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Abstract—Mobile cloud computing allows mobile applications 

to use the enormous resources in the clouds. In order to seam-

lessly utilize the resources, it is common to migrate computa-

tion among mobile nodes and cloud nodes. Therefore, a highly 

portable and transparent migration approach is needed. In 

terms of portability, application-level migration with code in-

strumentation is the most portable approach. However, in the 

existing literature, this approach imposes significant runtime 

overhead, even when no migration takes place. Most of these 

works are for mobile agents, and migrations are to be invoked 

by the programs. Migration points are also restricted to certain 

locations where migration status is being polled. In this paper, 

we propose a Java bytecode transformation technique for rea-

lizing task migration without imposing significant overhead on 

normal execution. Asynchronous migration technique is used 

to allow migrations to take place virtually anywhere in the user 

codes, and the proposed Twin Method Hierarchy minimizes 

the overhead resulting from state-restoration codes in normal 

execution. We have implemented our approach in our middle-

ware. The results show that our approach can allow 

lightweight computation migration at application level, achieve 

considerable speedups and utilize the cloud resources from 

mobile devices. 
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stack-on-demand 

I.  INTRODUCTION 

Cloud computing is a model for enabling convenient, on-

demand network access to a shared pool of configurable 

computing resources (e.g., networks, servers, storage, appli-

cations, and services) that can be rapidly provisioned and 

released with minimal management effort or service provid-

er interaction [1]. It combines computing power and data 

storage into the web. Personal computers become thin 

clients to interact with clouds. Resource sharing and colla-

boration over the clouds helps existing computing resources 

to be consolidated to solve large-scale problems. As the 

resources can be highly diversified and their availabilities 

can change dynamically, a portable and lightweight task 

migration mechanism is needed to hide the heterogeneity 

and to move computation processes agilely between differ-

ent locations. 

By connecting mobile devices to a cloud, we form a mo-

bile cloud for computing. Mobile applications and widgets 

connect to the clouds to support more complex and wider 

range of applications. Computation migration [2] can be 

used to allows cloud nodes and mobile devices to share the 

computation and hardware resources without restricted to 

the client-server model. However, due to the diversity of the 

devices, the migration mechanism and policy need to have 

several characteristics to adapt to different execution envi-

ronments. It needs to allow migration in heterogeneous en-

vironment, as mobile devices and cloud nodes may have 

different instruction set architectures. Besides, in order to 

allow the migration to be used in mobile devices, the me-

chanism needs to be lightweight. As mobile devices have 

limited computing power, overhead of migration would 

have significant effects on the performance. Last but not the 

least, as mobile devices are often connected to the internet 

through mobile network, the bandwidth is small, and it can-

not have large amount of data transmission. The migration 

mechanism should keep transferring as few data items as 

possible. 

Java has been commonly used as the platform for devel-

oping mobile applications. There are various features of 

Java that favors such evolution. Java bytecode is machine-

independent. It allows applications to be executed in differ-

ent environments without modifications to the applications 

and the underlying environment. This makes applications to 

be executable on virtually all the devices. Besides, with the 

customizable class loading, Java bytecode can be trans-

ported and executed over the net easily, achieving code mo-

bility. In addition, with the provided object serialization 

mechanism, Java objects can be migrated transparently in 

the internet, enabling data mobility without much program-

ming burden. However, execution state of a Java program 

cannot be serialized or transferred. As a result, migrating 

computation from one node to another is not trivial. 

Many researches have worked hard to allow Java 

processes to migrate, especially for agent-based systems 

[3,4,5,6]. Computation migration can be implemented at 

different levels: application level [7,8], middleware level 

[9,10], Java virtual machine level [11,12] and OS level [13]. 

The motivation for implementing migration feature at the 

application level is the portability. This approach avoids 

modifying the Java virtual machines, and the resultant soft-

ware can be used on any JVM implementations among mo-

bile devices and cloud nodes. However, this approach has 

two major drawbacks: i) it can incur considerable overhead, 

even when there is no migration; ii) migration can only be 

initiated by the application. Application-level migration is 



not automatic to programmers. The migration points are 

constrained to the locations where migration request status 

is being. In order to allow fine-grained migrations, status-

checking frequency needs to be increased, leading to even 

higher overhead. On the other hand, migration at Java vir-

tual machine level [11] can minimize the overhead problem. 

The complete state of the migrating thread can be captured. 

However, the approach imposes portability problems since 

the JVM has to be extensively modified. The software can 

only run on the specialized JVM, leading to portability is-

sues.  

We propose a migration mechanism at application level 

without significant overhead. The migration mechanism 

makes use of asynchronous exception and bytecode instru-

mentation [14] to perform state capturing. It differs from 

other capturing approaches in the ways that it avoids repeat-

edly polling migration state and checking migration state 

after every function return. In the state-restoring, a tech-

nique, namely Twin Method Hierarchy, is used to minimize 

the overhead induced by the restoration codes. These tech-

niques are designed to use for SOD migration [10,15]. The 

rest of this paper is organized as follows. Section 2 de-

scribes the source of overhead in existing application-level 

computation migration mechanisms. Section 3 presents our 

proposed migration mechanism. We discuss our approach to 

capture state and restore state. Section 4 presents evaluation 

methodology and the experimental results on different mi-

gration scenarios. Section 5 presents the related work. Final-

ly we conclude this paper and outline several future works 

in Section 6. 

II. BACKGROUND 

To achieve application-level migration, application 

codes (source codes or bytecodes) are transformed by a pre-

processor to acquire migration capability. During prepro-

cessing, some extra codes are inserted for obtaining and 

sending meta-data required for migration. When these pre-

processed applications run, the added codes would be also 

executed, getting the process ready to be migrated. As those 

codes always execute during execution, even when no mi-

gration takes place, overhead is still imposed. These added 

codes are mainly used for status-polling, state-capturing, 

state-restoring, and facilitating the communication among 

migrating nodes during migration. Several systems 

[16,17,18,19] follow this preprocessing approach, either 

working with source code [16,17] or bytecode [18,19]. 

The essence of the migration mechanism is in the man-

ner it captures and restores the Java stack of a process. A 

stack contains multiple stack frames (or activation records), 

keeping the data (e.g. local variables) for the executing me-

thod instances. In order to migrate a process, all the stack 

content has to be copied to a user-accessible buffer for net-

work transfer. However, due to Java’s pointer-less design, a 

method’s frame is only accessible to that particular method. 

Without modifying the JVM, the only way to capture the 

complete stack is to iterate the execution control to each of 

the method instances, “inviting” them to recite their stack 

frame contents. In some systems [18], the preprocessor in-

serts a status-polling block after each method invocation. 

The status-polling is to check whether the execution is in the 

capturing mode (i.e., the process has decided to migrate and 

it is now capturing the stack content.) If so, the extra block 

will be executed in which the state of the current stack 

frame and the artificial program counter (PC) are saved. On 

completion, a premature return statement is executed so that 

the execution is passed to the caller. As the caller would 

also discover the capture state is in effect, it would save the 

content similarly and further pass control to its caller. The 

capturing process repeats until all frames are captured. The 

transformed code example is illustrated in Fig. 1. Suppose 

in the original function, func2() is being executed. In the 

instrumented codes, when migration occurs inside func2(), 

state of func2() would be captured. And then a return is 

executed to return the execution to the previous frame. After 

the return of func2(), isCapturing() is called to check 

if state-capturing is being taken. When state-capturing is 

being taken, isCapturing()returns true. The if-block is 

then executed, and a return at the end of the if-block is ex-

ecuted to return the execution to the previous frame. The 

process repeats until all the frames have been captured.  

In other systems [19], exception instead of status polling 

is used to parse all stack frames. When migration takes 

place, a special Java exception is thrown. An inserted excep-

tion handler catches the exception and takes control of the 

execution. It saves the current frame state and throws anoth-

er exception to invoke caller’s exception handler. The 

process repeats until all the stack frames are captured. This 

approach eliminates the status-polling blocks. However, 

before any method invocation, the current stack frame needs 

to be captured first. Otherwise, the stack frame would be 

cleared during the occurrence of exception. As the stack 

frame is always captured during normal execution even 

when there is no migration, the heavy overhead is not yet 

avoided.  

FIGURE 1. STATUS-POLLING FOR STATE CATPURING 

 

Instrumentation 1: Use of status-polling for detecting 

requests  

1. original statements of the function 

2. call func2() 

3. if (isCapturing()) then 

4.       store stackframe into context 

5.       store artificial PC as index value 

6.       return 

7. end if 

8. the remaining statements of the function 

 



To perform state-restoring, a status-polling statement is 

executed at the beginning of each method. The situation is 

illustrated in Fig. 2. isRestoring() is always checked 

every time when the function is being executed. When a 

process is being restored, the function isRestoring() 

would return true. Then the state-restoring code inside the 

if-block would be executed, jumping to the appropriate loca-

tion of the method. State are restored, and then execution is 

restored to the previously suspended location. 
To summarize, the overhead of application-level 

migration mainly comes from the code to repeatedly check 
for migration requests and the code to detect a restoration 
request on methods’ beginnings. In addition there are also 
other constraints, migration points are constrained to the 
locations where certain checking methods are executed such 
as that in Fig. 1. Migrations can only occur at the location 

where isCapturing() is executed. These locations are 
called migration points. In order to achieve finer-grained 
migration, the frequency of execution of request-checking 
needs to be increased. However, this would increase the 
overhead which in turn hampers the performance. 

III. OUR PROPOSED MIGRATION MECHANISM 

A. Overview of State-On-Demand execution (SOD) 

The proposed migration mechanism is developed based 
on our previous work in [10]. Our system does not migrate 
the whole processes or threads among mobile devices and 
cloud nodes. Instead, it performs Stack-On-Demand (SOD) 
execution [10] to migrate tasks. SOD is an ultra-lightweight 
computation migration in which only the top portion of the 
runtime stack is being migrated. This design exploits the 
temporal locality of stack-based execution, in which the most 
recent execution state always sit on the top segment of a 
stack. By a partial stack migration, this speculative approach 
can reduce the migration cost of a bulky stack pointing to 
many objects. In addition, SOD also allows tasks to move 
around a heterogeneous platform to survive in highly 
dynamic and unpredictable environments. As a whole, SOD 
offers a very flexible style of mobile cloud computing. Fig. 3 

shows the application scenario of SOD migration. As shown 
in the figure, migration is taken from a mobile device to a 
cloud node. Although the two computing machineries are in 
different capabilities and the network bandwidth between 
them is narrow, computation migration is possible with SOD. 
The mobile device transfers just enough portion of the stack 
to the cloud node, offloading the computation. Only the 
topmost stack frame, instead of the whole stack, is migrated 
to the cloud node. Besides, methods and objects are migrated 
on-demand. This minimizes the overhead in migrating tasks, 
and allows more flexible migration paths. More importantly, 
the migration is performed seamlessly without manual client-
server programming. 

SOD has several features that favor the execution in 
mobile cloud computing. One of them is its lightweight task 
migration. No matter how big the process image is, SOD 
migrates only the required part of the data to the destination 
site. This saves a lot of network bandwidth and takes less 
resource on the target sites. This feature allows SOD to 
access non-local idle computing resources and allow 
efficient bidirectional call flow between cloud and mobile 
devices. Mobile devices can make use of cloud resources 
seamlessly for performance scaling. Cloud nodes can also 
make use of the unique resources in mobile devices, such as 
photos taken and stored inside them. Another feature is 
SOD’s fine-grained migration mechanism which allows 
different parts of the stack migrate concurrently to different 
sites, forming distributed workflow. 

In our previous work, we proposed an approach which 
makes use of JVMTI to capture execution state in cloud 
nodes to perform SOD migration. With this tool interface, 
lightweight state capturing is allowed without the need of 
modifying JVM or extensive modifications of application 

FIGURE 2. STATUS-POLLING FOR STATE RESTORATION 

 

FIGURE 3. TASK MIGRATION FROM MOBILE NODE TO CLOUD NODE 

 

Instrumentation 2: Status-polling for detecting restora-

tion 

1. if (isRestoring()) then 

2.       get artificial PC from context 

3.       switch (artificial PC) 

4.             case invoke1: 

5.                   load stackframe 

6.                   goto invoke1 

7.             case ... 

8.                   ... 

9.       end switch 

10. end if 

11. original statements of the function 

 



codes. However,  JVMTI is available in some JVMs only. It 
is not available in resource-limited mobile devices. Besides, 
data captured by JVMTI are machine-dependent. Portability 
is an issue. In order to capture states in mobile devices in a 
portable manner, we propose an approach which performs 
task migration at application level to allow lightweight 
computation migration. In this approach, migrations are 
initiated in active and proactive ways, depending on the need 
of resources. State are captured with the use of asynchronous 
exception and are restored with the use of Twin Method 
Hierarchy approach in order to minimize the overhead. 

B. Initiating a Migration 

Based on the types of migration nodes, there can be 

three types of migrations: i) migration among cloud nodes; 

ii) migration from mobile devices to cloud nodes; iii) migra-

tion from cloud nodes to mobiles devices. Migrations 

among cloud nodes allow dynamic load balancing, improve 

data access locality, and achieve auto-provisioning of com-

puting resources. Migrations from mobile devices to cloud 

nodes allow mobile applications to use the cloud resources 

seamlessly without following the client-server model. Mi-

grations from cloud nodes to mobile devices migrate tasks 

to specific locations for unique resources. For instance, pho-

tos stored in a mobile phone can be used and found dynami-

cally by a web server searching process which is originally 

executed in a cloud node. 

Migrations can be classified as either active or proactive. 

The active ones are triggered by the migration manager 

when certain conditions of the system, such as the threshold 

of loading, are reached and detected. Proactive migrations 

are the ones triggered by the program itself indirectly. This 

would happen when the executing program has reached cer-

tain special state, such as ClassNotFoundException and 

OutofMemoryException exceptions. The exceptions are 

handled by the additional exception handlers which are in-

strumented during bytecode preprocessing. For example, in 

a mobile device, when the program is trying to load a cer-

tain library which is not available in the device, a Class-

NotFoundException would be thrown. The exception 

handler would then capture the execution state and issue 

SOD migration request. The task would be migrated to a 

cloud node where the required library is available and 

resume execution. Upon task completion, execution is re-

turned to the original program in the mobile device, and the 

execution of the program continues. 

C. State Capturing with Asynchronous Exception 

 We propose a state-capturing mechanism that does not 
use polling to check for migration request. Besides, it does 
not need to add extra checking statement after the return of a 
function. In our proposed mechanism, in order to minimize 
the overhead during normal execution, migration codes are 
added as exception handlers. As exception handlers are not 
executed in the normal execution, negligible overhead would 
be added in the normal execution. Asynchronous exception 
is used to notify the application of migration request. 

Bytecode instrumentation is used to insert the state-capturing 
codes into the applications. Fig. 4 illustrates how 
applications are instrumented. Try-catch blocks are added to 
the applications to catch the asynchronous exception 

MigrationException. When there is any migration 
request, the migration manager would throw an exception to 
the target thread. The exception is asynchronous as it can be 
thrown at any time. It would be trapped by the try-catch 
block in the target thread. The corresponding exception 
handler would be invoked, in which state of the current 
threads are captured. In order to iterate through all the stack 

frames, the handler throws another MigrationException 
to notify the caller recursively. The current stack frame 
would pop out, and the lower stack frame would receive the 
exception. The capturing activity repeats in each stack frame 
until the last required stack frame is reached and captured. 

In some situations, the use of asynchronous exception 
can lead to data inconsistency or deadlocks. Therefore, we 
augment the asynchronous exception approach with 
techniques that overcome these issues: 

i. Avoidance of  data inconsistency 
Asynchronous exception can happen at any locations. 

There are locations that would cause data inconsistency if 
migration takes place. Intermediate results are often stored in 
operand stack. When exception is received, operand stack is 
cleared. So, if the operand stack is not empty and exception 
is received at that time, the operand stack would be cleared 
and values in the operand stack would be lost. This problem 
can be solved by using extra local variables to save 
intermediate results. Bytecode arrangement is taken to 
rearrange the codes so that all intermediate results are saved 
in extra local variables. So, even if the operand stack is 
cleared when exception is received, no intermediate results 
would be lost.  

There are situations where bytecode instrumentation and 
bytecode rearrangement cannot be performed, e.g. in native 
methods. However, exception can still be received when 
these functions are being executed. This would lead to data 
inconsistency. In order to avoid the problem, a flag, namely 
NO_MIGRATE is used to inhibit the exception triggering. 
Before the execution of native methods, NO_MIGRATE is 
set to be true. When migration manager is about to trigger 
migration, it always checks whether NO_MIGRATE is set or 
not. If it has not been set, it would trigger migration. If it has 
been set, then it would schedule to do another checking at a 
later time. 

ii. Avoidance of  Deadlock and Related Data Problems 

FIGURE 4. DETECTION OF MIGRATION REQUEST USING 

ASYNCHRONOUS. EXCEPTION 

Instrumentation with use of asynchronous exception 

1. try 

2.       original statements of function 

3. catch MigrationException 

4.      capture state 

5.      throw MigrationException 

6. end try 

 



For multithreaded applications, asynchronous exception 

is inherently not safe [20]. It can lead to deadlock if asyn-

chronous exception is used in an uncontrolled manner. If 

exceptions occur concurrently with synchronized methods, 

the latters’ execution would be interrupted. The lock held by 

the interrupted thread would not be released. Deadlock 

would happen if there are threads trying to get into the func-

tion. Besides, due to the interruption, the remaining state-

ments in the critical regions would not be executed. Due to 

the hazard, the API functions that are related to asynchron-

ous exception have been deprecated. In our approach, dead-

locks are avoided. We use bytecode instrumentation, excep-

tion handlers, and lock-checking by migration manager be-

fore triggering migration. In order to avoid the deadlock 

problem, during bytecode instrumentation, a try-catch block 

is added. When migration request is received, the migration 

manager would suspend the target thread. Then it would 

check whether the target thread is holding any locks or not. 

If so, the migration manager would instruct a dummy thread 

to take over the locks. Then the migration manager would 

issue an exception to the target thread to trigger state-

capturing action. The catch block of the target thread would 

be executed. Locks would be released by the target inside 

the exception handlers, and state of the current stack frame 

would be captured. The state-capturing would then be pro-

ceeded to other stack frames as usual. The locks released by 

the target thread would be acquired by the dummy threads 

that were issued by the migration manager. 

D. State Restoring with Twin Method Hierarchy 

In order to allow methods to be restored, it is a common 

practice to perform status checking at the beginning of the 

related functions. However, the extra conditional branchings 

would induce significant overhead in the execution of appli-

cations. The overhead depends on the execution frequency 

of the functions. 

We minimize the overhead by using a proposed ap-

proach, namely Twin Method Hierarchy (TMH). The heart 

of TMH lies in the idea of duplicating the original methods 

to allow the instrumented and original methods to be used 

respectively at different stages. During normal execution, 

the original methods are executed. During restoration, the 

instrumented methods with restoration statements are ex-

ecuted.  

Methods are instrumented as follows: 

i. Methods are duplicated into another set M’, while the 

original methods are in the set M. 

ii. In the duplicated methods M’, checking statements 

are added at the beginning of the duplicated functions. 

iii. In the normal execution, only methods in set M are 

executed.  

iv. During restoration, methods in set M’ are executed. 

When restoration is finished, those newly executed 

functions would be from set M. 

An example of simplified restoration instrumentation is 

illustrated in Fig. 5. Fig. 5A shows the program codes be-

fore instrumentation, and Fig. 5B shows the instrumented 

program codes with major statements highlighted. The 

codes are instrumented in such a way that during normal 

execution, func1() and func2() are executed, while dur-

ing state restoring, SOD_func1() and SOD_func2() are 

executed. Inside SOD_func1() and SOD_func2(), they are 

instrumented in the way such that when state restoration has 

been finished, the execution is then switched back to the 

original, non-instrumented program codes. If there are any 

further execution for the functions func1() and func2(), 

func1() and func2() are executed, instead of 

SOD_func1() and SOD_func2(). So, during migration, 

though additional statements would be executed inside 

SOD_func1() and SOD_func2 during state restoration, 

when state restoration has been finished, the original, non-

instrumented program codes would be executed. As there 

are no additional statements added into these original func-

tions, there are no overhead imposed. As a result, the execu-

tion performance is returned to normal when migration has 

been done. 

IV. PERFORMANCE EVALUATION 

In this section, we evaluate our approaches with several 
applications in cloud nodes and mobile devices. The 
evaluations were conducted on a cluster of nodes 
interconnected by a Gigabit Ethernet network. Each node 
consists of two Intel E5540 Quad-core Xeon 2.53GHz CPUs, 

 

FIGURE 5A. ORIGINAL CODES WITHOUT ANY INTRUMENTATION 

 

FIGURE 5B. PROGRAM CODES INSTRUMENTED WITH RESTORATION CODES 

void func1(){ 

 func2(); 

 return; 

} 

 

void SOD_func1() { 

 if (isRestoring()) { 

  restore_state(); 

  if (need_restore_other_frame) 

   goto Label1 

  else 

   goto previously_suspended_location 

 } 

 func2(); 

Label2: 

 return; 

label1: 

 SOD_func2(); 

 goto Label2 

} 

void func1(){ 

 func2(); 

 return; 

} 



32GB 1066MHz DDR3 RAM and a pair of SAS/RAID-1 
drives. The OS is Fedora 11 x86_64. All nodes mounted the 
home directory on Network File System (NFS) to ease 
experiments with shared file access. The tested JVM version 
is SunJDK 1.6 (64-bit). 

For the mobile devices, iPhone 4 handsets were used. It 
contains an Apple A4 CPU (800MHz), 512MB RAM, and 
16GB storage. JamVM 1.5.1b2-3 (VJM) and GNU Classpath 
0.96.1-3 (Java class library) are installed on the iPhone. It is 
connected through Wi-Fi connection to the cluster network. 
For JamVM, JIT is not available. Besides, in the original API, 
asynchronous exception is not available for use in 
applications. We have slightly modified the codes of JVM to 
expose the asynchronous exception API. Just a few lines of 
codes are added or modified. Other JVM implementations, 
such as Sun JDK, currently have provided API to allow 
applications to issue asynchronous exception at application 
level. However, Sun JDK is not available for iPhone. In this 
section, we focus on the evaluations of single-threaded 
applications. 

A. Overhead of Normal Execution in Cloud Nodes 

In this evaluation, we compare different mechanisms of 
state-capturing and restoring for SOD migration [10] in 
cloud nodes. These mechanisms are:  use of JVMTI 
(SOD_JVMTI), the traditional use of status-checking 
(SOD_P), and our newly-proposed use of asynchronous 
exception (SOD_AE). SOD_JVMTI is a computation 
migration approach that we proposed in our previous work 
[10]. JVMTI [21] is used to capture execution state, and help 
to restore state for SOD migration. As JVMTI is close to the 
internals of JVM, it captures state more efficiently. However, 
SOD_JVMTI can only be used among cloud nodes as the 
tool interface is not available on mobile JVMs. On mobile 
devices, only our new SOD_AE and the traditional SOD_P 
can be used. Several computation-intensive applications 
were used. These applications are Fibonacci number 
calculations using recursion, solving N-Queens problem, 2D 
FFT calculations, and solving the Travelling Saleman 
Problem of n cities. Some micro-benchmarks are used to 
compare the performance of different state-capturing 
mechanisms. We would like to compare different 
comparison to capture different number of stack frames, and 
different size of objects.  

We put the programs into execution on the cloud nodes 
and the results are shown in Table 1. Among different 
migration mechanisms, SOD_JVMTI has the lowest 

overhead. In SOD_JVMTI, implementations are made as 
agents instrumented into the JVM. As it is in the lower layer 
than the other two implementations, it imposes the smallest 
overhead. Both implementations of SOD_AE and SOD_P 
are made at application level. As SOD_AE avoids the 
execution of most of the extra statements and SOD_P cannot 
avoid the execution, SOD_AE imposes much less overhead 
than SOD_P during normal execution when there is no 
migration for most cases. In SOD_AE, the overhead can be 
reduced as much as from 51.78% to 0.25%. 

B. Overhead of Normal Execution in Mobile Devices 

We also evaluate the proposed approach in mobile device. 
Applications used are the same as section A. However, as the 
computing power of mobile device is much smaller than the 
cloud nodes used in Section A, some parameters used in this 
section are different from those in Section A to avoid very 
long execution time. As JVMTI is not available for JVM in 
the testing devices, SOD_JVMTI cannot be used. As a result, 
only SOD_AE and SOD_P are used and compared in this 
section. The results are shown in Table 2. For SOD_AE and 
SOD_P, the weight of overhead is relatively smaller than the 
weight of overhead in cloud nodes used in section A. 
SOD_AE has the small overhead in execution. This is also 
because SOD_AE has avoided execution of extra statements 
which cannot be avoided in SOD_P. In SOD_AE, the 
overhead can be reduced as much as 43% to 0.1%. 

C. Migration for Performance Improvement 

In this experiment, we would evaluate the performance 

gain of using the migration technique to migrate computa-

tion-intensive tasks from mobile devices to cluster nodes 

through Wi-Fi connection. In the experiment, we first ex-

ecuted the applications in a mobile device. When the com-

putation-intensive task is just started, migration is taken to 

migrate the task from the mobile device to a cloud node 

where it is resumed to continue execution. When the task 

finishes, the results are sent back to the mobile device where 

the application continues the execution. The results are 

shown in Table 3. It is shown that the performance gain 

with migration can be more than 56 times. The large per-

formance difference of cloud nodes and mobile nodes are 

mainly originated from the difference of computing power 

and JVM used. As the JVM used in the testing mobile de-

vices does not provide JIT execution, the performance of 

execution at there is greatly affected. 

TABLE 2. EXECUTION TIME IN MOBILE DEVICE   

Orig SOD_AE SOD_P 

time (s) 
time 

(s) 

overhead 

(%) 
time (s) 

overhead 

(%) 

Fib 10.85 10.86 0.09 15.58 43.59 

NQ 32.13 32.23 0.31 33 2.71 

FFT 5.39 5.4 0.19 5.41 0.37 

 

TABLE 1. EXECUTION TIME IN CLOUD NODES   

Orig SOD_JVMTI SOD_AE SOD_P 

time (s) 
time 

(s) 

overhead 

(%) 
time (s) 

overhead 

(%) 

time 

(s) 

overhead 

(%) 

Fib 12.11 12.13 0.17 12.14 0.25 18.4 51.78 

NQ 6.35 6.4 0.79 6.7 5.51 7.24 14.02 

FFT 10.53 10.63 0.95 10.82 2.75 10.6 0.47 

 



D. Migration for Resource Utilization 

In this experiment, we simulate the scenario of migrating 

task from mobile device to cloud node in a proactive way to 

use the resources in the cloud nodes, as discussed in section 

III B. Two applications, namely DBRetrieve and FaceDetect, 

are used. The applications require some resources which are 

not available in iPhone. Without the use of migration, the 

program cannot be executed in mobile devices. DBRetrieve 

is a database client program which connects to a MySQL 

database server located in a cloud node to retrieve data. The 

program is executed in an iPhone which does not have the 

database driver and library to connect to the database. Be-

sides, the database server is located behind firewall which it 

can be accessed by certain nodes only. During execution, 

when the program is trying to execute the statement which 

is trying to use the database driver, a ClassNotFoundEx-

ception is thrown. SOD migration is then triggered in 

which the current stack frame, which is the topmost stack 

frame, is captured and transferred to that cloud node. Execu-

tion is resumed at its last suspended point in that cloud node, 

where connections to the database are made, and data are 

retrieved from the database and processed.  After the com-

pletion of the execution of the migrated frames, the required 

results are returned to the calling program in the iPhone and 

the execution is resumed. 

Another application, FaceDetect is a face detection pro-

gram. It finds regions of faces in photos that are stored in 

iPhone. The searching is based on a profile that determines 

what frontal face features need to be detected in order to 

recognize as a face. The application makes use of a well-

known library called OpenCV. OpenCV is an open-source 

library for real-time computer vision. However, the library 

is not available for iPhone. In our evaluation, we execute the 

application in iPhone. When the application is trying to use 

the library, an exception NoClassDefFoundError is 

thrown. This triggers a proactive migration, and the current 

stack frame is migrated to a cloud node where the library is 

available. The task is resumed. During execution of the task, 

photo data are fetched seamlessly from iPhone to the cloud 

node. Upon finishing the task, the resulting photo data are 

returned back to iPhone, and the execution is resumed. An 

example of the resulting photos is shown in Fig. 6. Faces 

detected are surrounded by white rectangles. 

The results are shown in Table 4. The migration latency 

for DBRetrieve and FaceDetect are 167ms and 265ms re-

spectively. Most of the migration latency is originated from 

the capture time. Between DBRetrieve and FaceDetect, Fa-

ceDetect has larger capture time and transfer time. In Face-

Detect, data of photo are sent from the mobile device to the 

cloud node, and data of resulting photo are sent from cloud 

node to mobile device. As more data are captured and trans-

ferred in FaceDetect than DBRetrieve, the capture time and 

transfer time of FaceDetect are larger accordingly. 

V. RELATED WORK 

MAG [3], Brakes [18] and JavaGoX [19] implement Ja-

va thread migration at application level. These systems are 

designed as mobile agent systems. They use preprocessor to 

instrument applications’ bytecode. MAG and Brakes inserts 

state-capturing codes after each method invocation. The 

inserted capturing codes lead to the large overhead during 

migration. JavaGoX uses exception handlers to navigate the 

stacks. Though our approach also uses exception handlers to 

navigate the stack, our approach doesn’t require the need of 

saving state before invoking functions, which are required in 

other approaches. Besides, in our approach, migration re-

quest is notified through using asynchronous exception, 

while in other approaches, migration request is triggered by 

the program itself. During normal execution, those ap-

proaches always execute the state-checking statements. In 

our approach, the state-checking statements are executed 

only during state-restoring. The statements would not be 

executed during normal execution. 

Mobile JikesRVM [9] is a thread migration framework 

implemented as middleware on top of JikesRVM. However, 

it requires certain extensions of the underlying JVM, and it 

is not transparent to programmers. Cloudlet [22] and Clo-

TABLE 3. MIGRATION FROM MOBILE DEVICE TO CLOUD NODE  exec. 

time w/o 

mig. (s) 

exec. 

time w/ 

mig. (s) 

gain 

(%) 

capture 

time 

(ms) 

transfer 

time 

(ms) 

restore 

time 

(ms) 

total migra-

tion latency 

(ms) 

Fib 56.79 0.99 5636 140.33 94.33 11.67 246.33 

NQ 32.67 1.04 3041 183.26 86.31 10.52 280.09 

FFT 6.06 1.26 381 156.48 232.46 14.58 403.52 

 

 

FIGURE 6. FACE DETECTION 

TABLE 4. MIGRATION FROM MOBILE DEVICE TO CLOUD NODE IN 

PROACTIVE MIGRATION 

apps 
capture 

time (ms) 

transfer 

time (ms) 

restore time 

(ms) 

total migration 

latency (ms) 

DBRetrieve 85 76 6 167 

FaceDetect 103 155 7 265 

 



neCloud [23] use VM migration to migrate computation 

from mobile devices in a portable manner. Cloudlet is a 

customized computing infrastructure which allows mobile 

devices to leverage resources of nearly cloudlets by VM 

migration. CloneCloud is a system that seamlessly offloads 

part of the execution of mobile applications from mobile 

devices to a computation cloud. Both systems require the 

use of VM in mobile devices. Migration in the systems are 

rather coarse-grained. Significant overheads are im-posed 

even when there are no migrations. 

VI. CONCLUSION AND FUTURE WORK 

The paper proposes a Java bytecode transformation 
technique for realizing transparent task migration in a 
portable and efficient manner. The technique allows 
migration to take place at application level to allow high 
portability. Migration can take place among mobile devices 
and cloud nodes. It differs from other approaches that it does 
not impose significant overhead on execution when there is 
no migration occurred. Experiments show that the techniques 
allow lightweight migration at application level among 
mobile devices and cloud nodes. The techniques can be 
further explored and evaluated with policies, such as task 
distribution policy. 
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