
Lightweight Application-level Task Migration for Mobile Cloud Computing

Ricky K.K. Ma, Cho-Li Wang

Department of Computer Science

The University of Hong Kong

Hong Kong

{kkma, clwang}@cs.hku.hk

Abstract—Mobile cloud computing allows mobile applications

to use the enormous resources in the clouds. In order to seam-

lessly utilize the resources, it is common to migrate computa-

tion among mobile nodes and cloud nodes. Therefore, a highly

portable and transparent migration approach is needed. In

terms of portability, application-level migration with code in-

strumentation is the most portable approach. However, in the

existing literature, this approach imposes significant runtime

overhead, even when no migration takes place. Most of these

works are for mobile agents, and migrations are to be invoked

by the programs. Migration points are also restricted to certain

locations where migration status is being polled. In this paper,

we propose a Java bytecode transformation technique for rea-

lizing task migration without imposing significant overhead on

normal execution. Asynchronous migration technique is used

to allow migrations to take place virtually anywhere in the user

codes, and the proposed Twin Method Hierarchy minimizes

the overhead resulting from state-restoration codes in normal

execution. We have implemented our approach in our middle-

ware. The results show that our approach can allow

lightweight computation migration at application level, achieve

considerable speedups and utilize the cloud resources from

mobile devices.

Keywords-computation migration; migration technqiue;

stack-on-demand

I. INTRODUCTION

Cloud computing is a model for enabling convenient, on-

demand network access to a shared pool of configurable

computing resources (e.g., networks, servers, storage, appli-

cations, and services) that can be rapidly provisioned and

released with minimal management effort or service provid-

er interaction [1]. It combines computing power and data

storage into the web. Personal computers become thin

clients to interact with clouds. Resource sharing and colla-

boration over the clouds helps existing computing resources

to be consolidated to solve large-scale problems. As the

resources can be highly diversified and their availabilities

can change dynamically, a portable and lightweight task

migration mechanism is needed to hide the heterogeneity

and to move computation processes agilely between differ-

ent locations.

By connecting mobile devices to a cloud, we form a mo-

bile cloud for computing. Mobile applications and widgets

connect to the clouds to support more complex and wider

range of applications. Computation migration [2] can be

used to allows cloud nodes and mobile devices to share the

computation and hardware resources without restricted to

the client-server model. However, due to the diversity of the

devices, the migration mechanism and policy need to have

several characteristics to adapt to different execution envi-

ronments. It needs to allow migration in heterogeneous en-

vironment, as mobile devices and cloud nodes may have

different instruction set architectures. Besides, in order to

allow the migration to be used in mobile devices, the me-

chanism needs to be lightweight. As mobile devices have

limited computing power, overhead of migration would

have significant effects on the performance. Last but not the

least, as mobile devices are often connected to the internet

through mobile network, the bandwidth is small, and it can-

not have large amount of data transmission. The migration

mechanism should keep transferring as few data items as

possible.

Java has been commonly used as the platform for devel-

oping mobile applications. There are various features of

Java that favors such evolution. Java bytecode is machine-

independent. It allows applications to be executed in differ-

ent environments without modifications to the applications

and the underlying environment. This makes applications to

be executable on virtually all the devices. Besides, with the

customizable class loading, Java bytecode can be trans-

ported and executed over the net easily, achieving code mo-

bility. In addition, with the provided object serialization

mechanism, Java objects can be migrated transparently in

the internet, enabling data mobility without much program-

ming burden. However, execution state of a Java program

cannot be serialized or transferred. As a result, migrating

computation from one node to another is not trivial.

Many researches have worked hard to allow Java

processes to migrate, especially for agent-based systems

[3,4,5,6]. Computation migration can be implemented at

different levels: application level [7,8], middleware level

[9,10], Java virtual machine level [11,12] and OS level [13].

The motivation for implementing migration feature at the

application level is the portability. This approach avoids

modifying the Java virtual machines, and the resultant soft-

ware can be used on any JVM implementations among mo-

bile devices and cloud nodes. However, this approach has

two major drawbacks: i) it can incur considerable overhead,

even when there is no migration; ii) migration can only be

initiated by the application. Application-level migration is

not automatic to programmers. The migration points are

constrained to the locations where migration request status

is being. In order to allow fine-grained migrations, status-

checking frequency needs to be increased, leading to even

higher overhead. On the other hand, migration at Java vir-

tual machine level [11] can minimize the overhead problem.

The complete state of the migrating thread can be captured.

However, the approach imposes portability problems since

the JVM has to be extensively modified. The software can

only run on the specialized JVM, leading to portability is-

sues.

We propose a migration mechanism at application level

without significant overhead. The migration mechanism

makes use of asynchronous exception and bytecode instru-

mentation [14] to perform state capturing. It differs from

other capturing approaches in the ways that it avoids repeat-

edly polling migration state and checking migration state

after every function return. In the state-restoring, a tech-

nique, namely Twin Method Hierarchy, is used to minimize

the overhead induced by the restoration codes. These tech-

niques are designed to use for SOD migration [10,15]. The

rest of this paper is organized as follows. Section 2 de-

scribes the source of overhead in existing application-level

computation migration mechanisms. Section 3 presents our

proposed migration mechanism. We discuss our approach to

capture state and restore state. Section 4 presents evaluation

methodology and the experimental results on different mi-

gration scenarios. Section 5 presents the related work. Final-

ly we conclude this paper and outline several future works

in Section 6.

II. BACKGROUND

To achieve application-level migration, application

codes (source codes or bytecodes) are transformed by a pre-

processor to acquire migration capability. During prepro-

cessing, some extra codes are inserted for obtaining and

sending meta-data required for migration. When these pre-

processed applications run, the added codes would be also

executed, getting the process ready to be migrated. As those

codes always execute during execution, even when no mi-

gration takes place, overhead is still imposed. These added

codes are mainly used for status-polling, state-capturing,

state-restoring, and facilitating the communication among

migrating nodes during migration. Several systems

[16,17,18,19] follow this preprocessing approach, either

working with source code [16,17] or bytecode [18,19].

The essence of the migration mechanism is in the man-

ner it captures and restores the Java stack of a process. A

stack contains multiple stack frames (or activation records),

keeping the data (e.g. local variables) for the executing me-

thod instances. In order to migrate a process, all the stack

content has to be copied to a user-accessible buffer for net-

work transfer. However, due to Java’s pointer-less design, a

method’s frame is only accessible to that particular method.

Without modifying the JVM, the only way to capture the

complete stack is to iterate the execution control to each of

the method instances, “inviting” them to recite their stack

frame contents. In some systems [18], the preprocessor in-

serts a status-polling block after each method invocation.

The status-polling is to check whether the execution is in the

capturing mode (i.e., the process has decided to migrate and

it is now capturing the stack content.) If so, the extra block

will be executed in which the state of the current stack

frame and the artificial program counter (PC) are saved. On

completion, a premature return statement is executed so that

the execution is passed to the caller. As the caller would

also discover the capture state is in effect, it would save the

content similarly and further pass control to its caller. The

capturing process repeats until all frames are captured. The

transformed code example is illustrated in Fig. 1. Suppose

in the original function, func2() is being executed. In the

instrumented codes, when migration occurs inside func2(),

state of func2() would be captured. And then a return is

executed to return the execution to the previous frame. After

the return of func2(), isCapturing() is called to check

if state-capturing is being taken. When state-capturing is

being taken, isCapturing()returns true. The if-block is

then executed, and a return at the end of the if-block is ex-

ecuted to return the execution to the previous frame. The

process repeats until all the frames have been captured.

In other systems [19], exception instead of status polling

is used to parse all stack frames. When migration takes

place, a special Java exception is thrown. An inserted excep-

tion handler catches the exception and takes control of the

execution. It saves the current frame state and throws anoth-

er exception to invoke caller’s exception handler. The

process repeats until all the stack frames are captured. This

approach eliminates the status-polling blocks. However,

before any method invocation, the current stack frame needs

to be captured first. Otherwise, the stack frame would be

cleared during the occurrence of exception. As the stack

frame is always captured during normal execution even

when there is no migration, the heavy overhead is not yet

avoided.

FIGURE 1. STATUS-POLLING FOR STATE CATPURING

Instrumentation 1: Use of status-polling for detecting

requests

1. original statements of the function

2. call func2()

3. if (isCapturing()) then

4. store stackframe into context

5. store artificial PC as index value

6. return

7. end if

8. the remaining statements of the function

To perform state-restoring, a status-polling statement is

executed at the beginning of each method. The situation is

illustrated in Fig. 2. isRestoring() is always checked

every time when the function is being executed. When a

process is being restored, the function isRestoring()

would return true. Then the state-restoring code inside the

if-block would be executed, jumping to the appropriate loca-

tion of the method. State are restored, and then execution is

restored to the previously suspended location.
To summarize, the overhead of application-level

migration mainly comes from the code to repeatedly check
for migration requests and the code to detect a restoration
request on methods’ beginnings. In addition there are also
other constraints, migration points are constrained to the
locations where certain checking methods are executed such
as that in Fig. 1. Migrations can only occur at the location

where isCapturing() is executed. These locations are
called migration points. In order to achieve finer-grained
migration, the frequency of execution of request-checking
needs to be increased. However, this would increase the
overhead which in turn hampers the performance.

III. OUR PROPOSED MIGRATION MECHANISM

A. Overview of State-On-Demand execution (SOD)

The proposed migration mechanism is developed based
on our previous work in [10]. Our system does not migrate
the whole processes or threads among mobile devices and
cloud nodes. Instead, it performs Stack-On-Demand (SOD)
execution [10] to migrate tasks. SOD is an ultra-lightweight
computation migration in which only the top portion of the
runtime stack is being migrated. This design exploits the
temporal locality of stack-based execution, in which the most
recent execution state always sit on the top segment of a
stack. By a partial stack migration, this speculative approach
can reduce the migration cost of a bulky stack pointing to
many objects. In addition, SOD also allows tasks to move
around a heterogeneous platform to survive in highly
dynamic and unpredictable environments. As a whole, SOD
offers a very flexible style of mobile cloud computing. Fig. 3

shows the application scenario of SOD migration. As shown
in the figure, migration is taken from a mobile device to a
cloud node. Although the two computing machineries are in
different capabilities and the network bandwidth between
them is narrow, computation migration is possible with SOD.
The mobile device transfers just enough portion of the stack
to the cloud node, offloading the computation. Only the
topmost stack frame, instead of the whole stack, is migrated
to the cloud node. Besides, methods and objects are migrated
on-demand. This minimizes the overhead in migrating tasks,
and allows more flexible migration paths. More importantly,
the migration is performed seamlessly without manual client-
server programming.

SOD has several features that favor the execution in
mobile cloud computing. One of them is its lightweight task
migration. No matter how big the process image is, SOD
migrates only the required part of the data to the destination
site. This saves a lot of network bandwidth and takes less
resource on the target sites. This feature allows SOD to
access non-local idle computing resources and allow
efficient bidirectional call flow between cloud and mobile
devices. Mobile devices can make use of cloud resources
seamlessly for performance scaling. Cloud nodes can also
make use of the unique resources in mobile devices, such as
photos taken and stored inside them. Another feature is
SOD’s fine-grained migration mechanism which allows
different parts of the stack migrate concurrently to different
sites, forming distributed workflow.

In our previous work, we proposed an approach which
makes use of JVMTI to capture execution state in cloud
nodes to perform SOD migration. With this tool interface,
lightweight state capturing is allowed without the need of
modifying JVM or extensive modifications of application

FIGURE 2. STATUS-POLLING FOR STATE RESTORATION

FIGURE 3. TASK MIGRATION FROM MOBILE NODE TO CLOUD NODE

Instrumentation 2: Status-polling for detecting restora-

tion

1. if (isRestoring()) then

2. get artificial PC from context

3. switch (artificial PC)

4. case invoke1:

5. load stackframe

6. goto invoke1

7. case ...

8. ...

9. end switch

10. end if

11. original statements of the function

codes. However, JVMTI is available in some JVMs only. It
is not available in resource-limited mobile devices. Besides,
data captured by JVMTI are machine-dependent. Portability
is an issue. In order to capture states in mobile devices in a
portable manner, we propose an approach which performs
task migration at application level to allow lightweight
computation migration. In this approach, migrations are
initiated in active and proactive ways, depending on the need
of resources. State are captured with the use of asynchronous
exception and are restored with the use of Twin Method
Hierarchy approach in order to minimize the overhead.

B. Initiating a Migration

Based on the types of migration nodes, there can be

three types of migrations: i) migration among cloud nodes;

ii) migration from mobile devices to cloud nodes; iii) migra-

tion from cloud nodes to mobiles devices. Migrations

among cloud nodes allow dynamic load balancing, improve

data access locality, and achieve auto-provisioning of com-

puting resources. Migrations from mobile devices to cloud

nodes allow mobile applications to use the cloud resources

seamlessly without following the client-server model. Mi-

grations from cloud nodes to mobile devices migrate tasks

to specific locations for unique resources. For instance, pho-

tos stored in a mobile phone can be used and found dynami-

cally by a web server searching process which is originally

executed in a cloud node.

Migrations can be classified as either active or proactive.

The active ones are triggered by the migration manager

when certain conditions of the system, such as the threshold

of loading, are reached and detected. Proactive migrations

are the ones triggered by the program itself indirectly. This

would happen when the executing program has reached cer-

tain special state, such as ClassNotFoundException and

OutofMemoryException exceptions. The exceptions are

handled by the additional exception handlers which are in-

strumented during bytecode preprocessing. For example, in

a mobile device, when the program is trying to load a cer-

tain library which is not available in the device, a Class-

NotFoundException would be thrown. The exception

handler would then capture the execution state and issue

SOD migration request. The task would be migrated to a

cloud node where the required library is available and

resume execution. Upon task completion, execution is re-

turned to the original program in the mobile device, and the

execution of the program continues.

C. State Capturing with Asynchronous Exception

 We propose a state-capturing mechanism that does not
use polling to check for migration request. Besides, it does
not need to add extra checking statement after the return of a
function. In our proposed mechanism, in order to minimize
the overhead during normal execution, migration codes are
added as exception handlers. As exception handlers are not
executed in the normal execution, negligible overhead would
be added in the normal execution. Asynchronous exception
is used to notify the application of migration request.

Bytecode instrumentation is used to insert the state-capturing
codes into the applications. Fig. 4 illustrates how
applications are instrumented. Try-catch blocks are added to
the applications to catch the asynchronous exception

MigrationException. When there is any migration
request, the migration manager would throw an exception to
the target thread. The exception is asynchronous as it can be
thrown at any time. It would be trapped by the try-catch
block in the target thread. The corresponding exception
handler would be invoked, in which state of the current
threads are captured. In order to iterate through all the stack

frames, the handler throws another MigrationException
to notify the caller recursively. The current stack frame
would pop out, and the lower stack frame would receive the
exception. The capturing activity repeats in each stack frame
until the last required stack frame is reached and captured.

In some situations, the use of asynchronous exception
can lead to data inconsistency or deadlocks. Therefore, we
augment the asynchronous exception approach with
techniques that overcome these issues:

i. Avoidance of data inconsistency
Asynchronous exception can happen at any locations.

There are locations that would cause data inconsistency if
migration takes place. Intermediate results are often stored in
operand stack. When exception is received, operand stack is
cleared. So, if the operand stack is not empty and exception
is received at that time, the operand stack would be cleared
and values in the operand stack would be lost. This problem
can be solved by using extra local variables to save
intermediate results. Bytecode arrangement is taken to
rearrange the codes so that all intermediate results are saved
in extra local variables. So, even if the operand stack is
cleared when exception is received, no intermediate results
would be lost.

There are situations where bytecode instrumentation and
bytecode rearrangement cannot be performed, e.g. in native
methods. However, exception can still be received when
these functions are being executed. This would lead to data
inconsistency. In order to avoid the problem, a flag, namely
NO_MIGRATE is used to inhibit the exception triggering.
Before the execution of native methods, NO_MIGRATE is
set to be true. When migration manager is about to trigger
migration, it always checks whether NO_MIGRATE is set or
not. If it has not been set, it would trigger migration. If it has
been set, then it would schedule to do another checking at a
later time.

ii. Avoidance of Deadlock and Related Data Problems

FIGURE 4. DETECTION OF MIGRATION REQUEST USING

ASYNCHRONOUS. EXCEPTION

Instrumentation with use of asynchronous exception

1. try

2. original statements of function

3. catch MigrationException

4. capture state

5. throw MigrationException

6. end try

For multithreaded applications, asynchronous exception

is inherently not safe [20]. It can lead to deadlock if asyn-

chronous exception is used in an uncontrolled manner. If

exceptions occur concurrently with synchronized methods,

the latters’ execution would be interrupted. The lock held by

the interrupted thread would not be released. Deadlock

would happen if there are threads trying to get into the func-

tion. Besides, due to the interruption, the remaining state-

ments in the critical regions would not be executed. Due to

the hazard, the API functions that are related to asynchron-

ous exception have been deprecated. In our approach, dead-

locks are avoided. We use bytecode instrumentation, excep-

tion handlers, and lock-checking by migration manager be-

fore triggering migration. In order to avoid the deadlock

problem, during bytecode instrumentation, a try-catch block

is added. When migration request is received, the migration

manager would suspend the target thread. Then it would

check whether the target thread is holding any locks or not.

If so, the migration manager would instruct a dummy thread

to take over the locks. Then the migration manager would

issue an exception to the target thread to trigger state-

capturing action. The catch block of the target thread would

be executed. Locks would be released by the target inside

the exception handlers, and state of the current stack frame

would be captured. The state-capturing would then be pro-

ceeded to other stack frames as usual. The locks released by

the target thread would be acquired by the dummy threads

that were issued by the migration manager.

D. State Restoring with Twin Method Hierarchy

In order to allow methods to be restored, it is a common

practice to perform status checking at the beginning of the

related functions. However, the extra conditional branchings

would induce significant overhead in the execution of appli-

cations. The overhead depends on the execution frequency

of the functions.

We minimize the overhead by using a proposed ap-

proach, namely Twin Method Hierarchy (TMH). The heart

of TMH lies in the idea of duplicating the original methods

to allow the instrumented and original methods to be used

respectively at different stages. During normal execution,

the original methods are executed. During restoration, the

instrumented methods with restoration statements are ex-

ecuted.

Methods are instrumented as follows:

i. Methods are duplicated into another set M’, while the

original methods are in the set M.

ii. In the duplicated methods M’, checking statements

are added at the beginning of the duplicated functions.

iii. In the normal execution, only methods in set M are

executed.

iv. During restoration, methods in set M’ are executed.

When restoration is finished, those newly executed

functions would be from set M.

An example of simplified restoration instrumentation is

illustrated in Fig. 5. Fig. 5A shows the program codes be-

fore instrumentation, and Fig. 5B shows the instrumented

program codes with major statements highlighted. The

codes are instrumented in such a way that during normal

execution, func1() and func2() are executed, while dur-

ing state restoring, SOD_func1() and SOD_func2() are

executed. Inside SOD_func1() and SOD_func2(), they are

instrumented in the way such that when state restoration has

been finished, the execution is then switched back to the

original, non-instrumented program codes. If there are any

further execution for the functions func1() and func2(),

func1() and func2() are executed, instead of

SOD_func1() and SOD_func2(). So, during migration,

though additional statements would be executed inside

SOD_func1() and SOD_func2 during state restoration,

when state restoration has been finished, the original, non-

instrumented program codes would be executed. As there

are no additional statements added into these original func-

tions, there are no overhead imposed. As a result, the execu-

tion performance is returned to normal when migration has

been done.

IV. PERFORMANCE EVALUATION

In this section, we evaluate our approaches with several
applications in cloud nodes and mobile devices. The
evaluations were conducted on a cluster of nodes
interconnected by a Gigabit Ethernet network. Each node
consists of two Intel E5540 Quad-core Xeon 2.53GHz CPUs,

FIGURE 5A. ORIGINAL CODES WITHOUT ANY INTRUMENTATION

FIGURE 5B. PROGRAM CODES INSTRUMENTED WITH RESTORATION CODES

void func1(){

 func2();

 return;

}

void SOD_func1() {

 if (isRestoring()) {

 restore_state();

 if (need_restore_other_frame)

 goto Label1

 else

 goto previously_suspended_location

 }

 func2();

Label2:

 return;

label1:

 SOD_func2();

 goto Label2

}

void func1(){

 func2();

 return;

}

32GB 1066MHz DDR3 RAM and a pair of SAS/RAID-1
drives. The OS is Fedora 11 x86_64. All nodes mounted the
home directory on Network File System (NFS) to ease
experiments with shared file access. The tested JVM version
is SunJDK 1.6 (64-bit).

For the mobile devices, iPhone 4 handsets were used. It
contains an Apple A4 CPU (800MHz), 512MB RAM, and
16GB storage. JamVM 1.5.1b2-3 (VJM) and GNU Classpath
0.96.1-3 (Java class library) are installed on the iPhone. It is
connected through Wi-Fi connection to the cluster network.
For JamVM, JIT is not available. Besides, in the original API,
asynchronous exception is not available for use in
applications. We have slightly modified the codes of JVM to
expose the asynchronous exception API. Just a few lines of
codes are added or modified. Other JVM implementations,
such as Sun JDK, currently have provided API to allow
applications to issue asynchronous exception at application
level. However, Sun JDK is not available for iPhone. In this
section, we focus on the evaluations of single-threaded
applications.

A. Overhead of Normal Execution in Cloud Nodes

In this evaluation, we compare different mechanisms of
state-capturing and restoring for SOD migration [10] in
cloud nodes. These mechanisms are: use of JVMTI
(SOD_JVMTI), the traditional use of status-checking
(SOD_P), and our newly-proposed use of asynchronous
exception (SOD_AE). SOD_JVMTI is a computation
migration approach that we proposed in our previous work
[10]. JVMTI [21] is used to capture execution state, and help
to restore state for SOD migration. As JVMTI is close to the
internals of JVM, it captures state more efficiently. However,
SOD_JVMTI can only be used among cloud nodes as the
tool interface is not available on mobile JVMs. On mobile
devices, only our new SOD_AE and the traditional SOD_P
can be used. Several computation-intensive applications
were used. These applications are Fibonacci number
calculations using recursion, solving N-Queens problem, 2D
FFT calculations, and solving the Travelling Saleman
Problem of n cities. Some micro-benchmarks are used to
compare the performance of different state-capturing
mechanisms. We would like to compare different
comparison to capture different number of stack frames, and
different size of objects.

We put the programs into execution on the cloud nodes
and the results are shown in Table 1. Among different
migration mechanisms, SOD_JVMTI has the lowest

overhead. In SOD_JVMTI, implementations are made as
agents instrumented into the JVM. As it is in the lower layer
than the other two implementations, it imposes the smallest
overhead. Both implementations of SOD_AE and SOD_P
are made at application level. As SOD_AE avoids the
execution of most of the extra statements and SOD_P cannot
avoid the execution, SOD_AE imposes much less overhead
than SOD_P during normal execution when there is no
migration for most cases. In SOD_AE, the overhead can be
reduced as much as from 51.78% to 0.25%.

B. Overhead of Normal Execution in Mobile Devices

We also evaluate the proposed approach in mobile device.
Applications used are the same as section A. However, as the
computing power of mobile device is much smaller than the
cloud nodes used in Section A, some parameters used in this
section are different from those in Section A to avoid very
long execution time. As JVMTI is not available for JVM in
the testing devices, SOD_JVMTI cannot be used. As a result,
only SOD_AE and SOD_P are used and compared in this
section. The results are shown in Table 2. For SOD_AE and
SOD_P, the weight of overhead is relatively smaller than the
weight of overhead in cloud nodes used in section A.
SOD_AE has the small overhead in execution. This is also
because SOD_AE has avoided execution of extra statements
which cannot be avoided in SOD_P. In SOD_AE, the
overhead can be reduced as much as 43% to 0.1%.

C. Migration for Performance Improvement

In this experiment, we would evaluate the performance

gain of using the migration technique to migrate computa-

tion-intensive tasks from mobile devices to cluster nodes

through Wi-Fi connection. In the experiment, we first ex-

ecuted the applications in a mobile device. When the com-

putation-intensive task is just started, migration is taken to

migrate the task from the mobile device to a cloud node

where it is resumed to continue execution. When the task

finishes, the results are sent back to the mobile device where

the application continues the execution. The results are

shown in Table 3. It is shown that the performance gain

with migration can be more than 56 times. The large per-

formance difference of cloud nodes and mobile nodes are

mainly originated from the difference of computing power

and JVM used. As the JVM used in the testing mobile de-

vices does not provide JIT execution, the performance of

execution at there is greatly affected.

TABLE 2. EXECUTION TIME IN MOBILE DEVICE

Orig SOD_AE SOD_P

time (s)
time

(s)

overhead

(%)
time (s)

overhead

(%)

Fib 10.85 10.86 0.09 15.58 43.59

NQ 32.13 32.23 0.31 33 2.71

FFT 5.39 5.4 0.19 5.41 0.37

TABLE 1. EXECUTION TIME IN CLOUD NODES

Orig SOD_JVMTI SOD_AE SOD_P

time (s)
time

(s)

overhead

(%)
time (s)

overhead

(%)

time

(s)

overhead

(%)

Fib 12.11 12.13 0.17 12.14 0.25 18.4 51.78

NQ 6.35 6.4 0.79 6.7 5.51 7.24 14.02

FFT 10.53 10.63 0.95 10.82 2.75 10.6 0.47

D. Migration for Resource Utilization

In this experiment, we simulate the scenario of migrating

task from mobile device to cloud node in a proactive way to

use the resources in the cloud nodes, as discussed in section

III B. Two applications, namely DBRetrieve and FaceDetect,

are used. The applications require some resources which are

not available in iPhone. Without the use of migration, the

program cannot be executed in mobile devices. DBRetrieve

is a database client program which connects to a MySQL

database server located in a cloud node to retrieve data. The

program is executed in an iPhone which does not have the

database driver and library to connect to the database. Be-

sides, the database server is located behind firewall which it

can be accessed by certain nodes only. During execution,

when the program is trying to execute the statement which

is trying to use the database driver, a ClassNotFoundEx-

ception is thrown. SOD migration is then triggered in

which the current stack frame, which is the topmost stack

frame, is captured and transferred to that cloud node. Execu-

tion is resumed at its last suspended point in that cloud node,

where connections to the database are made, and data are

retrieved from the database and processed. After the com-

pletion of the execution of the migrated frames, the required

results are returned to the calling program in the iPhone and

the execution is resumed.

Another application, FaceDetect is a face detection pro-

gram. It finds regions of faces in photos that are stored in

iPhone. The searching is based on a profile that determines

what frontal face features need to be detected in order to

recognize as a face. The application makes use of a well-

known library called OpenCV. OpenCV is an open-source

library for real-time computer vision. However, the library

is not available for iPhone. In our evaluation, we execute the

application in iPhone. When the application is trying to use

the library, an exception NoClassDefFoundError is

thrown. This triggers a proactive migration, and the current

stack frame is migrated to a cloud node where the library is

available. The task is resumed. During execution of the task,

photo data are fetched seamlessly from iPhone to the cloud

node. Upon finishing the task, the resulting photo data are

returned back to iPhone, and the execution is resumed. An

example of the resulting photos is shown in Fig. 6. Faces

detected are surrounded by white rectangles.

The results are shown in Table 4. The migration latency

for DBRetrieve and FaceDetect are 167ms and 265ms re-

spectively. Most of the migration latency is originated from

the capture time. Between DBRetrieve and FaceDetect, Fa-

ceDetect has larger capture time and transfer time. In Face-

Detect, data of photo are sent from the mobile device to the

cloud node, and data of resulting photo are sent from cloud

node to mobile device. As more data are captured and trans-

ferred in FaceDetect than DBRetrieve, the capture time and

transfer time of FaceDetect are larger accordingly.

V. RELATED WORK

MAG [3], Brakes [18] and JavaGoX [19] implement Ja-

va thread migration at application level. These systems are

designed as mobile agent systems. They use preprocessor to

instrument applications’ bytecode. MAG and Brakes inserts

state-capturing codes after each method invocation. The

inserted capturing codes lead to the large overhead during

migration. JavaGoX uses exception handlers to navigate the

stacks. Though our approach also uses exception handlers to

navigate the stack, our approach doesn’t require the need of

saving state before invoking functions, which are required in

other approaches. Besides, in our approach, migration re-

quest is notified through using asynchronous exception,

while in other approaches, migration request is triggered by

the program itself. During normal execution, those ap-

proaches always execute the state-checking statements. In

our approach, the state-checking statements are executed

only during state-restoring. The statements would not be

executed during normal execution.

Mobile JikesRVM [9] is a thread migration framework

implemented as middleware on top of JikesRVM. However,

it requires certain extensions of the underlying JVM, and it

is not transparent to programmers. Cloudlet [22] and Clo-

TABLE 3. MIGRATION FROM MOBILE DEVICE TO CLOUD NODE exec.

time w/o

mig. (s)

exec.

time w/

mig. (s)

gain

(%)

capture

time

(ms)

transfer

time

(ms)

restore

time

(ms)

total migra-

tion latency

(ms)

Fib 56.79 0.99 5636 140.33 94.33 11.67 246.33

NQ 32.67 1.04 3041 183.26 86.31 10.52 280.09

FFT 6.06 1.26 381 156.48 232.46 14.58 403.52

FIGURE 6. FACE DETECTION

TABLE 4. MIGRATION FROM MOBILE DEVICE TO CLOUD NODE IN

PROACTIVE MIGRATION

apps
capture

time (ms)

transfer

time (ms)

restore time

(ms)

total migration

latency (ms)

DBRetrieve 85 76 6 167

FaceDetect 103 155 7 265

neCloud [23] use VM migration to migrate computation

from mobile devices in a portable manner. Cloudlet is a

customized computing infrastructure which allows mobile

devices to leverage resources of nearly cloudlets by VM

migration. CloneCloud is a system that seamlessly offloads

part of the execution of mobile applications from mobile

devices to a computation cloud. Both systems require the

use of VM in mobile devices. Migration in the systems are

rather coarse-grained. Significant overheads are im-posed

even when there are no migrations.

VI. CONCLUSION AND FUTURE WORK

The paper proposes a Java bytecode transformation
technique for realizing transparent task migration in a
portable and efficient manner. The technique allows
migration to take place at application level to allow high
portability. Migration can take place among mobile devices
and cloud nodes. It differs from other approaches that it does
not impose significant overhead on execution when there is
no migration occurred. Experiments show that the techniques
allow lightweight migration at application level among
mobile devices and cloud nodes. The techniques can be
further explored and evaluated with policies, such as task
distribution policy.

ACKNOWLEDGEMENT

This research is supported by Hong Kong RGC Grant

HKU7179/09E and Hong Kong UGC Special Equipment

Grant SEG HKU09.

REFERENCES

[1] P. Mell and T. Grance. “The NIST definition of cloud computing,”
Technical report, National Institute of Standards and Technology,
Information Technology Laboratory, 2011

[2] C. L. Wang, K. T. Lam, and K. K. Ma, "A Computation Migration
Approach to Elasticity of Cloud Computing,” Internet and Distributed
Computing Advancements: Theoretical Frameworks and Practical
Applications, IGI Global

[3] R. F. Lopes, and F. J. D. S. E. Silva, “Migration Transparency in a
Mobile Agent Based Computational Grid,” In Proc. of the 5th WSEAS
Intl. Conf. on Simulation, Modeling and Optmization, pp. 31-36,
Greece, August 17-19, 2005

[4] T. Illmann, T. Krueger, F. Kargl, and M. Weber, "Transparent
Migration of Mobile Agents Using the Java Platform Debugger
Architecture," In Proc. of the 5th Intl. Conf. on Mobile Agents,
Atlanta, Georgia, USA, Dec 2001

[5] A. J. Chakravarti, X. Wang, J. O. Hallstrom, and G. Baumgartner,
“Implementation of strong mobility for multi-threaded agents in
Java,” In Proc. of 2003 Intl. Conf. on Parallel Processing, IEEE
Computer Society, Taiwan, Oct. 2003.

[6] L. Bettini and R. D. Nicola. "Translating strong mobility into weak
mobility, " In Proc. of the 5th Intl. Conference on Mobile Agents, pp.
182–197. Springer-Verlag, 2002.

[7] M. Factor, A. Schuster, and K. Shagin. “JavaSplit: a Runtime for
Execution of Monolithic Java Programs on Heterogenous Collections
of Commodity Workstations,” In Proc of the 5th IEEE Intl. Conf. on
Cluster Computing (CLUSTER’03), p.110-117, HK, China, Dec 2003

[8] E. Truyen, B. Robben, B. Vanhaute, T. Coninx, W. Joosen, and P.
Verbaeten. "Portable support for transparent thread migration in
java," In ASM2000, pp. 29-43, 2000.

[9] R. Quitadamo, G. Cabri, and L. Leonardi. "Mobile JikesRVM: A
framework to support transparent Java thread migration," Science of
Computer Programming, 70(2-3):221-240, 2008

[10] R. K. K. Ma, K. T. Lam, C. L. Wang, and C. G. Zhang. "A Stack-On-
Demand Execution Model for Elastic Computing," In Proc. of the
39th Intl. Conf. on Parallel Processing (ICPP2010), pp. 208-217, San
Diego, California, USA, Sep 2010

[11] W. Zhu, C. L. Wang, and F. C. M. Lau. “JESSICA2: A Distributed
Java Virtual Machine with Transparent Thread Migration Support,”
In Proc. of the IEEE 4th Int Conf. on Cluster Computing (CLUSTER
2002), pp. 381-388, Chicago, USA, Sep 2002

[12] S. Bouchenak and D. Hagimont. "Zero overhead java thread
migration," Technical Report 0261, INRIA, 2002.

[13] S. Osman, D. Subhraveti, G. Su, and J. Nieh. “The Design and
Implementation of Zap: A System for Migrating Computing
Environments,” In Proc. of 5th Symposium on Operating Systems
Design and Implementation, pp. 361–376, 2002

[14] “BCEL” Internet: jakarta.apache.org/bcel/

[15] R. K. K. Ma, K. T. Lam, and C. L. Wang. "eXCloud: Transparent
Runtime Support for Scaling Mobile Appications in Cloud, " In Proc.
of Intl. Conf. on Cloud and Service Computing (CSC2011), HK, Dec
2011

[16] S. Funfrocken, "Transparent Migration of Java-based Mobile Agents
(Capturing and Reestablishing the State of Java Programs),” In Proc.
of 2nd Intl. Workshop Mobile Agents 98 (MA'98), pp. 26-37,
Stuttgart, Germany, September 9 - 11, 1998.

[17] T. Sekiguchi, H. Masuhara, A. Yonezawa, "A Simple Extension of
Java Language for Controllable Transparent Migration and its
Portable Implementation," In Proc. of 3rd Intl. Conf. in Coordination
Langauges and Models (COORDINATION’99) Symposium, pp. 211-
226, April 1999.

[18] E. Truyen, B. Robben, B. Vanhaute, T. Coninx, W. Joosen, and P.
Verbaeten, "Portable Support for Transparent Thread Migration in
Java," In Proc. of 2nd Intl. Symposium on Agent Systems and
Applciations and 4th Intl. Symposium on Mobile Agents 2000
(ASA/MA2000), Zurich, Switzerland, September 13-15, 2000.

[19] T. Sakamoto, T. Sekiguchi, and A. Yonezawa, “Bytecode
transformation for portable thread migration in Java,” In Proc. of 2nd
Intl. Symposium on Agent Systems and Applciations and 4th Intl.
Symposium on Mobile Agents (ASA/MA2000), Zurich, Switzerland,
September 13-15, 2000.

[20] “Java Thread Primitive Deprecation” Internet:
http://download.oracle.com/javase/1.4.2/docs/guide/misc/threadPrimit
iveDeprecation.html

[21] “JVM Tool Interface (JVMTI) Version 1.1.” Internet: java.sun.com/
javase/6/docs/platform/jvmti/jvmti.html

[22] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. “The Case
for VM-based Cloudlets in Mobile Computing,” IEEE Pervasive
Computing, 8(4), 2009

[23] B. G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti. "CloneCloud:
Elastic execution between mobile device and cloud," In Proc. of
EuroSys 2011

