFS algorithm is more capable of improving the
DVFS efficiency than what Ioannou et al. [15] proposed.

For the LU benchmark (Fig. 4(b)), although the three power management policies
using DVFS can all reduce the average power and energy significantly (average reduc-
tion of 63.2% and 28.1% respectively), only the latency-aware policy reduces the EDP
product (by 62.5%). On the contrary, the other two polices, latency-unaware and max-
VSLatency, give the worst EDP figures (increased by 73.4% and 52.4% respectively)
due to substantial performance loss.

For the SOR benchmark (Fig. 4(c)), the latency-aware policy performs better than
other policies in all aspects, including average power, runtime, energy and EDP (al-
though the improvements over the latency-unaware policy are marginal for this pro-
gram). Compared with static800M, it has 60.0% energy saving and 58.9% EDP re-
duction, outperforming the max-VSLatency policy by saving 56.6% more energy and
giving 57.0% better EDP without observable performance degradation.

For Malstone (Fig. 4(d)), we can see all the three DVFS schemes can achieve
significant energy saving and EDP reduction. But our latency-aware DVFS scheme
achieves the least EDP as desired (57.2% less than the static policy’s EDP) despite the
17.7% runtime increase it costs.

In summary, compared with the static mode (static800M), our latency-aware DVFS
algorithm achieves 51.2% average EDP reduction (with 55.3% average energy saving)
while the average overhead of execution time is 8.8%. Compared with the latency-
unaware policy, it gives 31.3% EDP reduction, 24.0% energy saving and 15.2% less
overhead of execution time in the average case. It also wins over the DVFS solution of
Ioannou et al. [15] by an average of 42.5% further reduction in EDP and 44.9% more
energy saving.

4.4 Analysis and Discussion

We further analyze and discuss the experimental results by linking to observations
about the chip power variation (Fig. 5) during the execution of the benchmark pro-
grams.

4.4.1 Analysis of Graph 500

Figure 5(a) shows the chip power of the SCC when Graph 500 was run under different
power management policies. For the first 13 seconds in the figure, the performance

18 Zhiquan Lai et al.

 0

 0.5

 1

 1.5

 2

Static800M Latency-Unaware Latency-Aware Max-VSLatency

N
or

m
al

iz
ed

 v
al

ue

AvgPower*
Runtime*
Energy*

EDP*

(a) Graph 500

 0

 0.5

 1

 1.5

 2

 2.5

Static800M Latency-Unaware Latency-Aware Max-VSLatency

N
or

m
al

iz
ed

 v
al

ue

AvgPower*
Runtime*
Energy*

EDP*

(b) LU

 0

 0.5

 1

 1.5

 2

Static800M Latency-Unaware Latency-Aware Max-VSLatency

N
or

m
al

iz
ed

 v
al

ue

AvgPower*
Runtime*
Energy*

EDP*

(c) SOR

Latency-aware DVFS for Efficient Power State Transitions on Many-core Architectures 19

 0

 0.5

 1

 1.5

 2

Static800M Latency-Unaware Latency-Aware Max-VSLatency

N
or

m
al

iz
ed

 v
al

ue

AvgPower*
Runtime*
Energy*

EDP*

(d) Malstone

Fig. 4 Results of average power, runtime, energy and EDP of the benchmarks running under different power
management policies. The values are normalized to the static800M figures

and power obtained under different policies are nearly the same. This is because the
program is performing compute-intensive edge generation and graph construction in
that time range, where the opportunity for power saving is very limited (so, high power
setting was applied). Beyond this range, the program begins to perform breadth-first
searches and the workload becomes more data-intensive (or memory-bound), so DPM
policies get opportunities to lower the power with little performance loss. With our
proposed latency-aware DVFS algorithm, the DPM solution effectively avoids most
of the excessive long-latency voltage transitions. So the algorithm achieves better run-
time performance. We can also see that both latency-unaware and max-VSLatency
policies are making the chip power jump up and drop down aggressively with long
spikes in the figure. However, the latency-aware policy makes the power variation
more stable, lingering in the low power range of around 20 to 30 watts.

The results obtained have confirmed that aggressive power state transitions will re-
ally translate into either sizable slowdown in runtime or increase in average chip power
consumption. Although the max-VSLatency policy tries to avoid excessive voltage
transitions by putting a fixed time gap between DVFS scheduling reference points, it
may make wrong decisions that allow non-profitable power state transitions to hap-
pen while omitting those profitable ones. This is also why the chip power stays in the
higher-power region most of the time for max-VSLatency in Figure 5(a). We can con-
jecture that it must have missed quite a lot of rewarding transitions from high-power to
low-power states. Therefore, compared with our latency-aware policy, although max-
VSLatency gets an 11.2% performance improvement (or 10.1% runtime reduction), it
consumes 68.1% more average power.

Analysis of the Phase-based Profiles: Since our baseline DPM scheme follows a
profile-guided approach, we present the execution profile of Graph 500 to figure out
the correlation between the profile and DVFS scheduling. The profiles of the Graph
500 benchmark with and without latency-awareness are shown in Fig. 6. The profiles
include the optimal power setting (V/ f pair) for each phase. It is quite common in

20 Zhiquan Lai et al.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 100 200 300 400 500 600 700

Po
w

er
 (

W
at

t)

Time (s)

Static800M
Latency-Unaware

Latency-Aware
Max-VSLatency

(a) Graph 500

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80

Po
w

er
 (

W
at

t)

Time (s)

Static800M
Latency-Unaware

Latency-Aware
Max-VSLatency

(b) LU

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

Po
w

er
 (

W
at

t)

Time (s)

Static800M
Latency-Unaware

Latency-Aware
Max-VSLatency

(c) SOR

Latency-aware DVFS for Efficient Power State Transitions on Many-core Architectures 21

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80

Po
w

er
 (

W
at

t)

Time (s)

Static800M
Latency-Unaware

Latency-Aware
Max-VSLatency

(d) Malstone

Fig. 5 Chip power comparison during execution under different power management policies

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 200 400 600 800 1000 1200 1400 1600 1800

Fr
eq

ue
nc

y
(M

H
z)

Phase #

Optimal frequency setting guided by the profile for each phase (Latency-Unaware)

Latency-Unaware/core0 Latency-Unaware/core1

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 200 400 600 800 1000 1200 1400 1600 1800

Fr
eq

ue
nc

y
(M

H
z)

Phase #

Optimal frequency setting guided by the profile for each phase (Latency-Aware)

Latency-Aware/core0 Latency-Aware/core1

Fig. 6 Comparison of the profiles with and without the latency-aware algorithm: in the upper sub-figure,
we can find some aggressive DVFS decisions which cause power state transitions between different voltage
levels (referring to Table 3, frequencies of 800MHz, 533MHz and other values below 533MHz imply differ-
ent corresponding voltages). After applying the latency-aware algorithm, we can see in the lower sub-figure
that these aggressive state transitions have disappeared.

SVM programming styles that the master process exhibits an execution pattern some-
what different from other processes of the same parallel program. For example, the
master process usually takes up the duties of reading the input data file, allocating a

22 Zhiquan Lai et al.

shared array for all cores to access, and printing the aggregated computation result.
We assume the master process is always running on core 0 and all “non-master” pro-
cesses share a very similar execution pattern. In Fig. 6, “core0” and “core1” in the
legend denote the profiles of the master process and the processes running on other
cores respectively.

The top sub-figure of Fig. 6 shows the profile information derived without the
latency-aware algorithm. The x-axis represents the phase number; the y-axis stands
for the optimal frequency (MHz) for the corresponding phase. As described in Sec-
tion 4.1, the least voltage for 800MHz is 1.1V; for 533MHz, it is 0.9V; and for other
frequency levels under 533MHz, it is 0.8V. We can see in the figure that there exist
many excessive DVFS scheduling decisions due to the lack of latency awareness. For
example, beyond the phase #210 or so, there are many times of frequency scaling
among different voltage levels, which could cause high voltage switching costs.

We expect the latency-aware DVFS algorithm proposed in Section 3 can avoid
such excessive DVFS decisions. The bottom sub-figure of Fig. 6 shows the profile
of Graph 500 obtained with our latency-aware algorithm enabled. We can see that
there are much fewer DVFS decisions made among different voltage levels after ap-
plying the algorithm. The DVFS decisions become more “conservative” in the cases
when voltage scaling is needed. This proves that our proposed algorithm is capable of
choosing the most profitable power states to switch between when the temporal effects
of voltage scaling are considered.

4.4.2 Analysis of LU

The chip power variation of the LU program execution is depicted in Fig. 5(b). The
execution is divided into 524 phases by barriers and locks. In the figure, it is obvi-
ous that the execution times obtained by the latency-unaware and max-VSLatency
policies both increase to over a double of that obtained by the latency-aware policy.
Meanwhile, the power maintained using these two policies is quite unstable, fluctu-
ating fairly vigorously between 30 and 50 watts. By comparing the DVFS decisions,
we find that the latency-unaware scheme keeps switching the power state frequently
between different voltage levels (0.9V and 0.8V). As we investigated in Section 2,
such voltage scaling has a high latency cost to pay. Frequent voltage transitions are
the cause for the dismal performance and additional energy dissipation observed in
Fig. 4(b). Although the max-VSLatency policy avoids some of the excessive power
state transitions and performs slightly better than the latency-unaware policy, its power
efficiency is much worse than the latency-aware policy.

4.4.3 Analysis of SOR

Figure 5(c) displays the chip power consumed by the SOR program during its exe-
cution. We can see that enabling DVFS basically causes no increase in runtime, no
matter which policy is used. By inspecting the profile of this benchmark, we find
that the main portion of execution from about the 20th second to the end corresponds
to a single phase performing a sorting procedure which is highly memory-bound in
nature—up to 98% bus utilization is noted during our performance monitoring. That

Latency-aware DVFS for Efficient Power State Transitions on Many-core Architectures 23

means for such data-intensive workload, we can slow down the frequency and/or volt-
age to save energy with vanishingly small performance loss. This is also observable in
Fig. 4(c)—all the runtime bars are almost the same. Another interesting phenomenon
observed is that the max-VSLatency policy starts failing to make power reduction af-
ter the 20th second. This is because the policy finds that the coming frequency/voltage
scaling is not far away enough from the last scaling. So it skips the scaling request. By
only one inaccurate decision, it sacrifices the vast opportunity to save power for the
long-running phase. This again implies that the strategy of moving DVFS scheduling
decisions far apart by a universal gap would be overkill. On the other hand, we can
see that both latency-aware and latency-unaware policies perform quite alike for this
benchmark. This is because the entire execution of SOR has nine phases only—the
room is too small for latency-aware DVFS scheduling to exploit for significant im-
provements to be observed. This contrasts with the very different situation of the LU
program execution which has hundreds of phases.

4.4.4 Analysis of Malstone

Figure 5(d) shows the chip power curves of Malstone execution under different poli-
cies. The results show that all the three DVFS policies achieve significant power reduc-
tion with slight performance degradation. For this benchmark, the latency-aware pol-
icy is found to play effects biased more to power saving, maintaining the lowest power
state among all the policies for most of the time. Although the latency-aware policy
gives a longer execution time, it still achieves a better performance-energy tradeoff
than others, resulting in the minimum EDP.

5 Related Work

Dynamic voltage and frequency scaling (DVFS) is a canonical technique to trim power
consumption by dynamically adjusting voltage and/or frequency levels to the time-
varying needs of the system. Existing works on DVFS [37,12,26,33,8] have experi-
mentally revealed probable saving of about 15% to 90% energy of the CPU chip by
the technique4.

DVFS mechanisms, including the so-called multiple energy gears [11] and dy-
namic overclocking [22], and DVFS policies are well studied in the literature [11,

4 We are aware of a recent compiler-based study [42] reported diminishing returns from DVFS by their
analysis based on a high-level model. They argued that the reduction of dynamic power using DVFS is trivial
compared with the whole system power, considering the performance degradation due to DVFS. So they
advocated a “race to sleep” approach instead of using DVFS for energy saving. However, their analysis was
based on compute-bound programs evaluated on Cray supercomputers. Two latest phenomena are against
narrowing down to such a conclusion. First, for the state-of-the-art supercomputers such as Tianhe-2, the
many-core processors or coprocessors have dominated the entire system power by up to 60%. Second,
it is increasingly important to support the class of data-intensive HPC or multi-tenant cloud computing
workloads nowadays. Such relatively memory-bound workloads expose rich opportunity for DVFS to reap
energy savings. So we believe DVFS is still an effective technique to achieve performance-energy tradeoff,
and it is the case as evidenced by our experimental results.

24 Zhiquan Lai et al.

15,23,30,31,21]. Freeh et al. presented a power-efficient execution framework us-
ing multiple frequency-voltage settings [11]. Ma et al. adopted control theory to pre-
cisely control the power of the entire many-core chip [23]. David et al. demonstrated
a power management algorithm that runs in real time and dynamically adjusts the per-
formance of islands of cores to reduce power consumption while maintaining the same
level of performance [7]. Li et al. presented a software-controlled execution scheme
that considers the effects of dynamic concurrency throttling (DCT) and dynamic volt-
age/frequency scaling (DVFS) in the context of hybrid programming models [21]. Lo
and Kozyrakis [22] studied the power-performance impact of CPU TurboMode and
proposed autoturbo to dynamically manage TurboMode for modern multicore chips.
However, all these pieces of work did not explore the latency behavior of DVFS, even
though their evaluations were conducted on real multicore hardware platforms.

This paper fills the research gap by developing a novel DVFS algorithm that coun-
teracts the side effects of the scaling latency. The direct inspiration for this paper
comes from our study of the DVFS latency characteristics on a many-core chip. We
found that the latency is non-negligible and varies case by case, calling for a more
intelligent DVFS scheduling algorithm to counteract its adverse effects. Some prior
works did reveal the potential problem with DVFS latency [27,28,41,15]. They are
discussed as follows.

Ravishankar et al. argued that if fine-grained DVFS support is provided, the over-
heads of DVFS would scale with the number of cores in the multiprocessor system-
on-chip (MPSoC) platforms [28]. There also exist a few research efforts related to
combating the DVFS overhead issue. For instance, thread motion [27] or thread mi-
gration [28] was introduced into DPM schemes to reduce the DVFS overhead. Rav-
ishankar et al. proposed a power-aware thread migration algorithm to dynamically
migrate threads to appropriate cores with different and static power states. However,
thread migration could make the execution environment much more complex.

Ye et al. [41] proposed reducing the number of power state transitions by introduc-
ing task allocation into learning-based dynamic power management for multicore pro-
cessors. However, program execution pattern usually changes according to the work-
flow so that the optimal power settings for each phase of program execution are likely
to be different. Although task allocation reduces the time of DVFS scaling, it could
also cause misses of important power saving opportunities.

Finally, Ioannou et al. [15] proposed a hierarchical DVFS controller using some
phase prediction algorithm for MPI applications. We feel that their work is the closest
to ours—both adopted a phase-based hierarchical power management approach and
used the Intel SCC hardware for experimental evaluation. But we did the work for
shared-memory programs (on Barrelfish) while they targeted MPI programs (evalu-
ated on SCC Linux). In their solution, they are also aware of the non-negligible volt-
age transition costs. They try to amortize the costs by making the reference points for
DVFS scheduling decisions far apart. Their study found that a DVFS decision affect-
ing the whole chip can take up to 6ms, and employed an empirical threshold of at least
20ms between the reference points. Our study, on the other hand, reveals that the over-
head can surge to over 200ms in the worst case that all voltage domains of the busy
chip are making concurrent voltage scaling requests, and suggests a more intelligent,
fine-grained algorithm segregating scale-up and scale-down scenarios. Our previous

Latency-aware DVFS for Efficient Power State Transitions on Many-core Architectures 25

work [18] investigated DVFS latency behavior and proposed a preliminary version of
latency-aware DVFS for many-core architectures. In this paper, we extend it in two
main aspects. First, we improved our DVFS algorithm by considering the impact of
busy-waiting phases on DVFS scaling; the very details of the algorithm (Section 3)
are supplemented in this paper. Second, we provided a more thorough experimental
comparison between our improved algorithm and the threshold-based method given
by Ioannou et al. [15]. Our novel DVFS control algorithm is proved to work better in
all cases for a better balance between performance and energy.

6 Conclusion

In this paper, we investigate the latency characteristics of DVFS for many-core archi-
tectures with multiple voltage domains. We find non-negligible DVFS latency on the
Intel SCC many-core architecture. Based on the study, a latency-aware DVFS control
algorithm is proposed to avoid excessive power state transitions. We implement the
algorithm into a working DVFS controller for the Barrelfish operating system plus
a power management library for (virtual) shared-memory parallel programs. A thor-
ough experimental evaluation using Graph 500, along with other benchmarks, was
conducted on the Intel SCC platform. The experimental results show that our latency-
aware DVFS algorithm is capable of achieving 15.2% less execution time, 24.0% more
energy saving and 31.3% better EDP in the average case than a baseline profile-guided
dynamic power management (DPM) policy without latency awareness. The algorithm
also performs better than a prior DVFS scheme employing a universal time gap be-
tween DVFS scheduling decisions to amortize heavy voltage scaling costs.

Acknowledgments This work is supported by Hong Kong RGC grant HKU 716712E, Program for Chang-
jiang Scholars and Innovative Research Team in University (PCSIRT, No. IRT1012) and Aid Program for
Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province
(No. 11JJ7003). Special thanks go to Intel China Center of Parallel Computing (ICCPC) and Beijing Soft
Tech Technologies Co., Ltd. for providing us their support services of the SCC platform in their Wuxi data
centers.

References

1. Top500 List - June 2014. URL http://www.top500.org/lists/2014/06/
2. SCC external architecture specification (EAS) (revision 0.94). Tech. rep., Intel Labs (2010)
3. The SCC programmer’s guide (revision 1.0). Tech. rep., Intel Labs (2010)
4. Baumann, A., Barhamy, P., Dagandz, P.E., Harrisy, T., Isaacsy, R., Peter, S., Roscoe, T., Schüpbach, A.,

Singhania, A.: The multikernel: A new OS architecture for scalable multicore systems. In: Proceeding
of ACM Symposium on Operating System Principles (SOSP) (2009)

5. Bennett, C., Grossman, R.L., Locke, D., Seidman, J., Vejcik, S.: Malstone: towards a benchmark for
analytics on large data clouds. In: Proceedings of the 16th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 145–152. ACM, 1835826 (2010)

6. Cameron, K.W., Ge, R., Feng, X.: Designing computational clusters for performance and power. Ad-
vances in Computers 69, 89–153 (2007)

7. David, R., Bogdan, P., Marculescu, R., Ogras, U.: Dynamic power management of voltage-frequency
island partitioned networks-on-chip using Intel’s single-chip cloud computer. In: Proceeding of Inter-
national Symposium on Networks-on-Chip (NOCS), pp. 257–258 (2011)

http://www.top500.org/lists/2014/06/

26 Zhiquan Lai et al.

8. Donald, J., Martonosi, M.: Techniques for multicore thermal management: Classification and new ex-
ploration. In: Proceeding of ACM/IEEE International Symposium on Computer Architecture (ISCA),
pp. 78–88 (2006)

9. Fahey, J.: Home electricity use in US falling to 2001 levels (2013). URL http://bigstory.ap.
org/article/home-electricity-use-us-falling-2001-levels

10. Feng, W.C., Cameron, K.: The Green500 list: Encouraging sustainable supercomputing. Computer
40(12), 50–55 (2007). DOI http://doi.ieeecomputersociety.org/10.1109/MC.2007.445

11. Freeh, V.W., Lowenthal, D.K.: Using multiple energy gears in mpi programs on a power-scalable clus-
ter. In: Proceedings of the tenth ACM SIGPLAN symposium on Principles and practice of parallel
programming, pp. 164–173. ACM (2005)

12. Govil, K., Chan, E., Wasserman, H.: Comparing algorithm for dynamic speed-setting of a low-power
CPU. In: Proceedings of the 1st Annual International Conference on Mobile Computing and Network-
ing (MobiCom), pp. 13–25. ACM, 215546 (1995)

13. Graph500: The Graph 500 benchmark. URL http://www.graph500.org
14. Howard, J., Dighe, S., Vangal, S., Ruhl, G., Borkar, N., Jain, S., Erraguntla, V., Konow, M., Riepen,

M., Gries, M., Droege, G., Lund-Larsen, T., Steibl, S., Borkar, S., De, V., Wijngaart, R.V.D.: A 48-
core IA-32 message-passing processor in 45nm CMOS using on-die message passing and DVFS for
performance and power scaling. IEEE Journal of Solid-State Circuits 46(1), 173–183 (2011)

15. Ioannou, N., Kauschke, M., Gries, M., Cintra, M.: Phase-based application-driven hierarchical power
management on the single-chip cloud computer. In: Proceeding of the 20th International Conference
on Parallel Architectures and Compilation Techniques (PACT) (2011)

16. Iyer, A., Marculescu, D.: Power efficiency of voltage scaling in multiple clock, multiple voltage cores.
In: Proceedings of the 2002 IEEE/ACM International Conference on Computer-aided Design, ICCAD
’02, pp. 379–386. ACM, New York, NY, USA (2002). DOI 10.1145/774572.774629. URL http:
//doi.acm.org/10.1145/774572.774629

17. Lai, Z., Lam, K.T., Wang, C.L., Su, J.: A power modeling approach for many-core architectures.
In: Proceedings of the 10th International Conference on Semantics, Knowledge and Grids, SKG ’14
(2014). (in press)

18. Lai, Z., Lam, K.T., Wang, C.L., Su, J., Yan, Y., Zhu, W.: Latency-aware dynamic voltage and frequency
scaling on many-core architectures for data-intensive applications. International Conference on Cloud
Computing and Big Data (CloudCom-Asia) (2013)

19. Lam, K.T., Shi, J., Hung, D., Wang, C.L., Yan, Y., Zhu, W.: Rhymes: A shared virtual memory sys-
tem for non-coherent tiled many-core architectures. In: Proceedings of the 20th IEEE International
Conference on Parallel and Distributed Systems, ICPADS ’14 (2014). (in press)

20. Li, B., Chang, H.C., Song, S.L., Su, C.Y., Meyer, T., Mooring, J., Cameron, K.: The power-performance
tradeoffs of the Intel Xeon Phi on HPC applications. In: Workshop on Large-Scale Parallel Processing,
LSPP ’14 (2014)

21. Li, D., Supinski, B.R.d., Schulz, M., Nikolopoulos, D.S., Cameron, K.W.: Strategies for energy-
efficient resource management of hybrid programming models. IEEE Trans. Parallel Distrib. Syst.
24(1), 144–157 (2013)

22. Lo, D., Kozyrakis, C.: Dynamic management of turbomode in modern multi-core chips. 20th Interna-
tional Symposium on High Performance Computer Architecture (HPCA) (2014)

23. Ma, K., Li, X., Chen, M., Wang, X.: Scalable power control for many-core architectures running multi-
threaded applications. In: Proceeding of ACM/IEEE International Symposium on Computer Architec-
ture (ISCA) (2011)

24. Matthews, O., Zhang, M., Sorin, D.: Scalably verifiable dynamic power management. In: Proceedings
of the 20th IEEE International Symposium on High Performance Computer Architecture, HPCA ’14,
pp. 579–590 (2014). DOI 10.1109/HPCA.2014.6835967

25. National Energy Administration (NEA) of China: China’s total electricity consumption in 2013. URL
http://www.nea.gov.cn/2014-01/14/c_133043689.htm

26. Qingyuan, D., Meisner, D., Bhattacharjee, A., Wenisch, T.F., Bianchini, R.: Coscale: Coordinating
CPU and memory system DVFS in server systems. In: Proceeding of the 45th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pp. 143–154 (2012)

27. Rangan, K.K., Wei, G.Y., Brooks, D.: Thread motion: Fine-grained power management for multi-core
systems. ACM/IEEE International Symposium on Computer Architecture (ISCA) (2009)

28. Ravishankar, C., Ananthanarayanan, S., Garg, S., Kennings, A.: Analysis and evaluation of greedy
thread swapping based dynamic power management for mpsoc platforms. 13th International Sympo-
sium on Quality Electronic Design (ISQED) (2012)

http://bigstory.ap.org/article/home-electricity-use-us-falling-2001-levels
http://bigstory.ap.org/article/home-electricity-use-us-falling-2001-levels
http://www.graph500.org
http://doi.acm.org/10.1145/774572.774629
http://doi.acm.org/10.1145/774572.774629
http://www.nea.gov.cn/2014-01/14/c_133043689.htm

Latency-aware DVFS for Efficient Power State Transitions on Many-core Architectures 27

29. Rotem, E., Mendelson, A., Ginosar, R., Weiser, U.: Multiple clock and voltage domains for chip multi
processors. In: Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microarchi-
tecture, MICRO 42, pp. 459–468. ACM, New York, NY, USA (2009). DOI 10.1145/1669112.1669170.
URL http://doi.acm.org/10.1145/1669112.1669170

30. Sartori, J., Kumar, R.: Proactive peak power management for many-core architectures. Tech. Rep.
CRHC-07-04, University of Illinois at Urbana-Champaign (2007)

31. Simone, D.: Power management in a manycore operating system. Masters thesis (2009)
32. Sinkar, A., Ghasemi, H., Schulte, M., Karpuzcu, U., Kim, N.S.: Low-cost per-core voltage domain

support for power-constrained high-performance processors. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 22(4), 747–758 (2014). DOI 10.1109/TVLSI.2013.2257900

33. Sueur, E.L., Heiser, G.: Dynamic voltage and frequency scaling: the laws of diminishing returns. In:
Proceedings of the 2010 International Conference on Power Aware Computing and Systems, pp. 1–8
(2010)

34. Talpes, E., Marculescu, D.: Toward a multiple clock/voltage island design style for power-aware pro-
cessors. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 13(5), 591–603 (2005).
DOI 10.1109/TVLSI.2005.844305

35. Trader, T.: China’s supercomputing strategy called out (2014). URL http://www.hpcwire.com/
2014/07/17/dd/

36. Vogeleer, K.D., Memmi, G., Jouvelot, P., Coelho, F.: The energy/frequency convexity rule: Modeling
and experimental validation on mobile devices. In: R. Wyrzykowski, J. Dongarra, K. Karczewski,
J. Waśniewski (eds.) Parallel Processing and Applied Mathematics, Lecture Notes in Computer Sci-
ence, pp. 793–803. Springer Berlin Heidelberg (2014). DOI 10.1007/978-3-642-55224-3_74

37. Weiser, M., Welch, B., Demers, A., Shenker, S.: Scheduling for reduced CPU energy. In: Proceeding
of the 1st USENIX Conference on Operating Systems Design and Implementation (OSDI) (1994)

38. Weissel, A., Bellosa, F.: Process cruise control: Event-driven clock scaling for dynamic power man-
agement. In: Proceeding of the International Conference on Compilers, Architecture and Synthesis for
Embedded Systems (CASES) (2002)

39. Wilson, L.: Average household electricity use around the world. URL http://
shrinkthatfootprint.com/average-household-electricity-consumption

40. World Population Review: China population 2014. URL http://worldpopulationreview.com/
countries/china-population

41. Ye, R., Xu, Q.: Learning-based power management for multi-core processors via idle period manipu-
lation. In: Proceeding of the 17th Asia and South Pacific Design Automation Conference (ASP-DAC),
pp. 115–120 (2012)

42. Yuki, T., Rajopadhye, S.: Folklore confirmed: Compiling for speed = compiling for energy. In: Pro-
ceedings of the 26th International Workshop on Languages and Compilers for Parallel Computing,
LCPC ’13 (2013)

http://doi.acm.org/10.1145/1669112.1669170
http://www.hpcwire.com/2014/07/17/dd/
http://www.hpcwire.com/2014/07/17/dd/
http://shrinkthatfootprint.com/average-household-electricity-consumption
http://shrinkthatfootprint.com/average-household-electricity-consumption
http://worldpopulationreview.com/countries/china-population
http://worldpopulationreview.com/countries/china-population

	Introduction
	DVFS Latency on Many-core Architectures
	Latency-aware Power Management
	Experimental Evaluation
	Related Work
	Conclusion

