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Abstract—Software transactional memory (STM) enhances
both ease-of-use and concurrency, and is considered one of the
next-generation paradigms for parallel programming. Application
programs may see hotspots where data conflicts are intensive and
seriously degrade the performance. So advanced STM systems
employ dynamic concurrency control techniques to curb the
conflict rate through properly throttling the rate of spawning
transactions. High-end computers may have two or more multi-
core processors so that data sharing among cores goes through
a non-uniform cache memory hierarchy. This poses challenges
to concurrency control designs as improper metadata placement
and sharing will introduce scalability issues to the system. Poor
thread-to-core mappings that induce excessive cache invalidation
are also detrimental to the overall performance. In this paper,
we share our experience in designing and implementing a new
dynamic concurrency controller for TinySTM, which helps keep-
ing the system concurrency at a near-optimal level. By decoupling
unfavorable metadata sharing, our controller design avoids costly
inter-processor communications. It also features an affinity-aware
thread migration technique that fine-tunes thread placements by
observing inter-thread transactional conflicts. We evaluate our
implementation using the STAMP benchmark suite and show
that the controller can bring around 21% average speedup over
the baseline execution.

Keywords—Software transactional memory, concurrency con-
trol, thread migration, multicore processors, cache affinity

I. INTRODUCTION

During the last decade, we have witnessed the dominance
of multicore processors (a.k.a. chip multiprocessors, CMPs)
and their success in fueling the next computing performance
leap beyond the ultimate limit of CPU clock rate scaling.
A multi-level cache is one of the most important resources
of a CMP.1 Some CMP designs prefer keeping the last-
level cache private to each core for simplicity, while other
architectures expose it for sharing among different cores for
faster communication and improved resource utilization. To
unleash extreme parallel performance, it is common for high-
end machines to have two or more CMPs interconnected
through high-speed links such as Intel QuickPath Interconnect
and AMD HyperTransport. Such multi-CMP systems present
both optimization chances and challenges to system architects

1In this paper, the term CMP or processor refers to a chip package (installed
in a CPU socket) that contains multiple cores and a shared cache.

in regard to data sharing between threads along the hierarchy
of private, shared and remote caches.

Considering the significant gap between intra- and inter-
CMP access latencies, incorporating cache affinity techniques
into software systems design is an inexorable step to harness
the full power of multi-CMP architectures. Apart from this, a
longstanding barrier to fully unlocking such power is rooted
in traditional lock-based synchronization that creates serialized
sections of execution limiting the available parallelism. This
calls for a radical change in the parallel programming model.
Software transactional memory (STM), being the most heavily
purported programming paradigm to replace locks for multi-
core systems, is undoubtedly a kind of system software that
needs to apply the cache affinity principles. Access conflict in a
transaction is a good indicator of data sharing between a pair of
threads. By collecting sufficient contention statistics, the STM
may depict the inter-thread sharing patterns, and can make
use of the CPU affinity mask to reconfigure thread-to-core
mappings and pin down favorable ones. Both the application
code and the STM system activities such as conflict resolution
will see enhanced cache locality when shared data stay in
high-speed caches most of the time. Besides application data,
the STM itself has extra internal data structures for keeping
metadata. When implementing an STM, care must be taken to
avoid penalizing the overall system execution speed by adding
code that entails intensive metadata updates going through
inter-CMP links.

The STM paradigm has many potential merits like much
higher concurrency than locks. But for high-contention ap-
plications, STMs can perform even worse than locks due
to too many access conflicts, rollbacks and retries. For high
concurrency and high commit throughput to coexist at runtime,
we cling to the notion of supervised concurrency level. With
adaptive thread scheduling mechanisms, the STM runtime
tunes the level of concurrency dynamically. The scheduler may
suspend some active threads in place to let others proceed their
commit procedures smoothly, thereby minimizing the chance
of access conflicts when they are to grow in number. On the
other hand, if the scheduler observes that the present execution
seldom encounters conflicts, it may raise the concurrency level
on the fly to approach the full application parallelism.

There have been several research efforts on adaptive con-
currency control [1], [2], [3], [4] but we observe two areas



falling short thus far. First, the existing feedback-controlled
concurrency tuning mechanisms and policies are rather simple.
They could be misled by the observed commit ratios, resulting
in overly strict concurrency control—the worst case could be a
slowdown of nearly 30%. Second, they were not carefully de-
signed with respect to the multicore cache hierarchy, especially
on a multi-CMP system.

In this paper, we demonstrate an advanced word-based
STM combining the concepts of supervised concurrency and
cache affinity to boost the overall system performance. Based
on our previous work, we develop an enhanced version of the
Probe concurrency control protocol [5] for tuning the runtime
concurrency with low overheads. In terms of novel techni-
cal contributions, we propose two cache-affinity techniques,
namely metadata zoning and affinity-driven thread migration,
to enhance the performance of the Probe-controlled system.
Metadata zoning aims to confine metadata sharing to within a
CMP rather than going through the inter-CMP paths. Thread
migration aims to reconfigure thread-to-core mappings to im-
prove cache affinity. We implement the methodology into the
TinySTM library and evaluate its performance. Experimental
results show that the enhanced system can obtain performance
improvement of about 100% (best-case) and 21% (average
over all benchmarks) compared with the baseline execution
without concurrency control and also outstrip previous work
like Shrink [1] as well as Yoo and Lee’s ATS [3] significantly.

For the rest of the paper, we will give the background
information on modern cache hierarchy, STM basics and the
relationship between commit throughput and active thread
count in Section II. Section III presents the Probe concurrency
control enhanced with the metadata zoning technique. Section
IV discusses the affinity-driven thread migration algorithm. We
explain our system implementation in Section V and evaluate
the performance in Section VI. Related work is reviewed in
Section VII. Finally, Section VIII concludes this paper.

II. BACKGROUND

In this section we discuss multicore (CMP) processors
and software transactional memory systems. We highlight the
difficulties in having a precise concurrency control in STM,
especially on multi-CMP systems.

A. Modern Computer Cache Hierarchy

Most modern computers employ a multicore processor
(a.k.a. chip multiprocessor, CMP). A multicore processor is
a single chip containing two or more cores, each of which can
run at least one hardware thread.2 Threads within the same
core share the L1 cache while threads on different cores of
the same CMP share L2 or L3 caches.

To pursue high performance, high-end computers can have
multiple multicore processors, complicating the cache sharing
performance. Threads on different processors do not share any
common cache. Fig. 1 depicts the organization of a common
two-way multicore multiprocessor (or multi-CMP) computer.
In the example, we see that thread 1 and thread 3 share the
same L3 cache for fast data sharing, whereas thread 3 and

2State-of-the-art CPUs leverage chip multithreading technology to enable
two or more threads to run on each core
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Fig. 1. An example organization of a two-way multicore computer

TABLE I. PING-PONG RATES OF DIFFERENT INTEL MULTICORE
PROCESSORS

Processor Clockspeed Intra-Proc Inter-Proc
Core 2 Quad Q66001 2.40 GHz 1.6× 107 3.9× 106

Xeon E5540 2.53 GHz 1.3× 107 5.4× 106

Xeon E5550 2.66 GHz 1.5× 107 6.3× 106

Xeon X5670 2.93 GHz 1.4× 107 6.2× 106

1 Although Q6600 comes in a single quad-core package, it features
two sets of shared L2 cache, each to be shared by two cores only.
By our definition in Section I, we treat it as two processors.

thread 5 share data through the narrower and longer inter-
processor communication channel.

To characterize intra-processor and inter-processor commu-
nication speeds, we run ping-pong tests on several systems
equipped with common multicore processors. Table I shows
the results (the last two columns show the number of round-
trip transfers of a cache line between two cores). We notice
that the inter-CMP communication cost is up to a factor of 4
higher than the intra-CMP one.

B. Software Transactional Memory

Software transactional memory is an optimistic approach
of parallel programming. Programmers mark critical sections
as transactions and the STM per se will ensure that each of the
transactions is executed atomically. STM speculatively runs the
transactions in parallel and checks for conflicts (i.e. violation to
the atomic property). Some transactions involved in a conflict
will be aborted (with their updates rolled back) during conflict
resolution. When a transaction reaches to the end without
encountering any conflict, it commits and makes the updates
visible to upcoming transactions. STMs provide interfaces
stm_begin() and stm_commit() for purpose of starting and
finishing a transaction.3 When a conflict is detected, the system
automatically aborts at least one of the transactions by calling
stm_abort(), through which each of the victim threads is
reset to where stm_begin() was called and all its speculative
updates are discarded.

STMs can be classified in a few dimensions. We can
classify the systems according to progress guarantee and
the granularity of data sharing. There are several common
progress guarantees—lock-free, obstruction-free [6] and block-
ing. Lock-free systems guarantee that at least one of the
transactions can proceed when multiple transactions run into
conflicts. Obstruction-free systems only guarantee that a trans-
action can be eventually successful at repeated retries. While
there exists an obstruction-free word-based STM contributed
by Marathe et al. [7], lock- or obstruction-freedom makes

3These functions are common among most STMs but their names may vary.



efficient implementation typically difficult. Inspired by Ennals’
work [8], blocking (or lock-based) STMs are recently under the
research spotlight as they can simplify the design and provide
higher performance. As a result, most of the latest word-based
STM implementations such as TL2 [9], TinySTM [10] and
SwissTM [11] are blocking.

Blocking STMs do not have progress guarantee. Doomed
transactions (transactions that will eventually roll back) may
hold ownership of some data items, obstructing the progress of
other transactions. In these systems, it becomes more important
to control the concurrency since excessive threading is just
wasting processor time and hurting system performance.

C. Dynamic Concurrency Control for STM

Transactional memory helps tapping into the maximal
parallelism of a program while maintaining the ease of pro-
gramming similar to coarse-grained locking. Performance of
software transactional memory can be quantitatively repre-
sented by the commit rate, which can be further identified
as a product of the transaction attempt rate and commit ratio
(#committed transactions divided by #attempted transactions).

Transaction attempt rate is dependent on various condi-
tions. First of all, it is related to the number of active threads.
When there are more threads, there are more concurrent
transaction attempts. It is also related to the commit ratio—
there are more retry attempts when there are more rollbacks.
The attempt rate is affected by the transaction length as well.
Longer transactions lead to fewer attempts in a unit time as
each of them takes longer time to finish. Commit ratio also
depends on several system conditions, including the number
of active threads and the application nature. Commit ratio is
lower when there are more threads because it is more likely
to have collisions. Some applications are more sensitive to the
number of active threads than others as the threads have more
access to common data locations. We notice that both of the
two factors are related to the number of threads. When there
are more threads, there are more transaction attempts but with
less success to commit (lower commit ratio).

We need an effective adaptive concurrency control (ACC)
algorithm adjusting the number of concurrent threads based
on observing the rate of transactional conflicts in order to
maximize the throughput (commit rate) of the STM system.
There are two challenges in designing such a control algorithm.
First of all, it is non-trivial to determine whether a commit rate
is regarded high or low. Second, it is tricky to obtain the live
commit rate at runtime. It involves collecting total amount of
commits, which forces the threads to share data across the
processors.

III. DYNAMIC CONCURRENCY CONTROL FOR STM ON
MULTI-CMP SYSTEMS

In this section, we present our adaptive concurrency control
protocol. The essence of the protocol is similar to flow control
of communication which avoids overflowing the medium: we
do not want too many threads enter into concurrent transactions
around the detected hotspots. The basic mechanism is based on
using a dynamic quota parameter to limit active threads and
hence transactional concurrency. We have neatly performed
mechanism-policy separation. We first discuss the mechanism

TABLE II. CONCURRENCY CONTROL VARIABLES

variable type usage
quota integer concurrency quota—number of threads allowed to

run transactions
active integer number of threads that have entered into transac-

tions and not yet exited
peak integer the peak number of threads that runs transactions

simultaneously
commits integer number of committed transactions

aborts integer number of aborted transactions
stalled boolean indicates whether some threads are stalled at trans-

actions’ entrance

TABLE III. CONCURRENCY QUOTA MECHANISM

1 function onBegin
2 retry:
3 if active ≥ quota then
4 stalled← true
5 yield
6 goto retry
7 end if
8 active← active+ 1
9 if peak < active then

10 peak ← active
11 end if
12 end
13
14 function onCommit
15 active← active− 1
16 commits← commits+ 1
17 end
18
19 function onAbort
20 active← active− 1
21 aborts← aborts+ 1
22 yield
23 end

(Section III-A), and then the control policy named Probe
(Section III-B).

A. Concurrency Quota Control Mechanism

To facilitate concurrency control, we introduce several
variables listed in Table II. These variables are shared among
all the transactions in the system.

Table III shows the basic mechanism to operate on the
concurrency quota concept. There is a daemon thread running
in the background to control a system-wide quota parameter
which limits the number of active threads to run on the
STM. When a thread begins a new transaction (i.e. calling
stm begin() function), it has to check if the current number of
active threads has reached the current quota allowed (line 3). If
this is the case, it has to wait in place until either some active
threads get exited transactions (either committed or aborted)
or the current quota is lifted on demand by the background
daemon. We apply an extra heuristic to the mechanism: we
record the active thread count that once happens to be the
highest into the variable peak (line 10). If the daemon finds
that the current quota is even higher than this peak value, it
will set quota to peak. This measure is to avoid quota be-
ing incremented beyond the highest concurrency requirement.
Superfluous quota will simply oppose the virtue of putting a
bound on concurrent thread count.

B. The Probe Concurrency Control Policy

Table IV shows the algorithm of Probe. The name implies
the algorithm is probing for a concurrency quota that optimizes
commits by some “trial and error” method. In theory, as
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Fig. 2. Relation between commit rate, attempt rate, commit ratio and the
number of concurrent threads

discussed in Section II-C, there exists an optimal active thread
count that corresponds to the crest of the commit rate curve
which looks bell-shaped as shown in Fig. 2. Note that in this
policy, we use commit rate, i.e. the number of committed
transactions per unit time, rather than commit ratio as other
researchers like Ansari et al. [12] do. We quantify the unit time
logically by a counter called laps which is being incremented
per sampling event. To avoid reacting too fast, the policy
proactively postpone quota updates until commits+aborts ≥
warmup, where warmup is a counter we add to record the
number of daemon sleeping cycles that have passed until the
system is “warmed up”. A warmup phase is necessary to
accumulate sufficient statistics upon which the ACC policy can
be based in order to make correct decisions. Therefore, commit
rate can be calculated by dividing commits by laps. We also
keep record of the previous sample in variables last commits
and last laps.

In reality, the optimal point for the current active thread
count is floating—it may shift horizontally along the execution.
We could make the system stay close to the sweet spot
continuously by a probing technique as follows. If we use
fewer threads but observe a drop of commit rate (line 19), we
know we are falling down the hill of commit rate and getting
further away from the optimal. Therefore we should reverse
the tuning direction from down to up, and keep incrementing
the quota until we start to see another drop of commit rate,
which is a signal for us to reverse the tuning direction from
up to down.

C. Metadata Zoning

We divide the compute cores into zones where cores in
a zone belong to the same processor. As we have shown in
Section II-A, data sharing is more efficient among cores in a
zone, than cores from different zones. On each zone there is a
separate set of concurrency control metadata. These metadata
are not involved in conflict detection so this change does not
affect the STM correctness. Each thread is set to belong to a
zone and only access metadata related to the zone. This ensures
the metadata remains exclusively shared among the cores in
the same processor. The intra-processor data sharing allows the
metadata to be read and updated more frequently, allowing
higher amount of transactions to be processed within same
amount of time. We also create an independent concurrency
control daemons on each zone. Just in case transactions on
different zones behave differently, the different daemons can
react independently.

TABLE IV. THE PROBE CONCURRENCY CONTROL POLICY

1 set direction to down
2 while true do
3 sleep for a constant time (e.g. 5ms)
4 if peak = 0 and active = 0 then
5 continue
6 else if commits+ aborts < warmup then
7 laps← laps+ 1
8 continue
9 else

10 laps← laps+ 1
11 end if
12 if peak < quota then
13 quota← peak + 1
14 set direction to down
15 else if quota = 1 then
16 set direction to up
17 else if commits/(commits+ aborts) < 0.125
18 set direction to down
19 else if commits/laps

< last commits/last laps then
20 set direction to reverse(direction)
21 end if
22 if direction is down then
23 quota← quota− 1
24 else
25 quota← quota+ 1
26 end if
27 last commits← commits
28 last laps← laps
29 reset peak, commits, aborts, laps to zero
30 end do

IV. AFFINITY-AWARE THREAD MIGRATION

In this section, we discuss a thread migration technique
made to enhance the STM system for multi-CMP systems.

The aim of having thread migration among multiple pro-
cessors is to better utilize the partially shared cache. The
compute cores do not have access to all the cache units so
that there are often some cache lines duplicated in different
units, which reduce the effective cache size. There are also
cache invalidation overheads when two threads on different
processors modify the same data, stalling the thread for some
considerable delays explained in Section II-A. By finding out
the thread correlations, we can identify some threads having
access to some common data. They can be rearranged to
execute on cores of the same processor, reducing cross-die
cache invalidation overheads and bringing about an overall
speed improvement.

While runtime thread correlation is hard to track in a
lightweight manner as our past experience tells [13], we can
estimate the correlation by counting the conflicts between
individual threads as two transactions conflict only when they
access common data. Even if there can be a false conflict, they
access some common pieces of STM metadata.

We compute and store the likelihood of threads to conflict
in a 2D table of pairwise contention intensity. The original
definition of contention intensity, proposed by Yoo and Lee [3],
is a single weighted average value of a thread’s conflict
likelihood across time and ranges from 0 (never conflict)
to 1 (always conflict). In our case, we borrow the concept
for estimating inter-thread conflict probability. There are n2

values for n threads and each thread Ti possess an array of
n numbers, {Cij |0 ≤ j < n}, which represent how likely
it is to be obstructed by thread Tj . While we could save
half of storage by using a triangular matrix, we store Cij
and Cji separately to eliminate inter-thread synchronization



TABLE V. AFFINITY-DRIVEN THREAD MIGRATION HEURISTIC

1 function onCommit(x)
2 for j ← 0 to n
3 Cxj ← Cxj × α
4 end for
5 end
6
7 function onConflict(x, y)
8 for j ← 0 to n except y
9 Cxj ← Cxj × α

10 end for
11 Cxy ← Cxy × α+ (1− α)
12 end
13
14 function close(x, y)
15 return (Tx and Ty are on same processor)
17 end
18
19 function distant(x, y)
20 return (Tx and Ty are on different processor)
21 end
22
23 function pickPair
24 for i← 0 to n
25 Di ←

∑
{Cij + Cji|distant(i, j)}

−
∑
{Cij + Cji|close(i, j)}

26 end for
27 benefit← max {Di +Dj − 2(Cij + Cji)|distant(i, j)}
28 return (i, j, benefit)
29 end
30
31 thread migrationDaemon
32 while true do
33 (i, j, benefit)← pickPair
34 if benefit > (1− α) then
35 Swap Ti and Tj

36 end
37 sleep for a constant time (e.g. 50ms)
38 end
39 end

and let each thread have exclusive write access to its array.
The 2D array can be taken as an directed adjacency matrix
which represents the edge presences and weights. Our aim is to
reduce the sum of edges that span across different CMPs. Upon
successful partitioning, we have fewer closely related threads
running on different CMPs. Graph partitioning problem is NP-
complete and less expensive heuristics are required. We derive
a solution based on the work of Kernighan and Lin [14]. The
heuristic accepts a graph partitioned in two sets, A and B; in
each of the iterations, a pair of vertices from two partitions
is picked and swapped. In our situation, in order to avoid
stressing the inter-processor communication channel, having
fewer thread migrations at each step is preferable. Therefore,
only a single pair of thread is taken within a time slice. This
further simplifies our final heuristic as shown in Table V.

When a transaction commits successfully, it reduces its
pairwise conflict intensities against all the threads with the
function onCommit.4 The values are decreased by a defined
factor α, which we set to 0.9 in this paper. In contrast, when
a transaction Tx is obstructed by another transaction Ty , the
function onConflict is called so that the contention intensity
of the pair (x, y) is increased. Finally, a daemon thread
calls pickPair periodically (per 50ms, say) to select a pair of
threads to swap over. The array D specifies how much benefit
(reduction of cross-partition edges) is obtained by migrating
a single thread to another processor. The overall benefit from
swapping two threads Ti and Tj is (Di+Dj)− 2(Cij +Cji),

4To facilitate fast commit in the implementation, we adopt a lazy update
mechanism which updates one variable only.
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Fig. 3. A thread migration example

where the latter of the expression is due to the fact that we do
not cancel the inter-partition edges between the two swapped
threads.

A thread migration example is shown on Fig. 3. The
integers inside the nodes represent the thread identifiers, and
the edges are marked with contention intensity values of the
individual thread pairs. In the first transition, thread T4 is
picked to migrate to processor B. We prefer migrating T4
instead of T5 because the latter is much more bonded with its
neighbors (D5 is negative). We pick T6 to replace T4’s position
because it is least bonded with its neighbors. In the second
transition, T3 is picked because D3 is the biggest among the
threads on processor A. T8 is picked to replace the vacancy.
Although we now schedule T8 and its neighbor T5 on different
processors, we observe the overall cross-boundary edge value
is substantially reduced from 0.8 to 0.1.

Although the pickPair process is having O(n2) time com-
plexity, we do not regard it as a serious burden because the
procedure is only executed once at a time and it does not delay
or pause execution of most threads until it makes a decision.
The heuristic only sets processor affinities of particular threads
and it does not interfere with the conflict detection mechanism,
so the correctness of execution is not affected.

The migration policy is currently designed for STMs
running on dual-processor systems, which are commonly used
as workstations and general-purpose servers. When there are
more than two processors, we can run pickPair in multiple
iterations to swap threads around different processors, or apply
multilevel partitioning. However, their implementation is out
of the scope of this paper.

V. IMPLEMENTATION

We implement all the above-mentioned techniques in
TinySTM 0.9.5 [10], one of the state-of-the-art word-based



STMs. We pick this specific version in order to have a fair
comparison with related work on concurrency control policies
that have gone open-source and bundled in this version.

Thread stalling due to insufficient concurrency quota is
realized by spins over sched_yield() system call. We prefer
this system call rather than spin waiting as it gives the
operating system authority to preempt a thread for others.
This is especially useful when there are more threads than
number of hardware thread units [4]. Daemons wake up
periodically by usleep() system call. A daemon thread does
not have enough workload to keep a core fully utilized. Once it
finishes its decision making, it sleeps voluntarily, giving way to
other computational threads. While sleeping is not absolutely
accurate in timing, we find it accurate enough for the daemons
to handle with time-related statistics properly. We therefore
avoid calling other system calls such as gettimeofday() for
timing purpose. Zone switching is implemented with Linux-
specific system call sched_setaffinity(). When the system
executes without the migration policy, each thread make this
system call once only when it spawns in order to set it to a
zone. When there is a migration policy, a thread make this
system call every time it observes a signal (updated shared
variable) to switch zone.

In order to trace the conflicts between the threads, we
reserve some bits in the timestamp entries. When a transaction
unlocks a timestamp, it also leave its thread number as part of
the timestamp. As a timestamp entry is a long machine word
(64 bits on modern computers), reduction of a few bits does
not cause clock rollover problems. TinySTM also comes with
mechanism to handle the rollover problem, if it ever happens.
The correctness and consistency of metadata variables active,
quota and peak are crucial to keep the system from dead-
lock. For example, when quota is set to be 1 while active
is miscomputed to be 1 as well, the system enters a state
that threads cannot start new transactions. The variables are
therefore stored as bits in a 64-bit integer and modified through
compare-and-swap (cmpxchg8b) instructions. Upon update of
any of these variables, the thread also ensures previous read
values are still valid. The variables stalled, commits and aborts
are not protected by similar measures. Slight errors on these
variables will not affect decision making of the policies. We
trade the absolute accuracy for faster commit procedures.

Although we are adding an adaptive concurrency controller
on top of a blocking STM, our part of implementation itself is
guaranteed obstruction-free [6] as our empirical studies reveal
that any blocking concurrency control (i.e., using some locks to
protect metadata) can seriously degrade the STM performance.

VI. PERFORMANCE EVALUATION

In this section we evaluate our implementation and com-
pare it with two third-party concurrency control policies by
Yoo and Lee [3] and Dragojević, et al [1], which are referred
to as Yoo and Shrink respectively in later context.

A. Evaluation Platform and Methodology

Our experiments were conducted on a Dell PowerEdge
M610 blade server equipped with two Intel Xeon E5540 Quad-
core 2.53 GHz processors and 36 GB of DDR3-1066 ECC
memory. Both the Turbo-Boost and Hyper-Threading options

were enabled. With a total of eight cores, and two threads per
core, the server can support 16 simultaneous threads. We pick
Fedora Release 11 as the operating system for evaluation.

We evaluate our solutions using the STAMP benchmark
suite [15] with modifications tailored for TinySTM. For com-
parison purpose, we obtained implementation of Yoo and
Shrink, tied with TinySTM 0.9.5, from the website of Dis-
tributed Programming Laboratory of EPFL [16].

We run the ten test cases unmodified to see how much
speedup the four concurrency control policies, namely Probe-
Z, Probe-ZM, Shrink and Yoo, can gain over the plain execu-
tion without concurrency control. The first two policies (with
a suffix Z) are our zone-based versions of the Probe policy, i.e.
they have a separate set of metadata and control daemon on
each processor. Probe-ZM implements also the thread migra-
tion policy besides zoning. For comparison purpose, we also
include the original Probe, which has only one system-wide
control daemon and no partitioning of threads into zones. For
ease of reference, we use the term ACC (adaptive concurrency
control) in later context to collectively refer to any of these
policies.

While the system supports only 16 simultaneous threads,
we intentionally have a case of running 32 threads to see how
the adaptive concurrency control protocols handle the adverse
condition of excessive threading. Some applications show high
discrepancies in execution time across runs. We handled this
by running each of the tests five times and taking the average.

B. Experimental Results

Fig. 4 shows speedup charts of different TM benchmarks
in the STAMP suite, with and without ACC. Each separate
chart corresponds to one application. (There are two test cases
for each of kmeans and vacation: low (1) and high (2) in
terms of inherent contention). The x-axis represents the static
initial thread count (ITC) spawned by the benchmark. Except
“original” (i.e., the baseline execution with ACC disabled), the
actual number of active threads is under the influence of the
ACC and changes from time to time.

TinySTM generally shows increasing speedup when ITC
is between 2 to 8. Speedup drops when ITC reaches 16 or 32,
depending on application nature. STAMP is a transactional
benchmark suite with applications of different natures. There
are several relatively non-scalable benchmarks in the STAMP
suite— kmeans, ssca and yada, as well as some scalable
benchmarks such as genome, labyrinth and vacation. We
observe irregular speedup graphs in bayes.

With the ACCs enabled, the speedup drops less rapidly
when there are excessive threads running. However, there are
also cases where ACCs result in degraded STM performance
for a number of benchmarks, when there are moderate amount
of initial threads.

Table VI shows the best-case, worst-case and average gain
in speedup of various ACCs, compared to the baseline execu-
tion without ACCs. We have skipped bayes from comparison
because its execution time depends on the order of graph
nodes being processed, instead of true performance of the
STM framework [15]. It is encouraging to see that Probe-Z and
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Fig. 4. Speedup of STAMP applications under different concurrency control policies



TABLE VI. EFFECTIVENESS OF VARIOUS ACC TECHNIQUES ON
STAMP BENCHMARKS

Policy Best-Case Worst-Case Average
Probe +101.79% (yada) -26.51% (ssca) +11.03%

Probe-Z +81.59% (yada) -6.73% (labyrinth) +21.04%
Probe-ZM +94.70% (yada) -9.18% (ssca) +20.08%

Yoo +70.50% (yada) -12.95% (intruder) +9.95%
Shrink +61.02% (yada) -28.96% (kmeans-1) -3.23%

Probe-ZM outperform other ACCs in most of the test cases,
and obtain 21% and 20% average speedup respectively.

C. Discussion on the Results

Our policies generally perform the best on vacation, which
is a travel agency simulator. Clients make random reservations
so that the data accesses in different transactions are not
necessarily related. Both our policy and Yoo’s algorithm detect
undesirable commit rate and ratio, and lower the concurrency
accordingly. While we believe Shrink detects undesirable com-
mit ratio as well, the nature of random data access makes the
hotspot detection useless. Nevertheless, the hotspot detection
hinders the loser threads’ progress, and hence slightly reduces
the contention.

Our policies bring about a slight slowdown to ssca while
Yoo and Shrink have performance on a par with the baseline.
This is due to the already saturated communication channel
for cache-level data transfer. Any additional implementations
that share data cross cores can really slow down the system
significantly. Due to the high commit ratio, both Yoo’s and
Shrink policies do not react to reduce concurrency.

Our Probe policy, as well as Shrink, achieve excellent
improvement for yada when there are 16 initial threads. These
algorithms do not rely purely on commit ratio for decision
making. As yada has a commit ratio well below 20%, other
ACCs are confused and get the program over-serialized.

Performance of Probe and Probe-Z is very similar for a lot
of applications. However, Probe-Z is much more well-rounded,
providing much better worst-case performance. Among the
STAMP applications, intruder, ssca, and kmeans have by
nature high commit rates. Probe cannot perform well for these
applications because the concurrency control metadata have to
be frequently transferred between the two disjoint processor
caches. By partitioning the threads into zones, the performance
degradation is greatly relieved.

To further investigate the difference in performance of the
ACCs, we carried out an analysis on some of the benchmark
applications, and the results are shown in Fig. 5. The perfor-
mance of the yada application gets quite close to the sweet
spot with 8 threads although the commit ratio is well below
10%. Our Probe policy improves the situation by stalling a
few threads, getting the program accelerated by about 10%.
Shrink also performs well by stalling some threads. Before
stalling a thread, it performs hotspot detection to ensure only
transactions accessing hotspots are stalled. Since it finds only
some amount of hotspots, the system stalls only a few threads
and achieves a good result. Yoo’s policy does not work well
with yada. It keeps watching the contention intensities of
individual threads and is thus mislead by the commit ratios
to stall too many transactional threads. While they achieved
much higher commit ratios than Probe and Shrink, they have

actually dragged down the commit rate, and hence lengthened
the program execution.

For kmeans executed with 16 threads, there exists severe
contention so that the commit ratio is below 25% when ACC
is not activated. This application performs clustering on multi-
dimensional data points. In each transaction, the center of a
cluster is modified. As there are only a few clusters, they be-
come memory hotspots in the program. By adaptively stalling
different amounts of threads, Probe drastically improves the
commit rate. Yoo keeps the commit ratio constant, at about
65%, which is the same as that in yada. Shrink keeps the
commit ratio at about 80%, which is close to the threshold
of activating hotspot detection. As all the transactions make
access to hotspots, a transaction is definitely stalled when the
thread-local contention drops below the threshold.

The performance results of Probe-Z and Probe-ZM on
STAMP benchmarks are quite similar. This is because there are
not any specific thread correlations in the STAMP benchmark
inputs. It would be worse if the system spends extra effort on
detection and migration but ends up achieving nothing better
in terms of cache sharing. To demonstrate the potential of the
system, we develop a micro-benchmark called dual red-black
tree. In this program, each thread is given either a group of odd
numbers or a group of even numbers, which are to be inserted
into two red-black trees. Without proper thread placement,
the threads will contend for the same memory location to
make their updates. As shown in Fig. 6, Probe-ZM reduces
cross-partition contention intensity and makes the system scale
almost linearly when there are 8 threads. In comparison, the
original TinySTM yields less than a speedup of 4 times in the
same situation.

VII. RELATED WORK

Ansari et al [2], [12] propose a P-only control algorithm for
tuning the active thread count according to the observed com-
mit ratio. They presented preliminary benchmarking results,
tested with eight threads only, to show the effectiveness of their
algorithm compared with other simple adaptive concurrency
control schemes. In contrast, we propose a new policy (Probe)
that observes commit rate instead of commit ratio, and also
conduct experimental evaluation of a bigger scale and a wider
range of benchmarks.

Yoo and Lee [3] proposed another mechanism to adjust
number of active threads. Unlike the work by Ansari, Yoo’s
policy does not require heuristic data sharing among threads.
It computes contention intensity on each thread, which, when
above a threshold, the thread acquires a common lock before
starting a new transaction. Meanwhile, counting number of
conflicts is not reliable as large amount of conflicts (e.g. in
Yada) may mislead the policy to unnecessarily serialize the
transactions. Our Probe policy disregards the rollback counts
and does not suffer from the same problem.

Shrink [1] assumes conflicts are induced by memory
hotspots. It adaptively activates hotspot detection when there
are repeated conflicts encountered by a thread. Transactions
that are known making accesses to hotspots are required to
acquire a common lock so that they serialize among themselves
without affecting other threads. Unfortunately, if data access of
a problem is purely random, all these efforts do nothing helpful
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but waste even more computing time, as shown in Vacation
benchmark. On the contrary our heuristics handle this case
properly by reducing number of active threads globally.

Key-based adaptive transactional memory executor [17]
reduces conflicts by introducing the concept of key. Trans-
actions modifying similar data are given similar keys. The
executor schedules unrelated transactions (of dissimilar keys)
on different processors for maximal parallelism and related
transactions on the same processor for conflict prevention plus
better cache utilization. Unfortunately, the design lacks a well-
defined strategy to assign proper keys to transactions.

Dependence-aware transactional memory (DATM) [18] is
a recently proposed model for increasing concurrency of
memory transactions without complicating their interface.
DATM manages dependencies between conflicting, uncommit-
ted transactions so that they commit safely. DATM accepts all
conflict-serializable concurrent interleavings. DATM outper-
forms TL2 by 4.86 times at 16 threads for Vacation. However
it lacks evidence for other applications, especially the ones
with low commit ratio such as Kmeans. The model also has
to deal with deadlocks that can arise in commit protocol for
various reasons.

Maldonado, et al [4] proposes various methods to schedule
transactional threads. They extensively evaluated various meth-
ods of scheduling, including spin-locks, condition variables
(CVs), and extending the kernel schedulers. For instance, they
noticed using CVs to wake up loser threads adds huge overhead
to the commit procedure. While transaction-aware schedulers
perform better than user-space contention management in
excessive threading situations, most of the implementations

perform similarly in situations where there are more threads
than cores.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we demonstrate an advanced software trans-
actional memory (STM) tailored to platforms of multiple chip
multiprocessors (CMPs). To optimize the throughput of the
STM, a cache-aware design of dynamic concurrency control
is important for regulating the rate of spawning transactions
with low overheads on a multi-CMP system. The concurrency
control aims for seeking the sweet spot on commit rate by
varying the number of active threads, and is found more robust
than other solutions which might get misled by low commit
ratios. We found that control overheads are very sensitive
to the underlying cache sharing and illustrate the zoning
technique to localize the traffic of metadata sharing across
cores. We also refine our implementation with a novel thread
migration policy that considers pairwise contention intensities
and swaps threads in a sense to improve the cache affinity. In
future, we may consider new adaptive scheduling policies that
observe more STM parameters for smarter decisions, including
transaction length, read-write ratio, etc.
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