
WAVNet: Wide-Area Network Virtualization Technique for Virtual Private Cloud

Zheming Xu, Sheng Di, Weida Zhang, Luwei Cheng, Cho-Li Wang
Department of Computer Science
The University of Hong Kong

Pokfulam Road, Hong Kong
{zmxu, sdi, wdzhang, lwcheng, clwang}@cs.hku.hk

Abstract—A Virtual Private Cloud (VPC) is a secure col-
lection of computing, storage and network resources spanning
multiple sites over Wide Area Network (WAN). With VPC,
computation and services are no longer restricted to a fixed
site but can be relocated dynamically across geographical sites
to improve manageability, performance and fault tolerance. We
propose WAVNet, a layer 2 virtual private network (VPN) which
supports virtual machine live migration over WAN to realize
mobility of execution environment across multiple security
domains. WAVNet adopts a UDP hole punching technique
to achieve direct network connection between two Internet
hosts without special router configuration. We evaluate our
design in an emulated WAN with 64 hosts and also in a real
WAN environment with 10 machines located at seven different
sites across the Asia-Pacific region. The experimental results
show that WAVNet not only achieves close-to-native host-to-
host network bandwidth and latency, but also guarantees more
effective VM live migration than existing solutions.

I. INTRODUCTION

Cloud computing offers a new resource-sharing paradigm,
namely Infrastructure as a Service (IaaS), which provides a
level of abstraction and isolation over underlying physical
resources. By multiplexing shared physical resources using
virtualization technology, services encapsulated in virtual
machines (VMs) can be delivered to end users on demand.
With the increasing number of mobile applications deployed
in various mobile terminals, the concept of cloud com-
puting moves towards dynamic cloud service provisioning
[1]. Cloud services are better off able to be autonomously
migrated to those sites with more adequate resources, instead
of competing for centralized resources at data centers. The
new wave of such cloud paradigm has been witnessed by
the recent cloud storage service providers such as Wuala [2]
and Abacast [3], which leverage peer-to-peer (P2P) structure
to provide online storage services or form content delivery
network (CDN) by harnessing unused storage resource of
desktop computers. Some projects (e.g. Clouds@home [4])
also aim to provide guaranteed computation power using
Internet-connected volunteer resources. The expanding use
of cloud services over Wide Area Network (WAN) makes
the design of cloud platforms go towards a more flexible and
distributed infrastructure with higher elasticity and mobility.
Connecting volunteer resources together to serve as a unified

computing infrastructure poses new challenges to network
infrastructure as in reality, 60%∼80% hosts on the Internet
are actually behind NAT/firewalls [5].

We propose WAVNet (short for Wide-Area Virtualized
Network), a layer-2 network virtualization solution for dy-
namic construction of virtual private Cloud over a WAN
environment. We leverage VM live migration technology
[6] to realize such elastic Cloud Computing paradigm by
dynamically connecting idle desktop computers behind the
NAT/firewalls on the Internet. With WAVNet, each user can
acquire a set of qualified hosts to run his/her tasks con-
currently. New virtual machines can be instantiated locally
and elastically scale-out by live VM migration to utilize
remote computing resources as if they were in a secure and
familiar local computing environment. WAVNet addresses
the following problems:

• Seamless network connection. The wide deployment of
NAT builds a barrier to dynamic construction of virtual
private Cloud over a WAN environment as the hosts
behind a NAT/firewall are only authorized to initiate
outgoing traffic through a limited number of ports
(UDP/TCP) but not authorized to receive incoming
TCP or UDP traffic initiated by a foreign host. How to
support transparent bi-directional network connectivity
between any two computers (hosts or VMs) residing
behind different NAT/firewalls and support live VM
migration is an challenging issue.

• Close-to-native transmission performance. As the vir-
tual network exists as an additional layer atop the native
network, the overhead of processing redundant packet
headers should be minimized.

• Dynamic resource discovery protocol. We target at
users who want multiple non-dedicated computing
resources to complete computation-intensive jobs,
e.g. Bag-of-Task (BoT) applications and web based
applications. We need a dynamic resource discovery
protocol that is able to instantly locate idle hosts to run
user tasks, while satisfying their specific computing
requirements.

Various existing works have explored the area of virtual
networking in pushing virtualization technology over WAN,

yet none of them are suitable for the large-scale private
cloud system. Traditional VPN [7], for example, adds a
virtual IP layer on top of the physical IP layer, yet it
requires a centralized server to forward network traffic, thus
cannot scale to a large number of volunteer hosts. In [8],
“socket remapping” was adopted as an optimized way of
running MPI on virtual machines distributed on the Internet.
Smartsocket [9] provides application libraries to traverse
NAT/firewalls to achieve universal connectivity. However,
these solutions are strictly bundled with specific applica-
tions and require re-implementation of every program that
wants bi-directional connectivity. On the other hand, overlay
networks [10], [11], [12], [13], [14] have been studied
for years to achieve universal connectivity while appearing
transparent to applications running on top. Whereas, these
solutions either suffer from limited scalability [13], [15], or
rely on special configurations on routers or gateways [11],
introducing additional administrative burdens. In compari-
son, WAVNet adopts an additional light-weight virtual IP
layer on top of IPv4 stack to build a virtual communication
channel that can penetrate various NAT/firewalls, including
Full Cone NAT, Restricted Cone NAT, and Restricted Port
Cone NAT. Moreover, WAVNet also takes into account
the locality issue to further optimize the resource grouping
effect.

The rest of the paper is organized as follows. In Section
II, we present our core design on network virtualization,
a.k.a. WAVNet. We mainly consider our contributions on the
performance-oriented design of WAVNet architecture (Sec-
tion II.A) in practice and a set of carefully devised strategies
for improving the virtual network efficiency (Section II.B
∼ II.D). We describe the experimental configurations and
analyze the performance statistics in Section III. The related
works are discussed in Section IV. We conclude our work
and point out future directions in Section V.

II. WAVNET

WAVNet provides a link-layer virtual networking in-
frastructure for constructing a private cloud over a WAN
environment. In order to minimize the cost/overhead of
maintaining idle connections between such NATed hosts, we
adopt a two-layer architecture to organize all the hosts.

As shown in Figure 1, any physical host (e.g. desktop
PC with a private IP address behind NAT) could join the
WAVNet by sending a joining message to at least one
rendezvous server with a public IP address. The rendezvous
server will record the new host’s NAT server IP address and
port number. The connection between the host and its ren-
dezvous server needs to be maintained since the rendezvous
server has to notify new connection requests to this host
from time to time. All of rendezvous servers are organized
by Content Addressable Network (CAN) [16]1, and each

1Due to the P2P structure of the rendezvous layer, we call a rendezvous
server node and a desktop computer host, respectively, in following text.

WAN

Physical host

Switch

NAT/firewall

Rendezvous servers

Virtual machine

Virtual LAN 1 Virtual LAN 2

Virtual LAN 3

CAN Overlay

Desktop Layer

Direct connection

Rendezvous Layer

VM Layer

0

1

0 1

0.5

0.8

Figure 1. Conceptual view of WAVNet

of them serves as a self-managed peer node/proxy with
resource lookup services and network distance detecting
services. The rendezvous server could be cluster’s frontend
gatekeeper host with a public IP address. If the joining host
has no knowledge about its NAT server IP address, it could
connect to some designated rendezvous servers on Internet
for joining WAVNet. Each rendezvous server periodically
communicates with others over CAN overlay to share the
state information of resource hosts (i.e. desktop hosts).

Any user could raise a resource query from his/her
own desktop PC through its rendezvous server.Whenever
some resource hosts are found by routing query message
among the rendezvous servers, direct connections (arrows in
Figure 1) between involved desktop computers or VMs are
established via WAVNet’s connection setup procedures. This
process connects the resources as if they were connected to
the same Ethernet switch. By explicitly bridging to the hosts’
WAVNet interfaces, VMs are also plugged into the same
link-layer virtual network (virtual LANs in Figure 1). In this
way, provisioning of a virtual private cloud can be carried
out by either requesting instantiation of VM on remote
resources, or migrating customized VMs to remote idle
hosts. These VMs can be accessed by unmodified remote
control interfaces such as remote shell.

In a dynamic virtual network environment, resources
may join and leave. This requires the underlying network
infrastructure to adapt to a frequently-changing working
environment. By leveraging WAVNet as the virtual net-
working infrastructure, VMs over the same virtual LAN
could be migrated freely across different security domains
without interrupting the task execution states and network
connection.

A. System Modules

Figure 2 illustrates the system modules of WAVNet.
Communication between hosts is categorized into two types:
(1) overlay messages between itself and rendezvous servers

WAVNet

Virtual Overlay

APP APP APP APP

Virtual

Network

Device (tap)

Resource

Locator

Physical Network Device

2. Data 1. Resource

Lookup

WAV-Switch

Packet Assembler

Physical Network Device

2. Data

WAV-Switch

Virtual

Network

Device (tap)

Resource

Locator

Packet Assembler

1. Resource

Lookup

Figure 2. Overview of WAVNet architecture

and (2) data transmitted over direct host-to-host connection.
The former type of communication usually takes place
during host join/leave, resource lookup and so on, while
the latter happens when network applications perform data
transmission. Application data is captured by the user-
level Virtual Network Device (tap), and handed to Packet
Assembler (PA). PA is used to categorize communication
packets and encapsulate them with proper identifiers. The
Wide-Area Virtual Switch (WAV-Switch) functions like an
Ethernet switch: it inspects the hardware address of com-
munication packets and determines the connection over
which the packets will be sent. The difference of WAV-
Switch from an ordinary hardware switch is that WAV-
Switch works for WAN network while a hardware switch
only functions in LAN. After the destination connection is
settled down, the packets are multiplexed over the underlying
physical network device. Resource lookup module is in
charge of the overlay message communication and the basic
connection maintenance (to be discussed in next section)
with its rendezvous server. Although a DHT overlay is used
for resource lookup, the actual data transmission between
any desktop hosts after the connection is established does
not involve the DHT overlay. Such a design avoids the
additional DHT-layer header and processing overhead during
data transmission.

B. Direct Host-to-host Connection

Direct host-to-host connection contains two key oper-
ations: connection establishment and connection mainte-
nance. As described previously, prevalent NAT deployments
prevent Internet hosts from establishing bi-directional con-
nections. Since NAT is not standardized, different Internet
service providers could adopt different policies of port
mapping. We leverage STUN protocol to provide a way of
querying the public IP address and port information of a
NATed host since STUN can detect different types of NAT:
Full Cone NAT, Restricted Cone NAT, Restricted Port Cone
NAT or Symmetric NAT. With STUN, WAVNet driver could

determine if the host is suitable for UDP hole punching or
not. UDP hole punching enables two hosts to set up a direct
peer-to-peer UDP session with the help of a well-known
rendezvous server, even if the hosts are both behind NATs.
In WAVNet, all host-to-host connections are built based on
the combination of STUN protocol and UDP hole punching
techniques. Such techniques could traverse most of real-life
NATs [14].

WAN

Physical host Switch NAT/firewallRendezvous servers

CAN Overlay

Desktop Layer

Rendezvous Layer

A

B

a1

a2

0

1

0 1

C

c

b1
b2

b3

1

4
1

Connection Setup

Get resource discovery result

2 Send CONNECT_REQ msg

3 Receive CONNECT_REQ

Send reply message

4 Establish direct connection

using hole punching

Message routing over CAN Direct communication

2
3

Figure 3. Host-to-host connection setup

Different from traditional UDP hole punching, the UDP
hole punching in WAVNet is integrated as part of the
resource query layer (CAN overlay) designed for users to
locate most suitable resources in the virtual private cloud.
Resource queries are routed through rendezvous servers, and
the result is returned to the requester. The host’s connection
information, including its rendezvous server’s IP address and
a 2-tuple {NAT server IP: NAT server port} detected when
penetrating its NAT, is encapsulated in the query result.
We give an example with 2-dimensional CAN space in
Figure 3 to illustrate the connection setup procedure. In this
example, suppose node C maintains the resource information
about host b1 because b1’s state (a multi-dimensional vector)
is right overlapped with node C’s zone range. First, the
requester host a1 makes use of its rendezvous server node
A to get the host b1’s information, including the resource
state and the connection information, through CAN overlay
(step 1). Then, two rendezvous servers (A and B) will
communicate with each other to notify the two hosts a1
and b1 the mutual connection information (step 2 and step
3). Finally, host a1 and b1 build direction connection using
hole punching (step 4).

UDP hole punching adopted by WAVNet avoids any
special configurations on routers or gateways. This makes
the whole process of connection setup quite easy. Suppose
user wants host a1 to connect b1, he/she first downloads
the WAVNet driver, which is already configured with well-
known rendezvous server(s). WAVNet will automatically
communicate with the rendezvous server(s) to help the user
find b1 according to user’s description. After a1 gets the pub-
lic information of b1, the WAVNet driver will automatically
connect the hosts through UDP hole punching.

After the connection setup, the two hosts are connected

WAN

APP

VMAPP

tap
WAVNet

ethx

APP

VMAPP

tap
WAVNet

ethx

1.App packets

injected to tap
2.packet captured from

tap, encapsulated and

tunneled through

physical network

3.A direct passage as if

two hosts were plugged

in the same switch

4.packet received

from overlay

network, extracted

and injected to tap

5.App reads

packets from tap

Figure 4. Direct host-to-host tunneling in WAVNet

as if to an Ethernet switch. Therefore, protocols such as
DHCP can be applied without any modification. Moreover,
application data transmission between the connected hosts
will not go through the CAN overlay, which considerably
saves packet header overhead as well as protocol processing
time. Detailed traveling path for each application packet is
shown in Figure 4: once host-to-host direct connection is
established, applications communicate through the virtual
network device (tap). Packets injected to the virtual network
device on the sending end will be captured and tunneled
through the physical network, and transmitted to the re-
ceiving end of the connection, where the original packet
is extracted and injected to the virtual network device. The
communication does not rely on intermediate CAN-overlay
nodes for routing.

One remaining issue is that connections between NATed
hosts must be deliberately kept alive, otherwise the connec-
tion will be lost because NAT can only maintain the con-
nection state for a limited period of time. Thus, periodical
exchange of messages over established connections must be
scheduled such that NAT can re-count the timeout of the
existing connections. However, periodical exchange of ping
messages incurs bandwidth and processing overhead [17].
Therefore, we provide a lightweight CONNECT PULSE
message, which minimizes the overhead by containing only
a header with two bytes. During the exchange of such
messages, NATs along the connection path get notified that
there is still traffic going through the opened port, thus
keeping the port always active.

C. Live VM Migration over WAN

Current Virtual Machine Monitors (VMM) support live
migration within LAN by adopting the bridging mode for
VM networking since NAT and Router modes do not main-
tain network connections. In the bridging mode implemented
by Xen [18], virtual machines have front-end network drivers
that interface with users and back-end drivers in the driver
domain (Domain-0). To make virtual machines stay on the
same link layer as other hosts in LAN, a software bridge
is created, with virtual machines’ back-end drivers and
physical host’s external network devices as software ports.
The key to supporting seamless live migration lies in the link
layer network. When live migration finishes and the virtual
machine is brought up on the destination host, the VMM will

inject an unsolicited ARP broadcast into the software bridge
on behalf of the virtual machine. All physical hosts and vir-
tual machines in the same LAN will receive the ARP frame
and update the location of the migrated virtual machine in
the local cache. Since applications are usually based on IP
protocol, the update of link-layer address does not disrupt the
consistency of connection. The ongoing IP packets will be
sent to the new location of the virtual machine. Nevertheless,
such a seamless live migration cannot be applied to WAN
because of the connectivity problem caused by NATs.

VM2

eth0

VM1

eth0

Virtual-br0

(virtual IP: 10.1.1.1)

Vif2.0

TAP

Packet Assembler

WAV-Switch

eth0

Host 1

VM2

eth0

VM1

eth0

Virtual-br0

(virtual IP: 10.1.1.2)

TAP

Packet Assembler

WAV-Switch

eth0

Host 2

WAN

Vif1.0 Vif1.0 Vif2.0

Figure 5. WAN based Live migration support by WAVNet

Figure 5 demonstrates the approach adopted in WAVNet
to enable seamless VM live migration over WAN. Suppose
host 1 and host 2 are connected across WAN according to
the procedures shown in previous section. Therefore link-
layer connection is established between these two hosts.
A dedicated virtual network bridge is created with the tap
device as the external port. Link layer frames injected by
virtual machines and VMM will be extracted by WAVNet
and tunneled to the other end. When VM live migration
is performed, the ARP broadcast will be forwarded by
WAVNet to all connected hosts. Existing open connections to
the migrated virtual machine will not be disrupted and ongo-
ing data stream will not be confused with the location change
of the virtual machine. This is fundamentally different from
the solutions that are built upon layer-3 overlays and resorted
to DHT updates by broadcasting the information. Such
approach may lead to much longer downtime time of the
migrating virtual machine perceived by other hosts.

D. Host Selection for Virtual Cluster

Using the CAN protocol, each host could locate a set
of other resource hosts quickly, by taking multiple attributes
into account , such as available CPU and memory. For some
Bag-of-Task applications which are bandwidth or latency
sensitive (e.g. MPI tasks and FTP/SCP services), the group
of hosts selected need to communicate with each other
with high connection quality. By using a distance locator
deployed in each rendezvous server, we could dynamically
locate a set of mutually near hosts in WAVNet to construct

a virtual cluster according to users’ demand (e.g. number of
hosts they need).

By analyzing the mutual connection latency among the
WAN hosts, we devise an approximation optimal algo-
rithm performed at distance locators for host selection. We
model the grouping problem as a combinatorial optimization
problem: given N candidate hosts, we construct an N×N
matrix, whose elements are the mutual network latency.
The objective is to find a group of k hosts such that the
average network latency among these hosts is minimized
(i.e. Formula (1), where Π refers to the candidate resource
set).

L(Π) =

∑
x,y∈Π latency(x, y)

C2
|Π|

(1)

Although the grouping problem mentioned above is not
NP-complete because we could verify all the solutions
(a.k.a. brute-force method) in Ck

N steps, the time complexity
(O(Nk)) looking for the optimal solution is still too high to
be tolerable in practice. Hence, we design a novel approx-
imation algorithm of grouping hosts in vicinity to optimize
the constructed virtual cluster’s execution efficiency.

Our model assume the WAN network latency conforms
to symmetric property and transitive property with high
probability, as illustrated in Formula (2) and Formula (3),
where ◃ means that the former host pings the latter host
with low latency. Such properties were also observed on
hosts connected in Planetlab [19].

Host A ◃ Host B ⇒ Host B ◃ Host A (2)

HostA◃HostB,HostB◃HostC ⇒ HostA◃HostC (3)

Our algorithm is performed on each distance locator co-
located with the rendezvous server. The algorithm consists
of two parts. The first part is to maintain a latency matrix
by pefiodically communicating with neighbors. Each row in
this matrix is always sorted in an increasing order. Upon
receiving a request, only the second part (a.k.a. grouping
algorithm) would be triggered to generate the group of
Internet-connected hosts with optimized mutual communi-
cation status on WAN. Obviously, the response time of any
request is only related to the complexity of the grouping
algorithm (i.e. second part). Suppose there are N candidate
hosts aggregated on the rendevous server and k hosts or
VMs are to be selected for user task’s consumption. Based
on the latency matrix with sorted connection elements on
each row, the grouping algorithm will group the first k+1
elements (namely k+1-group) at each row, and create k
different combinations using any k elements (namely k-
group) from the k+1 elements. And then, the algorithm will
check all the k·N candidate solutions and filter those with at
least one unreasonable or over-large connection. Finally, the
best k-group from the remaining choices with the minimal
average latency will be selected. It is easy to see that the

time complexity of the grouping algorithm is O(N ·k), which
is far less than that of brute-force method (O(Nk)).

III. EXPERIMENTS AND EVALUATIONS

We evaluate the performance of WAVNet under two
different environments: (1) a real WAN environment with
machines located at seven different geographical sites as
shown in Table I, each machine running Xen 3.1 and Linux
2.6 operating system. The 3rd column shows the ping latency
from HKU to each site. It should be noted that KVM virtual
machines are used in two sites to validate the generality
of our solution. One rendezvous server with public IP
addresses is configured at Hong Kong. (2) an emulated WAN
environment with up to 64 machines connected by four fast
Ethernet switches. Eight machines are equipped with 32GB
memory and two quad-core 2.6GHz E5540 Xeon CPU. The
rest are commodity PCs, each with one 2.2GHz Pentium
4 CPU and 2GB memory. The NAT/firewalls on gateway
PCs is configured by adding rules in iptables nat table. We
use Linux traffic controller (tc) to shape network bandwidth
for simulating different network conditions. We show that
WAVNet is not only able to support VM live migration over
WAN effectively, but also deliver advantageous performance
over IPOP [10] in various conditions. We also evaluate
the performance of the proposed locality-sensitive grouping
strategy over Planetlab [19].

Table I
HOST CONFIGURATION IN A REAL WAN ENVIRONMENT

Sites Machine Info. Lat. (ms)
Providence University Intel Core 2 Quad Q6600 30.2(PU), Taiwan 2.40GHz (4085MB)

Academia Sinica Intel Xeon E5520 2.27GHz 24.8(Sinica), Taiwan (KVM with 2 cores, 8183MB)
Advanced Industrial Sci. Intel Core 2 Duo E6300 75.8and Tech. (AIST), Japan 1.86GHz (3191MB)

San Diego Supercomputer Intel Xeon 3.20GHz 271.2Center (SDSC), USA (KVM with 4 cores, 16383MB)
Intel Core 2 Duo T7250

0.5The University of Hong 3.20GHz (1526MB)
Kong (HKU), HK and Intel Pentium 4

2.80GHz (1526MB)
Home PC connected by pub- Intel Pentium 4 2.80GHz 4.4-lic network (OffCam), HK (1279MB)
Shenzhen Inst. of Advanced Intel Pentium 4 2.80GHz 74.2Tech. (SIAT), China (1279MB)

A. Link Throughput and Latency

We first compare latency measurements of WAVNet with
IPOP in the real WAN environment, with respect to the
physical network. The latency measurement was done by
performing ICMP echo test, each lasting 10 minutes to en-
sure the accuracy of the evaluation. The result is summarized
in Table II. Due to the long distance connection, the packet
handling overheads were amortized by the long network
latency. So both WAVNet and IPOP achieve performance
equally well and are close to the physical network.

We use ttcp to measure the bandwidth of network con-
nections under IPOP and WAVNet over WAN (HKU-SIAT).
In Figure 6, it is observed that both WAVNet and IPOP

Table II
NETWORK LATENCY TEST BY ICMP REQUEST/RESPONSE

Sites Mean Round-Trip Time (msec)
Physical WAVNet IPOP

HKU-SIAT 74.244 74.207 74.596
HKU-PU 30.233 30.753 31.187
SIAT-PU 219.427 219.783 220.533

achieves 57% to 85% of the physical network bandwidth, yet
in almost all cases WAVNet outperforms IPOP. This reflects
that WAVNet imposes less overhead in handling the packets
than IPOP.

 0

 500

 1000

 1500

 2000

 2500

 3000

64MB 128MB 256MB

T
ra

n
s
fe

r
R

a
te

(K
B

p
s
)

Transfer Size (buf size=16384B)

TTCP Benchmarking over WAN (HKU-SIAT)

Physical
WAVNet
IPOP

Figure 6. TTCP bandwidth benchmark

We further evaluate the bandwidth performance of end-to-
end connection built on WAVNet virtual network, under the
emulated WAN environment. Netperf TCP STREAM test
is performed to generate network traffic, with duration of
360 seconds. The average statistic of 10 tests leads to the
final result. As shown in Figure 7, in all cases, WAVNet
has near-to-native performance. This confirms that the pro-
cessing overhead of WAVNet is small. We also evaluate the
performance of IPOP under the same network conditions.
When the network is highly congested (e.g. WAN bandwidth
is small), IPOP performs slightly worse than WAVNet. When
the underlying network is less congested, IPOP shows a
deficient performance, which is less than 20% of the native
performance. This reveals that WAVNet can better utilize the
available physical bandwidth, particularly when the network
capacity of WAN/MAN is large.

 0

 0.5

 1

6.25 12.5 25 50 100

R
e
la

ti
v
e

 B
a

n
d

w
id

th

WAN bandwidth (Mbps)

Physical
WAVNet

IPOP

Figure 7. Bandwidth utilization under different network conditions

B. Scalability of Virtual Networking

WAVNet requires periodical exchange of messages over
established connections to maintain the connection state,

which may affect the scalability of virtual networking. For
instance, in the case of 64-host cluster, every node has
to establish 63 direct host-to-host connections with other
hosts. In the experiment, we setup virtual clusters connected
through WAVNet with 8, 16, 24, 32, 48, 64 hosts. We select
one node in the virtual cluster and use Netperf to measure
the host-to-host network bandwidth from this node to the rest
of nodes and calculate the average bandwidth. We analyze
the overheads of host-to-host connections in maintaining
such virtual cluster in WAVNet by measuring the Netperf
performance under different virtual cluster sizes.

We set the period of message exchange for keeping
connections alive to be 5 seconds, which is short enough
in comparison with NAT’s timeout (usually a couple of
minutes). Figure 8 shows that in a virtual cluster consisting
of 64 hosts, bandwidth performance for each host is not
degraded compared with those with smaller number of hosts
(e.g. 8 hosts). On the other hand, IPOP suffers a notably
degraded performance as the number of hosts increases,
due to the extra overheads occurred in data transmission
over multiple intermediate routing hosts based on its rigid
routing algorithm. With increasing number of WAN hosts,
the number of intermediate routing hosts is expected to
increase under IPOP, which leads to a decreasing perfor-
mance. The physical topology would also severely affect
the performance in IPOP. WAVNet bypasses overlay routing
while performing data transmission. Netperf performance
under WAVNet is relatively more consistent even the cluster
size increases.

 0

 20

 40

 60

 80

 100

 8 16 24 32 48 64

N
e

tw
o

rk
 B

a
n

d
w

id
th

 o
f

P
h

y
s
ic

a
l
H

o
s
t

(M
b

p
s
)

Number of nodes in virtual clusters

Physical
WAVNet

Figure 8. The Netperf performance while scaling virtual cluster size

C. VM Live Migration over WAN

We evaluate live VM migration over the emulated WAN
and the real WAN environment based on the Netperf
TCP STREAM tests. We demonstrate that WAVNet could
perform seamless VM live migration with persistent network
connectivity. We use the Netperf TCP STREAM tests to
poll the TCP transmission performance, which is reported
every 500ms. The virtual machine is installed with CentOS.
VM migration is triggered manually, sometime after polling
process starts.

We first report the network bandwidth of the VM during
live migration under the emulated WAN environment. Each

 0

 20

 40

 60

 80

 100

 0 40 80 120 160 200 240 280 320

N
e
tw

o
rk

 B
a

n
d

w
id

th
 o

f
V

M
 (

M
b

p
s
)

Time (sec)

LAN
WAVNet

IPOP

Figure 9. VM Network Bandwidth Test During Live Migration

VM is configured with a memory size of 256MB. Figure 9
compares the measured performance under IPOP, WAVNet,
and native network (denoted as “LAN”). VM migration takes
around 20 seconds under LAN and Netperf reports about
95% of native bandwidth. IPOP achieves less than 10%
of the native bandwidth, while VM migration takes around
130 seconds. After the VM is migrated, the Netperf test
is even stalled in IPOP, because IPOP is not aware of the
move of the VM, and continues routing the packets to the
source host. WAVNet can achieve around 60% of the native
network bandwidth, meanwhile the migration takes less than
30 seconds and the Netperf session could continue after
the live migration finishes. We also use tcpdump to capture
the link-layer ARP broadcast that is dispatched when live
migration finishes. tcpdump actively listens to the network
interface for ARP frames that pass by. In LAN, when live
migration of VM is finished, an ARP frame is captured by
tcpdump and the content is printed. When we use WAVNet
and let tcpdump listen to the tap device, a similar ARP
frame is also captured, reflecting that WAVNet could tunnel
the link-layer frames in supporting VM migration over the
emulated WAN.

To evaluate the effectiveness and performance of VM
live migration across a real WAN environment, we use
rendezvous server layer to establish the connection among
hosts from different geographical sites, including Hong
Kong, mainland China, Taiwan, Japan and United States. It
should be noted that the rendezvous server does not involve
in the host-to-host communication after the connection is
established, as explained in Section II.

Firstly, we evaluate how VM migration can improve the
access locality by migrating http server for better request
throughput and shorter http connection time. We set up
an http server on a VM with 128MB memory located in
SIAT, one http client in HKU1 and another http client
in Sinica. The VM in SIAT will be migrated to another
host in HKU (denoted as HKU2). In client side we use
ApacheBench (AB), a web site stress test benchmark, to
measure the request connection time and throughput for
the underlying WAVNet network before/after VM migration.
Table III shows the http connection time results obtained
from HKU1 client and Sinica client, and Table IV shows

Table III
HTTP CONNECTION TIME BEFORE/AFTER VM MIGRATION

Client and VM Location Ping Lat. Conn. Time (msec)
(msec) Min Mean Max

Sinica to VM@SIAT (before migr.) 100.3 99 107 148
Sinica to VM@HKU2 (after migr.) 24.8 25 33 67
HKU1 to VM@SIAT (before migr.) 74.2 76 80 90
HKU1 to VM@HKU2 (after migr.) 0.5 0 7 16

Table IV
HTTP THROUGHPUT BEFORE/AFTER VM MIGRATION

Client and VM Location WAVNet bw AB Thp. (# req. /sec)
(Mbps) 1K 8K 64K

Sinica to VM@SIAT (before migr.) 18.05 432.9 215.1 45.7
Sinica to VM@HKU2 (after migr.) 21.69 583.3 332.3 53.9
HKU1 to VM@SIAT (before migr.) 18.6 473.1 288.9 56.9
HKU1 to VM@HKU2 (after migr.) 79.15 775.5 461.8 128.2

http request throughput with different requested file sizes. In
Sinica client, the network latency to VM in SIAT is around
100ms with Netperf TCP throughput of 18.05Mbits/sec,
while after VM is migrated to HKU2 over WAVNet, network
latency to VM is 24.8ms and the Netperf TCP throughput
reports 21.69Mbits/sec. Similarly in HKU1 client, after
VM migration the network latency to VM improves from
74.2ms to 0.5ms, and Netperf TCP throughput improves
from 18.6Mbits/sec to 79.15Mbits/sec. Since the underlying
network condition is much better after VM migration, the
http connection time and http throughput are both improved.
This reflects that better user experience is achieved, as http
server can be migrated to a nearby host to provide more
responsive service.

We further analyze the VM down time, ICMP packet
loss, and provide a micro-view on ping latency and HTTP
throughput during VM live migration. The purpose is to re-
port the service quality and availability during the period of
VM live migration. As shown in Figure 10, we individually
migrate the VM from OffCam, AIST and SIAT to a host
in HKU. During VM live migration, we run ApacheBench
on another host in HKU to request for a 1KB file from
the VM, with concurrency set at 50 for illustration purpose.
Meanwhile, we use ping to measure the network latency
and reflect packet loss during VM live migration. In Figure
10 (a)-(c), time zero represents the moment that VM live
migration is triggered. The duration of VM down time is
shown as the short interval between two vertical dashed
lines. For example in Figure 10(a), the ping test is started
30 seconds before VM live migration is triggered and the
client starts sending http requests 10 seconds before that.
It can be seen that after we start sending http requests,
ping test reports higher RTT due to heavy network traffic
generated by http requests. When VM migration is triggered,
HTTP throughput drops from 600 requests/sec to nearly 300
requests/sec, meanwhile ping test also suffers packet loss.
Once the VM migration is finished and relocated in HKU
which is very near to the testing clients, significant improve-
ments can be observed that the throughput increases to over
1500 requests/sec and ping latency decreases to less than
15ms. Similar phenomena can be found in Figure 10(b) and

 0

 20

 40

 60

 80

 100

 120

 140

 160

-20 0 20 40 60 80 100 120
 0

 500

 1000

 1500

 2000

 2500
IC

M
P

 R
T

T
 (

m
s
)

A
B

 T
h

ro
u

g
h

p
u

t
(r

e
q

/s
e

c
)

Time (s)

Ping RTT
AB Thp.

(a) AIST-HKU, VM down time is 2.1s.

 0 50 100 150
 0

 20

 40

 60

 80

 100

 120

 140

 160

 0

 500

 1000

 1500

 2000

 2500

IC
M

P
 R

T
T

 (
m

s
)

A
B

 T
h

ro
u

g
h

p
u

t
(r

e
q

/s
e

c
)

Time (s)

Ping RTT
AB Thp.

(b) SIAT-HKU, VM down time is 1.0s.

-30 -20 -10 0 10 20 30 40 50 60
 0

 20

 40

 60

 80

 100

 120

 140

 160

 0

 500

 1000

 1500

 2000

 2500

IC
M

P
 R

T
T

 (
m

s
)

A
B

 T
h

ro
u

g
h

p
u

t
(r

e
q

/s
e

c
)

Time (s)

Ping RTT
AB Thp.

(c) OffCam-HKU, VM down time is 0.6s.

Figure 10. ICMP RTT and HTTP throughput during VM live migration (× represents ICMP packet loss)

Table V
TIME OF VM LIVE MIGRATION AMONG DIFFERENT SITES

Sites RTT (ms) WAVNet bw Time taken (s)
(Mbps) 128M 512M

OffCam-HKU 4.4 86.39 16 120
Sinica-HKU 24.8 42.93 92.5 202.5
AIST-HKU 75.8 55.1 107.5 208
SIAT-HKU 74.2 18.6 130 377.5
SDSC-HKU 217.2 27.17 310.5 1023

(c). As OffCam-HKU has a much higher network bandwidth,
the heavy data traffic passing through the software bridge
might interfere ping tests and result in higher jitter.

We also evaluate the migration time of VM with different
memory sizes under different network conditions in Table V.
We test the VM memory size of 128MB and 512MB, and
individually migrate the VM from OffCam, Sinica, AIST,
SIAT and SDSC to HKU. The testing results show that under
the same physical network, bigger VM memory size results
in longer migration time as more data is needed to transmit.
Also, the network with low latency and high bandwidth can
benefit VM migration time in various aspects. For instance,
the VM migration time of AIST-HKU is three to five times
faster than that of SDSC-HKU. We also found that under the
same network condition, VM migration time is not always
proportional to the VM memory size, as Xen adopts pre-
copy strategy to transmit dirty memory pages in several
rounds[6]. The first round Xen transmits all the pages to
destination host. However, as the VM at the source node is
still alive and might continuously update its memory pages,
in each round afterwards, Xen transmits the pages updated
in previous round. The larger the network latency is, the
longer each round takes. Thus, more dirty pages are likely
to be generated, and more data volume will be migrated in
each round.

We evaluate the performance benefit that VM live migra-
tion brings to parallel applications over WAN. We implement
the MPI program of heat distribution problem [20], and
set up the experiment environment as follows: four virtual
machines are connected through WAVNet to run MPI heat
distribution test, with three of them located in HKU and
one located in SIAT. We then measure different problem
sizes of 64×64, 128×128 and 256×256 respectively, where

m × m refers to a square with m2 uniformly distributed
sensor points. Figure 11 shows that without VM migration,
the MPI tasks for problem size 64×64, 128×128, 256×256
last for 397s, 1214s and 3798s apiece. Comparably in the
second test, we migrate the VM in SIAT to one host in HKU
after the program starts. Results show that the MPI tasks
with VM migration last for 121s, 179s and 365s respectively,
which are 30.5%, 14.7% and 4.7% of the time without VM
migration. This is because the VMs are closer to each other
after the VM migration, while without VM migration, the
communication between SIAT and HKU is the bottleneck.
Lastly, the execution of MPI application is not disrupted
during the migration process, which also proves WAVNet’s
ability to support seamless VM live migration with persistent
network connectivity.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

64x64 128x128 256x256M
P

I
h

e
a

t-
d

is
tr

ib
u

ti
o

n
 e

x
e
c
u

ti
o

n
 t
im

e

 w
it
h

/w
it
h

o
u

t
V

M
 m

ig
ra

ti
o

n
(s

e
c
)

heat-distribution problem size

w/o VM migration
with VM migration
VM migration time

Figure 11. MPICH heat distribution test

D. Locality-sensitive Grouping Strategy on Planetlab

We evaluate our locality-sensitive grouping strategy over
Planetlab among 400 randomly selected hosts around the
world, using NAS MPI parallel benchmark [21]. Among
the 400 hosts, there should be P 2

400=159600 bidirectional
connections. Based on the symmetrical property of network
latency (Formula (2)), we used about half number of the
connections (80000 connections) to observe the network
status. Figure 12 (a) and (b) show the network latency
distributions within 10 seconds and 1 second respectively.

Figure 13 shows the average latency (i.e. L(Π) calculated
by our grouping algorithm (Formula (1)), as well as the
lowerbound and upperbound of the latency range, where the

 0

 2000

 4000

 6000

 8000

 10000

 0 10000 20000 30000 40000 50000 60000

N
e
tw

o
rk

 L
a
te

n
c
y
 (

m
s
)

Host Pairs

(a) Network latency within 10 sec

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 10000 20000 30000 40000 50000 60000

N
e
tw

o
rk

 L
a
te

n
c
y
 (

m
s
)

Host Pairs

(b) Network latency within 1 sec

Figure 12. Network latency reported on Planetlab (400 hosts)

number of hosts involved are 2∼75. In our test, when the
number of hosts of virtual cluster is individually set to be 8,
16, 32 and 64, the average latency is only 1.3ms, 15.4ms,
26.1ms and 54.1ms respectively, with the upperbound la-
tency be 1.9, 25.4, 44.8 and 67.3. The results confirm
the effectiveness of our designed locality-sensitive strategy
especially compared to the original distribution (Figure 12).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70A
v
e
ra

g
e

 &
 M

a
x
im

u
m

 L
a
te

n
c
y
 (

m
s
)

Number of hosts constructed in a virtual cluster

 Avg Latency

Max Latency

Figure 13. Average and Maximum Latency within Virtual Cluster

We choose an embarrassing parallel (EP) case and a non-
embarrassing parallel (NP) case in NAS benchmark library
and test them on a small virtual cluster. The NP case is
solved using Fast Fourier transform (FFT) program. Figure
14 shows the experimental results using 4 hosts and 8
hosts. In the comparative case, 4 or 8 hosts are randomly
chosen from 64 hosts pre-selected by our locality-sensitive
grouping method, in order to guarantee that the selected
hosts still have reasonable inter-connectability between each
other. As seen from the two figures, the locality-sensitive
method could effectively improve the communication quality
of virtual cluster constructed on WAVNet, particularly for
non-embarrassing parallel (NP) case because FFT highly
relies on the inter-host communication.

IV. RELATED WORK

Overlay network [10], [11], [12], [13], [14], [22] is the
main track of existing network virtulization research, which
aims to achieve universal connectivity meanwhile appear
transparent to the applications running above. VOILIN
[13], [15] proposes “vSwitch” and “vRouter” as virtual
networking infrastructure to simulate physical networking
devices, but all network traffic must go through the virtual
network devices, which limits its scalability. VNET [12],

 0

 50

 100

 150

 200

EP(A) EP(B)

T
im

e
 (

s
)

Benchmark Case

Random Virtual Cluster
Locality-sensitive Virtual Cluster

(a) EP with 4 hosts

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

FT(A) FT(B)

T
im

e
 (

s
)

Benchmark Case

Random Virtual Cluster
Locality-sensitive Virtual Cluster

(b) FFT with 4 hosts

 0

 50

 100

 150

 200

EP(A) EP(B)

T
im

e
 (

s
)

Benchmark Case

Random Virtual Cluster
Locality-sensitive Virtual Cluster

(c) EP with 8 hosts

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

FT(A) FT(B)

T
im

e
 (

s
)

Benchmark Case

Random Virtual Cluster
Locality-sensitive Virtual Cluster

(d) FFT with 8 hosts

Figure 14. Locality-sensitive Method vs. Random Selection Method

[23] is a layer-2 solution for tunneling Ethernet frames,
yet it requires fixed public servers to act as proxies to
tunnel network traffic for end hosts and cannot group hosts
for users to optimize the intro-group communication. ViNe
[11] provides a dynamic routing infrastructure to allow
connectivity and isolate virtual clusters over multiple sites,
yet requires routers and gateways to be specially configured,
which potentially involves additional administrative effort
every time when new sites join. Some other solutions, like
CloudNet [24], make use of VPLS [25] technology and
provide bi-directional network connectivity among Internet
hosts, but alo require every router to be specially configured
to form a giant “Internet switch”, introducing non-ignorable
burdens to users.

The most similar work to WAVNet is perhaps IPOP [17],
which also makes use of NAT hole punching techniques
and a user-level virtual network device to build overlay
networks. Although this solution is self-configured and
scalable to certain extent, it does not address the following
issues: 1) Processing overhead of each packet through the
additional P2P routing layer severely degrades the network
performance. Such performance might offset the advantages
that virtual networks bring, making it more difficult to
be accepted. 2) It confines the number of direct host-to-
host connections each peer is able to maintain. While in
reality, users tend to run parallel programs that rely on mul-
tiple high-performing direct connections for inter-process
communications. 3) Whenever virtual machines migrate,
the IPOP program needs to be killed and restarted at the
destination (for interface/hybrid mode) or all other relevant
peers in the P2P overlay needs to be informed of the updated
location of the migrating VM (for router mode), which
interrupts all connections that the VM maintains prior to
migration. This is undesirable in situations when VMs are
likely to re-locate during the execution of parallel tasks,

for load-balance or fault-tolerance purposes. 4) In terms of
resource discovery, P2P overlay of IPOP is not aware of
physical resource availability of peers except for aimlessly
checking the existence of IP addresses, which is neither
meaningful nor efficient from a user’s point of view.

V. CONCLUSION

In this paper, we present a performance-oriented network
virtualization model, WAVNet, which can well adapt to
dynamic provisioning of IaaS over the large-scale wide-area
network. WAVNet provides a link-layer virtual network that
tunnels application packets for any Internet-connected hosts
even behind NAT/firewalls. Direct host-to-host connection
among resources discovered over rendezvous layer (CAN
overlay) allows users to utilize the available physical band-
width with minimal cost. On top of WAVNet, users can
also build their own virtual clusters that could expand or
shrink in number of available resources. Seamless WAN-
based VM live migration, a key technology supporting fault
tolerance and load balance for large-scale cloud system,
is implemented in our WAVNet. Our experiments show
that WAVNet delivers advantageous performance over the
previous solutions, not only about the VM live migration
but also on various practical applications. Experiments reveal
that parallel computation (such as MPI programs) can not
only be executed in a local-area network, but also be trans-
parently/conveniently carried out over wide-area network
efficiently using our designed WAVNet.

ACKNOWLEDGMENTS

This research is supported by a Hong Kong RGC grant
HKU 7179/09E and a HKU Basic Research grant (Grant
No. 10401460), and also in part by a Hong Kong UGC
Special Equipment Grant (SEG HKU09). Special thanks also
to SIAT, AIST, SDSC, Sinica and PU, for their kind help in
providing machines.

REFERENCES

[1] R. K. K. Ma, K. T. Lam, C.-L. Wang, and C. Zhang, “A
stack-on-demand execution model for elastic computing,” in
Proc. 39th Int. Conf. Parallel Processing, 2010, pp. 208–217.

[2] Wuala: http://www.wuala.com/.

[3] Abacast: http://www.abacast.com/.

[4] Clouds@home: http://clouds.gforge.inria.fr.

[5] Y. Huang, T. Z. J. Fu, D. M. Chiu, J. C. S. Lui, and C. Huang,
“Challenges, design and analysis of a large-scale p2p-vod
system,” in Proc. 2003 Conf. Applications, Technologies,
Architectures, and Protocols for Computer Communications,
2008, pp. 375–388.

[6] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield, “Live migration of
virtual machines,” in Proc. 2th USENIX Conf. Networked
Systems Design and Implementation, 2005, pp. 273–286.

[7] OpenVPN: http://openvpn.net/.

[8] Z. Pan, X. Ren, R. Eigenmann, and D. Xu, “Executing MPI
programs on virtual machines in an internet sharing system,”
in Proc. 20th Int. Parallel and Distributed Processing Sym-
posium, 2006, pp. 101–110.

[9] J. Maassen and H. E. Bal, “Smartsockets: solving the con-
nectivity problems in grid computing,” in Proc. 16th Int.
Symposium on High Performance Distributed Computing,
2007.

[10] A. Ganguly, A. Agrawal, P. O. Boykin, and R. Figueiredo, “IP
over P2P: Enabling self-configuring virtual ip networks for
grid computing,” in Proc. 20th Int. Parallel and Distributed
Processing Symposium, 2006.

[11] M. Tsugawa and J. Fortes, “A virtual network (ViNe) ar-
chitecture for grid computing,” Proc. 20th Int. Parallel and
Distributed Processing Symposium, pp. 10–19, 2006.

[12] A. I. Sundararaj and P. A. Dinda, “Towards virtual networks
for virtual machine grid computing,” in Proc. 3rd Conf.
Virtual Machine Research And Technology Symposium, 2004.

[13] X. Jiang and D. Xu, “VIOLIN: Virtual internetworking on
overlay infrastructure,” in Parallel and Distributed Processing
and Applications, December 2004.

[14] B. Ford, P. Srisuresh, and D. Kegel, “Peer-to-peer communi-
cation across network address translators,” in Proc. USENIX
Annual Technical Conf., 2005, pp. 179–192.

[15] P. Ruth, J. Rhee, D. Xu, R. Kennell, and S. Goasguen, “Auto-
nomic live adaptation of virtual computational environments
in a multi-domain infrastructure,” in Proc. 3rd IEEE Int. Conf.
Autonomic Computing , 2006, pp. 5–14.

[16] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker, “A scalable content-addressable network,” in
Proc. 2001 Conf. Applications, Technologies, Architectures,
and Protocols for Computer Communications, vol. 31, no. 4,
October 2001, pp. 161–172.

[17] A. Ganguly, A. Agrawal, P. O. Boykin, and R. Figueiredo,
“WOW: Self-organizing wide area overlay networks of virtual
workstations,” in Proc. 15th Int. Symposium on High Perfor-
mance Distributed Computing, vol. 5, 2006, pp. 30–41.

[18] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” in Proc. 9th ACM Symposium on Operating
Systems Principles, 2003, pp. 164–177.

[19] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman, “PlanetLab: an overlay
testbed for broad-coverage services,” ACM SIGCOMM Com-
puter Communication Review, vol. 33, pp. 3–12, July 2003.

[20] M. J. Quinn, Parallel Programming in C with MPI and
OpenMP, 2003.

[21] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L.
Carter, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski,
H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga,
“The NAS parallel benchmarks,” The International Journal of
Supercomputer Applications, vol. 5, no. 3, pp. 63–73, 1991.

[22] L. Deri and R. Andrews, “N2N: A layer two peer-to-peer
VPN,” in Proc. 2nd Int. Conf. Autonomous Infrastructure,
Management and Security: Resilient Networks and Services,
2008, pp. 53–64.

[23] J. R. Lange and P. A. Dinda, “Transparent network services
via a virtual traffic layer for virtual machines,” in Proc. 16th
Int. Symposium on High Performance Distributed Computing,
2007, pp. 23–32.

[24] CloudNet: http://www.cloud-net.org/.
[25] OpenVPN: http://openvpn.net/.

