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Abstract—With the increasing scale of applications and the
number of users, we design a Self-organizing Cloud (SoC)
which aims to make use of the distributed volunteer computers
or dedicated machines to provide powerful computing ability.
These resources are provisioned elastically according to user’s
specific demand, by leveraging virtual machine (VM) resource
isolation technology. Based on such a framework, we propose a
social-optimized auction-based resource allocation scheme, which
mainly tackles two issues: (1) how to make full use of the
widely dispersed multi-attribute idle resources to construct a
win-win situation, such that each task schedule could let both
sides (resource providers and consumers) be satisfied with their
final payoffs. (2) The total resource utility welfare should also
be optimized to guarantee the overall performance around the
global system. The key challenge of getting the win-win effect with
social optimization is its provable NP-completeness. Finally, we
validate that our approach can effectively improve the resource
contributor’s payoffs up to about five times as the level without
our method via simulation work. Meanwhile, our approach
can also keep a high level of the processing rate for the task
scheduling.

I. INTRODUCTION

Cloud computing offers scalable and on-demand virtualized
resources as a utility service over the Internet with bypassed
inter-operability constraints. With VM’s resource isolation
technology [1], computing resources such as CPU and memory
could be partitioned and reassembled to meet end-users’
specific needs, achieving elastic and convenient access to
the virtualized computational resources. From anywhere on
the Internet and at anytime, each user could access a tailor-
made on-demand execution environment, where the processing
ability comes from other Internet-connected sites over WAN.
On the other hand, volunteer computing (or P2P desktop
Grid) has also been studied for years especially for its great
potential on millions of computers all over the world. Such
platforms (e.g. BOINC [2], XtremWeb [3]) have made great
contributions to scientific researches since 2000.

Our extended cloud framework (a.k.a. Self-organizing
Cloud) combines resource isolation technology in Cloud com-
puting and self-organizing architecture in volunteer computing
together. In the Self-organizing Cloud, each host (either a
volunteer desktop computer or a dedicated commodity node
under cluster) is deployed with an autonomous resource state
collector and a virtual machine monitor (VMM), being able to
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serve as both task scheduler and resource contributor. A task
could be a user request to customize a particular execution en-
vironment with specified resource demand, which is expressed
as a least-qualified vector (e.g., including CPU, memory and
network bandwidth). When the task is submitted to a self-
organizing host like desktop PC or dedicated commodity
computer, the autonomous scheduler will find a qualified re-
source node on the network through a distributed range query
protocol. Whenever a qualified node is found/determined, the
task will be allocated with split resource shares from the
execution node, and the resource owner will be awarded by the
payment and credit. In such a framework, the participants will
have high motivations to contribute their resources, because
of two pillars. First, any resource contributor will earn an
amount of payment/income, which benefit them in return (e.g.
getting more resources later) based on the relation between
motivation and market [4]. Second, O. Nov et al. [5] show
that many of volunteers will be enthusiastic to provide their
idle resources, in order to compete against each other for
getting salient credits. For example, there are already more
than 280,000 volunteers providing about 5.5 PetaFLOPS every
day with more than 650,000 computers in BOINC project [2].

Recently, there already exist many projects being designed
based on this framework. A typical example is the on-going
project Cloud@Home [6] undertaken by INRIA. Its major aim
is to design a predictive model of resource availability for
groups of volatile Internet resources and a set of strategies
for checkpointing applications using VMs in low-bandwidth
and volatile networks. Another example is Community Cloud
[7], in which each participating host is also considered the
resource supplier and the whole system is organized based on
the principle of digital ecosystem. Such a system is claimed to
provide openness of the usage (removing the dependence on
vendors), avoid the system-wide cascade failures, and quite
high environmental sustainability with significantly smaller
carbon footprint than traditional server farms. Z. Xu et al. [8]
implemented a Self-organizing Cloud prototype and make use
of hole-punching technology to support VM live migration on
the WAN, which is also transparent to cloud users. Wuala
Cloud [9] is a fully distributed online storage system that
can make use of the disk space and network bandwidth
from the distributed volunteer desktop computers, to provision
flexible and scalable management of large-capacity storage. Its
prominent features include guarantee of highly secure online



storage using improved encrypting technologies, distributed
file synchronization, real-time versioning and backup for the
service data and so on.

Based on the above cases, designing the Self-organizing
Cloud (SoC) system can definitely benefit a lot: (1) the
resource utilization could be improved with finer-granularity
resource allocation over VM technology; (2) more geographi-
cally distributed idle resources can be used while the substrate
details are still transparent to users as if in a single-point-of-
access manner; (3) it owns high robustness and reliability by
minimizing the impact of one single node’s failure or mali-
cious user’s DDoS attack to the whole system; (4) it suffers
much less cost on central management and maintenance than
that of traditional vender clouds, by leveraging the autonomous
marketized environment with business model between resource
consumers and contributors.

In addition to the opportunities mentioned above, there are
still many new problems to solve, in order to achieve the
user-agreed quality of services (QoS) based on their flexible
customization. Since there are no central-controlled servers to
coordinate the global resource states and prices, constructing
an autonomous win-win situation for all participants by mak-
ing full use of widely dispersed idle computing resources is
a huge challenge. Specifically, there are two desired features:
(1) win-win effect: In such a fully-distributed environment,
each task-schedule on multi-attribute resources is supposed to
let both sides (resource providers and consumers) be satis-
fied with their individual gains. (2) social optimization: The
total resource utility welfare (e.g. the average task-execution
turnaround time) should also be optimized to guarantee the
performance around the global system. Recently, most existing
researches just focus on the social-optimized feature of the re-
source allocation in their Gird/Cloud platforms for simplicity,
but none of them guarantee the autonomous win-win effect
to the best of our knowledge. For instance, B. An et al. [10]
propose an automated negotiation approach for maximizing
the social welfare in cloud’s resource allocation, yet such a
negotiation mechanism rarely discusses the resource owners’
payoffs. Instead, our solution can make sure both sides are
satisfied with final gains/payoffs, leading to a harmonious win-
win effect with the social-optimized welfare.

Different resource providers may assign different prices
(or pricing functions) on their heterogeneous resources, in-
troducing a potentially competitive situation. If there are
no robust pricing policies and auction mechanisms to co-
ordinate the interests of resource providers and consumers,
some participants may tend to lie on their real demands
in order to maximize their selfish gains, weakening other
ones’ motivations. For example, English auction [11] and
Dutch auction [12] are both conducted always open to the
competitors, which are time-consuming and may potentially
induce the resource price much higher than the real value,
sacrificing auctioneers’ benefits. In contrast, under the first-
price sealed auction, the users/auctioneers cannot know others’
bidding prices, so that they may incline to bid the prices that
are lower than the true value of the resource they regard, at

the cost of resource owner’s profit. Hence, one challenging
issue is how to guarantee that each participant would like
to be honest on their real demands (both resource prices
assigned by providers and the resource request proposed by
consumers). The second-price based sealed auction [13] is
a well-known policy that can make sure any resource users
who lie against their true resource demands will get inferior
gains. However, such a method can only discipline the resource
consumers to give honest bids, while overlooking the resource
owners’ pricing incentives. In contrast, we propose a novel
double-sided auction method that could leverage the second-
price policy in order to enforce both resource consumers
and providers to reveal their true expectations (both resource
demands and price demands).

The rest of the paper is organized as follows. In Section
II, we formulate the fully-distributed cloud resource alloca-
tion problem. In Section III, we first briefly introduce how
nodes discover resources and collects volatile states, and then
propose our major approach - namely Dual Vickrey Auction
- which takes into account the contributors’ incentives on
truthfully revealing their expected prices. Section IV shows
our simulation result and Section V comprehensively discusses
the related works. Finally, we conclude the paper with future
work in Section VI.

II. PROBLEM FORMULATION AND ANALYSIS

We present the system overview in Fig. 1, to illustrate the
task scheduling procedure. First of all (i.e. Step 1), the sched-
uler node ps will find the qualified resources on the network
using a fully-distributed federated range query protocol for the
submitted task. After that (Step 2 shown in the figure), it will
schedule the tasks based on our designed dual vickery auction,
in terms of users’ different scheduling bids and various prices
assigned by resource owners. Finally (in Step 3), the tasks
whose demands can match some resource availabilities will be
dispatched/migiated onto the target node for its execution. The
appropriate resource amounts (e.g. customized CPU speed and
I/O speed) will be split from the idle resource of the execution
node, by leveraging the VM resource isolation technology.
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Without loss of generality, we assume that there are n peer
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nodes, denoted by pi (1≤i≤n). Each node serves as both re-
source consumer (or user) and resource provider (or contribu-
tor). Each node’s resource is multi-dimensional along R differ-
ent attribute types (such as CPU, disk IO, network bandwidth,
etc.). All the tasks submitted to pi are marked as tij (1≤j≤ni),
where ni indicates the total number of tasks submitted to pi.
We use tpd

ij to indicate pd is tij’s execution node. Let ck(pd)
(1≤d≤n) denote the capacity of the kth resource attribute on
node pd and r(tij) = (r1(tij), r2(tij), · · · , rR(tij))T denote
the actual amounts of resource attributes allocated to tij when
it is executed. Users need to specify a demanding resource vec-
tor dr(tij)=(dr1(tij), dr2(tij), · · · , drR(tij))T , where drk(tij)
is the estimated amount of resource at kth attribute demanded
by task tij , to complete its execution within an expected exe-
cution time te. Hence, two necessary conditions are Inequality
(1) and Inequality (2).

∑
i,j drk(t

pd

ij ) ≤ ck(pd), k = 1, 2, · · · , R (1)

drk(tij) ≤ rk(t
pd

ij ), k = 1, 2, · · · , R (2)

Based on the above definitions, a node pd’s availability state
is denoted as a vector a(pd) = (a1(pd), a2(pd), · · · , aR(pd))T ,
where ak(pd)=ck(pd)−

∑
∀i,j drk(t

pd

ij ). Nodes’ availability
states will be dynamically propagated using the multi-
dimensional resource discovery protocol, namely Proactive
Index Diffusion CAN (PID-CAN), which appears in our
previous work [14], in order to effectively discover available
resources for submitted tasks (i.e. Step 1 shown in Fig. 1).

It is likely that different tasks own various characteristics,
e.g. CPU-bound or IO-bound properties. We assume that tasks’
characteristic can be predicted based on historical execution
records [15] or analysis of their intrinsic programming struc-
tures. That is, each task tij is submitted with a weight vector
w(tij)=(w1(tij),w2(tij),· · ·,wR(tij))T , implying the weights
on R multi-dimensional resource-attributes for its execution.

In this paper, we not only focus on resource consumer’s task
utility, but also concern resource contributor’s payoffs. Since a
task’s turnaround time could be split to two phases, scheduling
period (or waiting/queuing time) and execution period (or
running time), we define the task utility as Equation (3), where

su(tij) and eu(tij) refer to the scheduling utility and execution
utility respectively and λij is a coefficient customized based
on user’s expectation.

tu(tij) = λij · su(tij) + (1− λij) · eu(tij) (3)

Without loss of generality, we define su(tij) and eu(tij)
as two piecewise linear functions which decay linearly over
time (either waiting/queuing time tw or execution time te), as
shown in Formula (4) and Formula (5) respectively, which are
also shown in Fig. 2 (a) and Fig. 2 (b) graphically.

su(tij) =

⎧⎨
⎩

1 tw ≤ t0
1− k0(tw − t0) t0 < tw ≤ t0 + 1/k0
0 tw > t0 + 1/k0

(4)

eu(tij) =

⎧⎨
⎩

1 te ≤ t0
1− k1(te − t1) t1 < te ≤ t1 + 1/k1
0 te > t1 + 1/k1

(5)

In the two equations, t0 and t1 are users’ expected queuing
time and expected execution time respectively. The slopes of
both linear functions (either k0 or k1) reflect user’s patience on
task scheduling and task’s execution time. Obviously, t0+ 1

k0

and t1+
1
k1

can be considered least tolerable queuing time and
least tolerable execution time respectively.

In addition, each user should specify a scheduling bid (de-
noted sb(tij)), for his/her task’s schedule. Higher scheduling
bid implies the cost the user is willing to pay for being sched-
uled with higher priority, resulting in shorter queuing time.
Once the task is scheduled and completed successfully, its user
needs to pay the execution node’s owner both the payment
on scheduling priority and an amount of execution currencies
calculated based on the demanded resource amount and per-
resource-unit price. We denote by sp(tij) tij’s final scheduling
payment on its scheduling priority. Note that sb(tij) may not
be equal to sp(tij) for different auction policies. For example,
when tij wins the bid (i.e. it gives the highest bid among
all other competitors), sp(tij)=sb(tij) under the first-price
sealed-bid policy, while sp(tij)=max{x,y}�={i,j}(sb(txy)) in
the second-price sealed-bid policy. For such a definition
w.r.t. scheduling bid and execution payment, we could easily
distinguish user’s quick-scheduling demand (e.g. interactive



mode) and slow-scheduling demand (e.g. queuing mode). That
is, users could accurately express their expectations in fine
granularity, by tuning λij , w(tij), sb(tij), and dr(tij).

From resource provider’s point of view, each of them tries to
maximize its revenue, measured as the sum of the consumers’
payments. Different nodes may regard their owned resources to
be of different values based on their various needs on money
and nodes’ various properties or available states, thus they
should be able to assign various prices for their own resources,
or via pricing functions of the demanded resource amounts. We
use β(pd) to denote the price vector assigned by the owners
of the resource node pd.

The per-time-unit payment (denoted as C(tij)) for a task’s
execution by its user is denoted by Formula (6), where β(tij)
refers to the resource price adopted by the task tij . Then, the
total payment of this user on this task can be calculated as
C(tij)× tij

′s execution time.

C(tij) = sp(tij) + dr(tij)
T · β(tij) (6)

Since either the system or the users themselves cannot
exactly predict the execution times for the tasks, it is infeasible
for system to accurately predict any task’s final total payment
before running it. Then, it is non-trivial to directly evaluate the
satisfaction level of a user with a preset expectation based on
its final real payment. For example, any user may pay more
than the original payment amount estimated on their own due
to the inevitable error-prone prediction on the task’s execution
time. In this situation, the users would still feel worthy as long
as the per-time-unit payments are still with their agreement.
That is, the user of each task tpd

ij is satisfied if and only if its
real payment cost per time unit (i.e. C(tpd

ij )) is in accordance
with Inequality (7), where B(tij) is the user’s per-time-unit
budget.

C(tij) ≤ B(tij) (7)

The ultimate objective of any participant is to optimize
its task utility and profits meanwhile, also leading to a high
overall satisfaction level around the whole community. Finally,
we also expect such a non-cooperative resource allocation
game could maximize the social-welfare on tasks’ execution,
denoted as aggregated task utility (ATU) (defined in Formula
(8)), subject to the constraints (1), (2), (7). It is extremely hard
to find the optimal solution with polynomial time complexity
to solve this problem, in that we can prove it is NP-complete
(please see Appendix A for details). Fig. 2 (c) clearly illus-
trates the synthetic task utility: the shaded area represents a
completely content status, and it starts declining at different
rates along different planes, when increasing the expected
waiting time tw or the expected execution time te.

ATU =
∑n

i=1 tu(tij) (8)

III. SOCIAL-OPTIMIZED WIN-WIN RESOURCE
ALLOCATION

Our goal is to design a distributed cloud model that can
maximize social welfare, i.e. the total sum of task utilities,

with win-win effect.
There are two phases for each task scheduling, resource

discovery and resource allocation. As for the former, we adopt
our designed Proactive Index Diffusion CAN (PID-CAN),
which could effectively find available resources for any task
around the global systems with mitigated mutual searching
contention. As for the latter, we will adopt classical Vickrey
auction to realize the resource consumers’ truth bidding be-
haviors, and exploit a reverse Vickrey auction meanwhile to
make sure that the resource contributors are also better off
truthfully revealing their resources’ prices. With respect to
the win-win effect, the resource contributors can receive extra
amount of payment which is more than their expectations, and
the resource consumers’ tasks could be finished within their
preferred budgets and expected execution performance.

A. Dynamic Resource Discovery Protocol

We first briefly introduce the resource discovery protocol,
namely Proactive Index Diffusion CAN (PID-CAN) [14],
which will be responsible for distributively aggregating state
information on every node.

Like traditional CAN [16], each node (a.k.a. duty node)
under PID-CAN is responsible for a globally unique multi-
dimensional range zone randomly selected when it joins the
overlay; nodes’ update-states containing the availability vector
and resource price vector will be periodically propagated to
the duty node whose zone encloses the availability vector.

Unlike CAN, every node in PID-CAN connects a few
more neighbors whose distances are 2k (k=0,1,· · ·) hops; the
identifer (a.k.a. index) of the duty node that has non-empty
cache will be proactively diffused to a few randomly selected
2k-hop negative-direction neighbors. As a user submits a task
tij , the corresponding scheduler node will perform range query
for it, and the query message will be first routed to the zone-
matched node (i.e. its first duty node). This duty node will
then issue a multi-dimensional range query moving towards
other duty nodes along the positive indexes hop by hop, to
find more available resource records. Finally, several qualified
nodes satisfying the task’s demanding vector will be returned
to the scheduler node. Note that this design can effectively
control the query traffic overhead because each query just
launches single query message instead of multiple parallel
ones.

B. Dual Vickrey Auction (DVA) Algorithm

The main contribution of this paper is designing a social-
optized win-win resource allocation algorithm, namely dual
vickrey auction. The pseudo-code is shown in Algorithm 1,
where p

(k)
∗ and β

(k)
∗ stand for the kth item in QSET(tij) and

the corresponding assigned resource price (or pricing function)
respectively. QSET(tij) is defined as the set of candidate
resources found based on tij’s demand. This algorithm should
run on each individual nodes in the Self-organizing Cloud
system. Without loss of generality, suppose it is running on a
node ps as a scheduler. As mentioned previously, the node ps
will receive multiple tasks submitted by users over time, and



all of them will be put in the queue qs, which also contains
the old tasks that still have not found matched resources
yet. The scheduler of ps will process qs’s tasks according to
the non-increasing order of sb(tij) (i.e. scheduling priority),
periodically. From the perspective of the execution node, upon
receiving any migrated task, it will split its available resources
at multiple dimensions based on the task’s demand, update its
availability, and run the task over the split resource.

Algorithm 1 DUAL VICKREY AUCTION ALGORITHM
1: while (true) do
2: Sort qs’s tasks in non-increasing order of sb(tij);
3: for (each task tij in qs) do
4: maxsb(txy)≤sb(tij)

(sb(txy)) → sp(tij); /*txy refers to other
tasks in qs other than tij*/

5: Perform PID-CAN to construct QSET(tij) for tij ;
6: Sort all items in QSET(tij) in non-decreasing order of tij ’s

payment based on its resource demand dr(tij);
7: for (each item p

(k)
∗ in QSET(tij)) do

8: Connect node p
(k)
∗ to confirm its current availability state;

9: if (p(k)∗ is qualified for tij on Formula (1) and (7)) then
10: β

(k+1)
∗ → β(tij); /*next lowest price*/

11: Update p
(k)
∗ ’s status and execute tij in a VM on p

(k)
∗ ;

12: break;
13: end if
14: end for
15: end for
16: Sleep a tiny cycle; /*to receive more tasks*/
17: end while

For each task (denoted as tij) selected from qs, we use
PID-CAN protocol to search a set of resource nodes (denoted
QSET(tij)), whose multi-dimensional resource vectors satisfy
the tij’s expected qualified resource demand dr(tij). Specif-
ically, a query message that contains dr(tij) will be routed
on the PID-CAN overlay, until it finds the specific number of
qualified resource nodes through the passed duty nodes or the
number of hops is greater than a time-to-live (TTL) threshold.
The response messages received by the scheduler node ps will
contain the queried resource nodes’ identifiers (say IP address),
their resource availability states, and the corresponding prices
(or a pricing function). Then, the algorithm will sort the
resources in the non-decreasing order of their prices (line
6) and check them them one by one (line 7). That is, the
resources with lower prices will have higher priority to be
selected (line 8), and the settled payment will be assigned
as the next lowest payment from among the set of candidate
resources at line 10 (i.e. reverse second-price policy). Such a
design is similar to the second-price based pricing policy and
serves as the key point of this algorithm, which could make
the resource contributors be better off truthfully revealing their
true expectations on resource prices. Finally, the task will be
migrated and executed on the selected node, with proportional-
share resource consumption model [17]. Under such a model,
the tasks on the same host will be allocated the multiple
resource shares proportional to their demand vector, aiming
to make full use of the idle resources.

In addition, such an algorithm could converge to a win-
win situation, such that every one satisfies his/her gains. On
one hand, from resource consumers’ views, their tasks can

be executed based on their expected resource demands while
their payments are still under their budgets. On the other hand,
from resource contributors’ point of view, their revenues for
contributing their resources to execute other tasks will be more
than their original expectations, due to the next-lowest settled
payment design (line 10) and the extra amount of allowance
(i.e. task’s extra payment for paying for contending its schedul-
ing priority). That is, the resource contributors will definitely
receive higher payment from the resource contributors based
on higher resource prices and additional amount of payment
for scheduling priority.

IV. PERFORMANCE EVALUATION

A. Experimental Setting

For our simulation, we first built an emulated credit-
scheduler (or proportional-share scheduler) in accordance with
the design of XEN [18]. Then, we carefully constructed the
CAN protocol [16] using the Peersim tool [19] and improved
it using our designed Proactive-Index-Diffusion (PID) strategy
[14]. There are thousands of nodes, each with random settings
(Table I). Each task needs an expected five-dimensional re-
source vector {computation load, disk-IO load, network load,
disk size and memory size} to start and its execution time is
only related to the first three elements. Each task’s workload
along some attribute is set as the product of its random
capacity value based on Table I and a demand ratio (denoted
by λ (≤1)). Demand ratio is used to set a range within which
all tasks’ workload are distributed. For example, when λ=0.5,
all tasks’ workload will be randomly set in the range [0,
0.5 ·max capacity] at multiple dimensions. We simulate the
Internet communication by grouping all nodes into different
LANs, and two nodes across LANs have to communicate
through WAN network bandwidth. By leveraging the event-
driven mode under the Peersim tool, each experiment simulates
86400 seconds (one day) using 4320 event cycles and the user
tasks will be periodically generated on each node based on
Poisson process with 3000 seconds as its mean.

TABLE I
SYSTEM SETTING

Parameter Value
# of nodes 2000 ∼ 12000
# of processors per node 1,2,4,8
computation rate per processor 1,2,2.4,3.2 (GHz)
disk-I/O speed per node 20,40,60,80 MB/s
memory size per node 512, 1024, 2048, 4096 MB
disk size per node 20, 60, 120, 240 GB
LAN network bandwidth 5 ∼ 10 Mibit/s
WAN network bandwidth 0.2 ∼ 2 Mibit/s

We mainly focus on five metrics, processed task ratio (both
scheduled task ratio and finished task ratio), social welfare
(evaluated by average task utility), fairness index [20] of task’s
execution efficiency, average task utility, and the contributors’
average income ratio. The scheduled task ratio is calculated
by the ratio of the number of scheduled tasks that have been
migrated/queued onto some resource nodes and the number
of total tasks submitted. Task’s execution efficiency (denoted
as eij) is defined as the ratio of its execution time to the



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  6  12  18  24

S
c
h

e
d

u
le

d
 T

a
s
k
 R

a
ti
o

Time (Hour)

SocialOPT(λ=0.25)

Random(λ=0.25)

SocialOPT(λ=0.5)

Random(λ=0.5)

Fig. 3. Scheduled Task Ratio

theoretical value estimated using average computing ability.
Hence, the overall fairness index of task’s execution efficiency
(denoted as ϕ) can be calculated by Equation (9), where mi

means the number of tasks submitted to node pi.

ϕ =
(
∑n

i=1

∑mi

j=1 eij)
2

(
∑n

i=1 mi) · (
∑n

i=1

∑mi

j=1 e
2
ij)

(9)

The finished task ratio is equal to the number of finished tasks
and that of total tasks submitted. The average task utility
indicates the average value of task utility for all finished
tasks. The average contribution income ratio is calculated by
1
n

∑n
d=1

Ireal
ct (pd)

Iexpect
ct (pd)

, where Irealct (pd) and Iexpectct (pd) denote
the resource owner’s final income and its expected income
(evaluated using its own assigned prices) respectively.

Our experiments are conducted under different competitive
situations with various workloads of submitted tasks. As
a comparative baseline, we also implement another node-
selection strategy, namely random-selection strategy, which
was adopted in our previous work [14]. Under such a strategy
randomly, each scheduler node selects one execution node
from the qualified candidate resources queried by PID-CAN
protocol [14], in order to alleviate the decision conflict among
the resource requesters. This random-selection design also
delivers satisfactory throughput based on our previous work
[14], but with degraded contributors’ payoffs observed in this
paper, easily mitigating their participating motivations.

B. Experimental Result

In our previous work [14], the execution nodes are ran-
domly determined from candidate nodes queried by PID-CAN
protocol at the task scheduling phase. Such a method has
been proved effective to deliver the high system throughput
in terms of higher scheduled task ratio and finished task
ratio. In comparison, we compare our new method, i.e. dual
vickrey auction algorithm (SocialOPT) to the random-selection
method on the scheduled task ratio and finished task ratio
in Fig. 3 and Fig. 4, respectively. We could observe that the
throughput of SocialOPT is no worse than that of the random-
selection design in our previous work [14], no matter for the
scheduled tasks or finished tasks. Fig. 5 validates that the
fairness indexes of the tasks’ execution efficiencies under the
two algorithms converge to the same level, which means tasks
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can be treated fairly around the whole system. Accordingly,
our SocialOPT approach will not degrade the task processing
ratios and fairness at all, in that the main factor impacting the
task processing ratios is the resource discovery protocol. In
the following text, we will show that SocialOPT design will
significantly outperform the random-selection approach on the
social welfare and contributor’s average income.
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Fig. 6 presents the average task utility (i.e. social welfare)
around the global system. We observe that our SocialOPT
solution (i.e. dual vickrey auction) under different always
performs (with ATU up to about 0.98 and 0.95) at least no
worse than random node-selection strategy (with ATU up to
about 0.96 and 0.93), which used to serve as the best solution
in our previous work [14]. A minor improvement can be
observed in the SocialOPT solution is due to the priority-
aware design in scheduling tasks, which can improve task’s
scheduling utility.

From Fig. 7, we could observe that the contributors’ average
income could be up to 1.2 times of their expectations under
SocialOPT approach, and converges to 1 over one-day execu-
tion. Such a situation that contributors’ incomes are greater
than their expectations is due to the extra allowance (i.e.
scheduling payment provided by users) in our reverse-vickrey
auction design (i.e. line 10 in Algorithm 1). In contrast, under
the random-node-selection approach, contributors are probably
disappointed for the much lower incomes gained: the average
contribution income ratio will converge to only 0.2 and 0.1
when demand ratio is set to 0.25 and 0.5 respectively.
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V. RELATED WORK

Compared to the traditional task resource allocation prob-
lem, we emphasize economic theories that are essential for
improving participants’ motivations, in that contributors with
little reward may probably flee, causing collapse to the whole
system. Existing economy-based resource allocation mecha-
nisms could be classified into three categories:

Reciprocation-Based Economy (RBE): Reciprocation-based
incentive mechanisms, a.k.a. Network of Favors (NoF), have
been proposed to deal with the free-riding problem in a P2P
grid environment [21]. In RBE model, each node always
donates its service to others based solely on the record of
their past bilateral inverted service actions. So, the nodes
which contribute more will get more in return when they
make requests. Such a model is not flexible since there are
no currencies to coordinate interests between two sides. The
examples are OurGrid [22] and SHARP [23].

Nash Bargaining Solution (NBS) [24]: NBS is different
from RBE in that any requester must make an agreement
on a price by negotiating with another supplier before the
consumption. Although NBS may ensure demand and supply
match reciprocally, the matching procedure is relatively low-
efficient because the tasks cannot be started/executed without
a couple of bargaining rounds. The example projects include
Nimrod-G [25] and Mobile Grid [26].

Auction-Based Solution (ABS): In ABS, each consumer
has to submit bids for the needed resources to one or more
auctioneer nodes. ABS can be further classified into four
categories, English auction [11], Dutch auction [12], first-
price and second-price sealed auction, and double auction [27].

Since the first two auctions are carried out completely open
to the competitors at any time, they are time-consuming and
potentially lift up the bid price the winner has to pay due to
the explicit competition. The sealed auction differs in that the
bids are always not open. In such an auction, each supplier
receives a number of sealed bids from resource requesters and
the bidder offering the highest price is the winner. Mirage [28]
adopts the first-price policy (i.e. the payment of bidder is the
highest price) but it is argued that the requesters may have
the incentives of bidding the prices smaller than the real value
they regard. Bellagio [29] thereby switched to the second-
price policy (a.k.a. Vickrey auction [13]) in which the winner
will pay the second highest bidding price, in order to ensure
the strategy-proof property which may implicitly urge users
to reveal their real demands. All the above auctions belong
to single-sided auction. In comparison, double-sided auction
(a.k.a. double auction) also allows resource providers to spec-
ify expected prices for their resources, leading to an agreement
from both sides. The example projects are SCDA [30] and
Coordinated P2P Grid [31] (ticket match strategy). Compared
to ABS, our solution also considers the win-win effect such
that each participant is satisfied with its payoff and social-
optimum with maximized total welfare into one algorithm,
as well as the incentives of truthful behaviors on demand
revealing from both sides (consumers and contributors), which
is the first attempt to our knowledge.

VI. CONCLUSION AND FUTURE WORK

This paper proposes a novel win-win resource allocation,
which could guarantee that resource consumers are satisfied
with their tasks’ execution and the resource contributors are
also content with their payoffs for their resource-provisioning.
Moreover, by extending the traditional second-price bidding
policy to a novel double-sided next-price bidding policy,
our algorithm can induce both strategic resource consumers
and contributors to truthfully reveal their demands (either on
resource capacity or resource prices). Finally, we confirm the
efficiency of our design via event-driven simulation. In the
future, we may improve the fault-tolerance ability of this win-
win resource allocation scheme by combining the replica-task
execution strategy and check-pointing technology.

ACKNOWLEDGMENTS

This research is supported by a HKU Basic Research
grant (Grant No. 10401460), and a Hong Kong UGC Special
Equipment Grant (SEG HKU09).

APPENDIX A

Theorem 1: With global complete information, maximizing
ATU s.t. constraints (1), (2), (7) is an NP-complete problem.

Proof: First of all, this problem belongs to NP set because
any one resource allocation could be verified in polynomial
time. We will prove it is NP-complete problem.

With Equation (3) and (8), the objective can be converted
to “maximizing

∑n
i=1 (λij · su(tij) + (1− λij) · eu(tij))”.

Consider a special case: ∀i, j, let λij=1, then the objective



becomes “maximizing
∑n

i=1 su(tij)”. In addition, suppose
the execution time of every task is sufficiently long and k0
is extremely large, then the problem can be simplified to
“maximizing the number of tasks whose minimum demands
can be met (i.e. minimizing the number of waiting tasks),
given a set of divisible resources”, and we call it min-number
problem in following text. Note that the resource here is
divisible, thus any task can multiplex nodes with other tasks
as long as its received share satisfies its minimum demand. As
follows, we will prove the min-number problem is reducible
from another NP-complete problem, bin-packing.

The bin-packing problem is generally stated as: given a
set of items of different sizes and a set of bins of the same
capacity, try to put all items into as few bins as possible.
As follows, we will show a polynomial algorithm to map the
bin-packing problem to the min-number problem, thereby, the
min-number problem is also NP-complete..

Without loss of generality, denote by TSet(task1, task2, · · ·,
taskm) the given set of m tasks each with a different minimum
resource demand sorted in non-increasing order (i.e. higher
demand comes first). Denote by PSet(p1, p2, · · ·, pn) the set
of n nodes. Suppose there exists a solution (TM or non-TM,
denoted by BSOL(TSet)) for the bin-packing problem, with the
minimum number of bins as a return value. Then, we can solve
the min-number problem using a few steps of BSOL(TSet), as
shown in Algorithm 2.

Algorithm 2 Polynomial Reduction from Bin-packing solution

1: n′ = BSOL(TSet(task1, task2, · · · , taskm));
2: if (n′ ≤ n) then
3: Output TSet(task1, task2, · · · , taskm);
4: else
5: for (i=1→m) do
6: n′ = BSOL(TSet(taski+1, · · · , taskm));
7: if (n′ ≤ n) then
8: Output TSet(taski+1, · · · , taskm);
9: break;

10: end if
11: end for
12: end if
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