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Abstract

This paper presents a decentralized scheduling algo-
rithm for dynamic load balancing in a self-organized desk-
top Grid environment. The proposed desktop Grid system
allows volunteer nodes to join or leave freely at runtime,
whereas user tasks can be launched at any node and make
best use of computing resources by transparent process mi-
gration. To achieve rapid aggregation of runtime load infor-
mation, we design an efficient gossip-based protocol based
on an unstructured peer-to-peer dynamic network. The de-
centralized scheduling algorithm allows each node to deter-
mine which tasks to be relocated autonomously for achiev-
ing load balancing. Our autonomous scheduling solution
can avoid the reassignment conflict problem, where differ-
ent local schedulers may decide to migrate their process(es)
to the same target node, by a process selection method
based on game theory. The simulation results demonstrate
that our solution can excel the centralized greedy schedul-
ing algorithm and can perform as well as a meta-heuristic
algorithm, while retaining small migration overhead.

1 Introduction

Desktop grid computing (a.k.a. volunteer computing)
utilizes geographically distributed computers to solve com-
plex computational problems [2, 4, 5]. A master program
running on a central server is used to distribute subtasks
and analyzes incoming segment-results. Such simple job
pool scheme may have several drawbacks: (1) The central-
ized approach may suffer high synchronization overheads or
long propagation delay when aggregating load information
in a large-scale desktop system. (2) It may also become a
bottleneck in determining an optimal task partitioning strat-
egy and a subtask distribution plan when application logics
become more complicated and types of resource become
more heterogeneous. (3) It is vulnerable to the dynamically
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changing environment as the participating nodes may join
or leave at any time without prior notice.

To address the above issues, peer-to-peer (P2P) desktop
Grid has been suggested [8, 19]. In a P2P desktop Grid,
each participant is not only a consumer but also a contribu-
tor, which allows others to use its own resources on a recip-
rocal basis. This framework makes it possible for users to
find volunteer hosts in the network to run his/her tasks au-
tonomously without relying on a centralized server. It also
increases robustness in case of dynamically nodes joining
and leaving. However, P2P desktop Grids also put forward
two design challenges: (1) How to quickly discover the load
status of volunteer hosts in the absence of a central man-
ager and under a rather dynamic environment? (2) How to
achieve robust dynamic load balancing in such opportunis-
tic scheduling environment?

Although the task scheduling problems have been well
studied in the past, existing researches [8, 10, 14, 19] sel-
dom consider the runtime overheads in aggregating the
load information. Some load balancing approaches adopted
in a P2P desktop Grid collect load information through a
DHT-based structured overlay network [19] or approximate
flooding method over unstructured P2P network [8]. Recent
studies show that gossip-based protocols [6, 12, 13] have
relatively low diffusion overhead and have been proven to
be resilient to rapidly renovating network, particularly when
continuous node arrival and departure occurs (i.e., churn
problem). Yet, the research on how to incorporate gossip-
based load aggregation mechanism with autonomous task
scheduling solution remains limited.

For the second challenge, a decentralized load balanc-
ing algorithm on an unstructured P2P Grid has been pro-
posed in [14]. But its load migration is restricted to neigh-
bor nodes, which may take relative long time to converge to
a system-wide balanced status. Moreover, existing strate-
gies [10, 14, 19] are mostly performed at the job submis-
sion stage. Since no runtime process migration is supported,
more flexible and fine-grained load balancing policies can
not be applied. A good survey on load balancing algorithms
used in unstructured P2P systems can be found in [20].



In this work, we propose a self-organized desktop Grid
in which volunteer hosts could arbitrarily join/leave the net-
work by connecting/dropping a few selected neighbors. An
unstructured P2P network based on the Newscast model
[17] is adopted to connect all the participating nodes. Based
on the Newscast model, each node changes its network con-
nections periodically by connecting to a subset of its peers
which are randomly selected. The purpose is to maintain an
approximately random topology and keep the network more
scalable and robust. Moreover, it can be used to aggregate
the load information more efficiently.

In the self-organized desktop Grid, there is no any cen-
tral site or controller. Each user can first launch new tasks
at his/her machine at any time. When any machine is
overloaded, some of its tasks could transparently migrate
to other nodes via process migration [9]. To achieve dy-
namic load balancing, each node will independently per-
form a rank-based autonomous scheduling algorithm to de-
termine which process(es) should be migrated to reduce its
workload or whether it should accept external migrated pro-
cesses to share the workload of other busy nodes. The so-
lution has to meet the two contracting goals: (1) best load
balancing effect (e.g. standard deviation or makespan) (2)
minimum migration cost. In our design, each node period-
ically exchanges load information with its neighbors based
on an epidemic gossip protocol [6]. Besides, we deploy
an aggregation gossip protocol [7, 18] for computing and
propagating a few critical global statistics (e.g. average
load) which are required in our autonomous scheduling al-
gorithm. Given a tolerable statistics error, the proposed ag-
gregation gossip protocol is able to aggregate the required
global statistics within a small number of load exchange it-
erations over the unstructured peer-to-peer network.

Based on the load information gossiped on each par-
ticipating node, each autonomous scheduler makes use of
fuzzy-based ranking functions to evaluate the effectiveness
of load balancing among a shortlisted process migration
plans with low migration cost. Our solution is different
from traditional fuzzy-based dynamic load balancing algo-
rithms [22], which may lead to poor scalability due to the
use of the central fuzzy controller. Moreover, we try to
avoid the reassignment conflict problem, in which different
local schedulers may decide to migrate their process(es) to
the same target nodes, by designing a selection rule based
on game theory [21]. We enforce the final process migration
decision be fixed from a set of derived candidate solutions.

Simulation results show that our dynamic load balanc-
ing solution can perform much better than the centralized
greedy algorithm and very close to optimal result estimated
by the centralized Markov Chain Meta-heuristic (MCM) al-
gorithm. The total computation time of our solution is just
10% of the MCM. Moreover, the whole average migration
cost can also be bounded to 1.12 seconds per node for all

testing cases in our benchmark.
The rest of this paper is organized as follows. In Sec-

tion 2, we define and formulate the dynamic load balancing
problem in a self-organized decentralized desktop Grid and
give an overview of the proposed algorithm. We discuss
our rank-based scheduling algorithm in Section 3. The al-
gorithm complexity and simulation results are analyzed in
Section 4. Finally, we conclude our work in Section 5.

2 Gossip-based Load Balancing Algorithm

In this section, we first define the objective function of
the load balancing problem, then give an overview of our
proposed gossip-based dynamic load balancing algorithm,
abbreviated as GB-DLB.

2.1 Problem Definition

In the basic model, we assume the total number of nodes
is n and the total number of processes running in the system
is m. For the purpose of illustration, both n and m remain
unchanged during the execution. Let gi denote a grid node
i, where 16i6n. Assume at node gi, there are mi processes
time-sharing its computing resource. Let pij represent the
jth process on gi, where 16i6n and 16j6mi. Process pij

will produce a workload of dij , where dij could be pij’s
CPU percentage cost, memory usage, or their combination.
Let ci be the capacity of gi and it could be viewed as mem-
ory capacity or the computation capacity of gi measured by
FLOPS according to practical cases.

We define dci as the load level [8, 15] of a specific

node i, where dci=(
mi∑
j=1

dij)/ci,
mi∑
j=1

dij6ci. We use the

root-mean-square deviation of the load level σ, where

σ=

√
1
n

n∑
i=1

(dci − dc)2, to evaluate the load balancing ef-

fect of different process migration alternatives. We also
consider the migration overhead: If the process pik is mi-
grated from gi to gj , the cost of migration mig costikj can
be calculated as mig procsize(pik)

bwij
, where bwij is the net-

work bandwidth between gi and gj .
Given an initial assignment with a total of m processes

running on n desktop nodes, our goal is to achieve a mini-
mum σ with the lowest migration cost mig cost.

2.2 Overview of GB-DLB Algorithm

For simplicity, asynchronous cycle-driven communica-
tion mode is used in our design. The whole execution pe-
riod needs to be split into multiple epochs and each epoch
contains h gossip cycles. Each node exchanges load states
among its neighbors every gossip cycle. The goal of this



“epoch with gossip cycles” design is to adapt to aggrega-
tion gossip protocol [7, 18] which makes every node ob-
tain accurate statistics within h gossip cycles in dynamic
network. These statistics are mainly used to guide the suc-
ceeding load balancing decision. To ensure the convergence
speed of the target aggregated values can be obtained, nodes
join/leave are only treated after the h gossip cycles. The ag-
gregation gossip protocol is performed over an unstructured
P2P network constructed based on the Newscast model [17],
where every node is connected to a fixed number c of neigh-
bors. In each gossip cycle, every node merges its neigh-
bor set with that of one randomly selected neighbor. An
updated neighbor set is created by randomly selecting an-
other c nodes from the merged set. The aggregation gossip
messages will be sent/received along these new neighbors,
thus a dynamic network will be constructed accordingly,
improving the accuracy of aggregated statistics.

Let dp min denote the workload of the smallest process
among the m processes in the whole system. In our algo-
rithm, we distinguish overloaded and underloaded nodes ac-
cording to Formula (1), where dc denotes the average load
level of the n participating nodes.

gi is





underloaded · · · · · if dci < dc− dp min
2ci

overloaded · · · · · ·if dci > dc + dp min
2ci

balanced · · · · · otherwise

(1)

We consider a node is in a load balanced state if its
current load is very close to dc and can not be further im-
proved by migrating any process into it or out from it. Ac-
cordingly, the scheduler launched on that node should be
suspended once the node’s load level is in the range of
[dc− dp min/(2ci), dc + dp min/(2ci)] until a new epoch.

Assume all nodes know the system scale n initially. Our
GB-DLB Algorithm will perform aggregation gossip proto-
col and load scheduling in every epoch iteratively.

In each gossip cycle, every node asynchronously com-
putes the specified aggregation functions based on the val-
ues received from its randomly selected c neighbors and
then sends the results (attached in an aggregation message
ag-m) back to the neighbors (Line 5∼6). Thus, global statis-
tics, such as the average load level (dc), system scale (n) and
the minimum process workload (dp min) can be aggregated
at each node during this course. To avoid unnecessary traf-
fic overhead, each node sends its own state-update message
(su-m) to its neighbors (Line 9) only if there is an observ-
able change over threshold dct to its load level (Line 7).

The autonomous scheduler (Line 22, which will be de-
scribed in Section 3) on each node will be executed after all
the gossip cycles in every epoch, performing process mi-
gration to balance workload. It will be ignored if the node’s
load level has already turned into load balanced state based
on Formula (1) (Line 20).

Algorithm 1 Skeleton of Gossip-based DLB algorithm
/*This algorithm is executed on each node.*/

1: while (TRUE) do
2: /*Each while-loop body is an epoch with h gossip cycles*/
3: for each gossip cycle in the epoch cycle do
4: Randomly reselect c neighbors based on Newscast model.
5: Receive gossip messages from c neighbors: including aggre-

gation msg(ag-m) and state-update msg(su-m).
6: Compute the new aggregation values (dc and dp min) and send

them to neighbors back.
7: if load level change of the node > dct then
8: Compute hops distanceu or hops distanceo based on

Formula (1).
9: Encapsulate su-m and send it to its neighbors.

10: end if
11: for each su-m received from neighbors do
12: Store su-m in uNList or oNList in terms of whether su-m is

underload information or overload information.
13: su-m’s hops count ++.
14: if hops count < su-m’s hops distance then
15: Forward su-m to its neighbors.
16: end if
17: end for
18: Sleep until next gossip cycle.
19: end for
20: if Current node is overloaded according to Formula (1) then
21: Search its uNList for underloaded nodes.
22: Perform Rank-based Autonomous Scheduler.
23: end if
24: Sleep until next epoch cycle.
25: end while

In our design, each node keeps one uNList and one oN-
List to record which nodes nearby are underloaded and
overloaded respectively. Nodes in uNList are the candidates
for hosting the execution of migrated jobs, while nodes in
oNList are used to evaluate the overloaded status of current
node compared to others. The two lists can be enriched over
a few gossip cycles, and each record refers to a node’s state,
represented as a 3-tuple: {node ID, freshness, state}. The
freshness value is computed as hops count · γ + λ, where
γ is an estimated transmission latency and λ is the elapsed
time since the node status was received. The smaller fresh-
ness value, the fresher the record is. If the status information
is outdated (i.e., freshness is larger than a given threshold
value), it will be discarded.

To prevent the information from being excessively
spread, the number of hops for a message to propagate is
computed in Line 8. For those underloaded nodes, their
node status message can only pass over hops distanceu

hops, where hops distanceu=ω · (1 − dci); for over-
loaded nodes, hops distanceo=ω · dci (ω refers to the
upper-bounded number of hops for each message). Each
state-update message (su-m) is a 4-tuple: {hops count,
hops distance, gi’s ID, dci}, where hops count is the
number of the hops it has walked. For each node, when-
ever it receives a state-update message from its neighbor,
it will store it to uNList or oNList locally and increment



hops count. If hops count<hops distance, the node will
forward it to some of its neighbors.

To determine h for each epoch, a necessary and suffi-
cient condition of getting exponential convergence speed
in aggregation gossip protocol has been proven by [16] to

be E(σ2
i+1)

E(σ2
i )

=ρ, or E(σ2
h)

E(σ2
0)

=ρh=ε ⇒ h=logρ ε, where σ2
i and

σ2
i+1 respectively refer to the variance at the ith and (i+1)th

gossip cycles, ρ(≤1) is a constant only dependent on the
network characteristic and ε is an expected decline ratio to
the initial variance of load level, σ2

0 . In our design, we or-
ganize a dynamic Newscast model [11] (Line 4) in which
ρ= 1

2
√

e
≈ 0.303 in theory [16]. However, 1

2
√

e
may not be

perfectly met in practical cases, especially when the aver-
age node’s degree is not big enough. Based on our exper-
iments (Section 4.1), we may restrict ρ<0.4 and limit c to
O(log10 n). We also estimated the required ε as 2.78×10−4.
Hence, h’s upperbound for the chance of not reaching the
required ε is log0.4 ε=8.94 ≈9. That is, in reality, there is
supposed to be at least 10 gossip cycles in each epoch.

3 Rank-based Autonomous Scheduler

In this section, we discuss an autonomous scheduler,
which makes process migration decisions based on a set of
rank functions, each of which is composed of several eval-
uation functions. We introduce evaluation functions first.

3.1 Evalution Functions

To achieve load balancing, we need to decide which pro-
cess(es) should be migrated and where they should be exe-
cuted. The optimal solution is hard to find as it is a well-
known NP-complete problem. In reality, there is a cost
for task migration, including time to capture the execution
state, network delay in moving the captured context, and
time for restarting the task at the destination node. A good
load balancing algorithm should be efficient in computing
the best task remappings that could achieve balanced work-
load and also consider the overall migration overheads.

As the desktop Grid is basically heterogeneous, moving
a process from one node to another may impose different
loadlevel changes to them. For example, if dik refers to
the workload of the selected process pik, it will add dik

cj

load to gj , while gi’s load is reduced by dik

ci
. Hence, each

node’s capacity must be considered seriously. Plus, we also
need to take into account how to lower migration cost, so
finding a content heuristic solution becomes very complex.
To suitably combine/compare the different factors above, a
leveling function lev(x) is defined: lev(x) = dx · Le /L,
given x ∈ [0, 1] and de is the ceiling function. L is the
number of levels which can be tuned flexibly. The leveling
function tries to map the value of x to L discrete levels.

We define three evaluation functions (f1,f2 and f3) to
help finding the most appropriate migration solution for
each overloaded node. In order to restrict scheduling time,
the migration decision will be performed in two steps at
each overloaded node: (1) select one or more target under-
loaded nodes based on f2 and f3; (2) choose appropriate
processes to migrate to some of these selected nodes based
on f1 and f3. The three evaluation functions are defined as
follows.

• f1(gi, gj , pik) = lev(
MIN{|ϕ−di1|,|ϕ−di2|,...,|ϕ−dimi |}

|ϕ−dik| )

where ϕ = c2
j (di−dc·ci)−c2

i (dj−dc·cj)

c2
i +c2

j

• f2(gi, gj , pik) = 1 − |lev(ranko)− lev(ranku)|
where

ranko =
dci− dik

ci

MAX(dco− dik
co

)
, ranku =

MIN(dcu+
dik
cu

)

dcj+
dik
cj

• f3(gi, gj , pik) = lev( min mig cost
mig cost{pik→gj} ) where

min mig cos t = min mig procsize(piq on gi)
bwi max

and mig cost{pik → gj} = mig datasize(pik)
bwij

In order to assess different processes pik (1≤k≤mi)
on an overloaded node gi, f1(gi, gj , pik) (where gj is
a specific target underloaded node) is deduced as fol-
lows: Compared with σ’s value before and after pik’s
migration from gi to gj , we just need to make sure√

(
di
ci
−dc)2+(

dj
cj
−dc)2+S

n ≥
√

(
di
ci
− x

ci
−dc)2+(

dj
cj

+ x
cj
−dc)2+S

n ,

and try to get F (x)=((di

ci
−dc)− x

ci
)2 +((dj

cj
−dc)+ x

cj
)2 as

small as possible according to the standard deviation of load
level (σ) formula, where x refers to any process’s workload

dij on node gi, thus, x≤2 c2
j (di−dc·ci)−c2

i (dj−dc·cj)

c2
i +c2

j
and

d(F (x))
d(x) =0 ⇒ ϕ=

c2
j (di−dc·ci)−c2

i (dj−dc·cj)

c2
i +c2

j
is x-axis value of

the minimum point. Hence, σ would get smaller after pik’s
migration if and only if dik is in (0, 2ϕ); process workload
dik is supposed to be as close to ϕ as possible to get smaller
σ for better load balancing. Therefore, we only select s
(≤mi) processes running on gi with load in the range of (0,
2ϕ) to be acted on f1(gi, gj , pik) (i.e. dik ∈ (0, 2ϕ) ).

In order to evaluate different underloaded nodes (gj ,
j 6=i) based on their total workloads and capacities,
f2(gi, gj , pik), where gi refers to the overloaded node and
pik is assumed to be a specific process on it, is devised
based on non-cooperative game theory [21], compared to
the self-interest strategy on other related works [8, 19].
Basically, if every participating node always selects tar-
get nodes as idle as possible independently, reassignment
conflicts may happen with high probability especially in
the low latency network environment. That is, even more
serious imbalance situation may occur in some areas un-
til some of nodes give up their original decisions in each



epoch. Therefore, each overloaded node should select tar-
get underloaded nodes based on their demands on resources.
The overloaded node with assessed overload level ranko

prefers the target nodes which have approximate underload
level ranku, where ranko= (dci − dik

ci
)/MAX(dco − dik

co
)

and ranku=MIN(dcu + dik

cu
)/(dcj + dik

cj
). This design can

effectively avoid reassignment conflicts. MAX(dco − dik

co
)

is the maximum value of dci − dik

ci
among all overloaded

nodes; likewise, MIN(dcu + dik

cu
) is the minimum value of

dcj + dik

cj
.

Based on the migration cost definition (mig costikj =
mig procsize(pik)

bwij
), migration overhead is related to both the

process workload and the bandwidth between the two rela-
tive nodes, gi and gj . We accordingly design f3(gi, gj , pik)
as follows. First of all, we find the minimum migration cost
(min mig procsize(piq on gi)

bwi max
) from the mi processes on gi

and l underloaded nodes stored in uNList. Then, each pro-
cess (pik) to be migrated from gi to gj is evaluated by com-
paring its cost with the minimum migration cost. bwij is the
bandwidth between gi and gj ; bwi max refers to the maxi-
mum bandwidth between gi and any other nodes in its uN-
List. mig procsize(pik) is pik

′s image size. Intuitively,
f3 indicates that the processes with lower migration over-
head will be more favored.

Basically, our goal is to devise an approach which sched-
ules the process migration by combining the above three
factors. Otherwise, the time complexity of the selection
procedure will be O(mi·l·τ ) which may consume much
computation time, where mi refers to the number of pro-
cesses on gi, l is the size of uNlist, and τ is the time cost on
calculating rank functions. Thus, as mentioned previously,
we split the whole scheduling procedure into two steps:
selecting target underloaded nodes (rank1(ω1,gi,gj ,wij))
shown as Formula (2) before choosing process(es) on gi

based on the selected nodes (rank2(ω2,gi,gj ,wij)) shown
as Formula (3). In these two steps (formulas), ω1 (∈[0,1])
and ω2 (∈[0,1]) are two weight coefficients. Since the first
step does not consider process workload f2 demands, we
choose AVG(gi) as an estimated value for the process in
rank1(ω,gi,gj ,wij). Finally, the two rank functions are both
in normality format: the values are bounded in (0,1), and
higher value means higher rank.

rank1(ω1, gi, gj , wij) =
ω1 · f2(gi, gj , AV G(gi)) + (1− ω1) · lev( bwij

bwi max
)

where AV G(gi) =

mi∑
k=1

dik

mi

(2)

rank2(ω2, gi, gj , pik)
= ω2 · f1(gi, gj , pik) + (1− ω2) · f3(gi, gj , pik) (3)

3.2 Rank-based Autonomous Scheduling
Algorithm

Algorithm 2 Rank-based Autonomous Scheduler (RAS)
/*This algorithm is executed on each node gi.*/
Input: dci,dp min,cdi,uNList,oNList,where dp min,dci are
aggregated values.
Output: Select and migrate one of gi

′s processes outward
for load balancing.

1: while TRUE do
2: Clear candidate list.
3: if gi is detected to be overloaded according to Formula (1) then
4: uN region search(gj , candidate list, gi

′s uNList).
5: if candidate list.length < υ0 then
6: uN sampling search(gi ,candidate list).
7: end if
8: if candidate list is empty then
9: continue. // wait for next cycle

10: else
11: process mig(gi, candidate list).
12: end if
13: end if
14: end while

The pseudo-code of rank-based autonomous scheduling
algorithm (RAS) is shown in Algorithm 2. Line 2 is to
clear candidate list, which is used to keep the migration
candidates with target process and underloaded nodes se-
lected later. Line 4 is to search possible underloaded nodes
in nearby region (but not just among neighbor-connected
nodes). υ0 at Line 5 stands for the capacity of can-
didate list. If uN region search() cannot fill up candi-
date list, then randomly sample some possibly far away un-
derloaded nodes and search their nearby region records (i.e.
uNList) for continuity. Finally, the final decisions are made
in the process mig() function (Line 11). In fact, the condi-
tion at Line 3 will be a little bit over-strict when most of
nodes become load balanced over time. Hence, for further
load balancing, dci>dc+dp min

2ci
can be replaced by dci>dcj

then, but the migration cost may increase accordingly.
In uN region search(), we first traverse all underloaded

records stored in gi’s uNList and select those with high-
est rank1 (Formula (2)) as candidates. And then, check
if gj would become overloaded as we add the smallest
process to it. If not, check each target underloaded node
candidate selected and find the processes to migrate from
gi in terms of rank2. As long as the candidate list is
filled up, the searching will be terminated. Otherwise, the
uN sampling search() will be activated to randomly select
a far-away node for further searching.

The process mig() function is used to make the final de-
cision (which process of the current node gi will be mi-
grated to which node). To further avoid the reassignment
conflict problem mentioned before, we compute a compos-
ite rank level for each candidate decision based on func-



Table 1. Initial Setting
Metric Value or Scale

Group 1 Group 2
Node ID (i) i = 1∼ [n/2] i = [n/2]+1∼n
Capacity (ci) 400∼500 100∼200
No. of processes (mi) 7∼10 0∼2
Process workload (dij ) 5∼60 5∼20
Process image size 1M∼10M 1M∼10M
Bandwidth (bwij ) 0.1M/b∼10M/b

tion fikj : fikj(ω3,gi,gj ,pij)=ω3 · f2(gi, gj , wij)+(1− ω3) ·
f3(gi, gj , wij), and then randomly select one candidate with
a probability proportional to the rank level fikj , where
ω3(∈ [0, 1]) is a coefficient to tune the weights of f2 and
f3. Since we have selected the most proper process for each
candidate node in previous steps, function f1 related to pro-
cess workload is not supposed to be considered in fikj .

4 Performance Evaluation

We use PeerSim [3] to do the simulation. Through Brite
topology generator [1] , we construct an emulated physical
network with n computers randomly connected with vari-
ous bandwidths by Waxman model. For simplicity, trans-
mission latency (γ) between any two nodes is assumed to
be uniform and the same as gossip cycle period (i.e. 50ms).
After constructing the network, numerous tasks are ran-
domly initialized. The initial setting and parameters are
listed in Table 1 and Table 2. Considering the worst ini-
tial assignment (i.e. maximizing the standard deviation of
load level (δ)), we equally split all nodes to two groups and
set them either overloaded or underloaded as initial state.
All the random values (e.g. capacity) conform to uniform
distribution in their ranges. Without loss of generality, any
process image size is assumed to be in the range from 1M
to 10M and bandwidth to be in [0.1M/b,10M/b].

In our benchmark,we first evaluate the environment used
for simulation, and then, compare our RAS algorithm with
the other existing solutions, including neighbor-migration
(NM), greedy heuristic (GH) and Markov Chain Meta-
heuristic. NM is a P2P algorithm which only migrates pro-
cesses between connected neighbors. The other two which
can know global information during execution period try to
get the best load balancing level, but without considering
the migration cost issue.

4.1 Analysis of Experiment Environment

Through the experiments based on [3] among 102 ∼ 106

participating nodes, we evaluated that ρ<0.4 in a Newscast-
based network when c = 5 log10(n). Moreover, through
our experiments based on various random distributions and
logical parameters (excluding unpractically extreme cases),

Table 2. Experiment Parameters
Metric Value or Scale

warmup for aggregation 10 cycles
warmup for state gossiping 5 cycles
f0 (rank criterion) 0.6 ∼ 0.8
Capacity of candidate list 3
Sampling times 10
Neighbor set size c 5 log10(n)
The no. of gossip cycles in each epoch 10
wi (i=1,2,3) w1=w2=w3=0.5
the maximum number of hops (ω) 15

we found that without any load balancing, the standard de-
viation of load level is always in the range from 0.2 to 0.6
and its optimal value estimated by MCM load balancing al-
gorithm is in 0.01∼0.04. Hence, without loss of generality,
the expected ratio ε to the initial value for the standard devi-
ation of load level could be set as E(σ2

h)

E(σ2
0)

= 0.012

0.62 =2.78×10−4.

4.2 Evaluation of RAS Algorithm

Figure 1 presents a set of snapshots with RAS algorithm
tested in a desktop Grid with 500 nodes. Figure 1(a) shows
the initial chaotic load distribution. Other sub-figures show
the whole load distribution may get remarkably balanced af-
ter 8 epochs in static network or after 16 epochs in dynamic
network, in which 2% of nodes are replaced in every epoch.

Other than traditional methods, each node autonomously
makes decisions in every epoch in our algorithm. As shown
in the Figure 2 which corresponds to Figure 1, load balanc-
ing can be reached over a few epochs and its convergence
is in exponential speed no matter in static network, as well
as in dynamic network, where 2%, 5%, 10% of nodes are
replaced in every epoch respectively.

The standard deviation of load level (δ) is the most im-
portant metric to evaluate the load balancing effect. The
benchmark result is shown in Figure 3. Because each node
cannot get the global but a very shortsighted vision in NM,
this approach always gets the worst result, whose standard
deviation is much higher than others’. Since MCM is a
meta-heuristic which can avoid local optimum to a certain
extent, it always gains the best load balancing level, and
GH’s result is close to it. RAS is always better than GH,
though a little inferior to MCM.

For completeness, we also compare the final converged
makespan computed by the four approaches, as shown in
Figure 4. No doubt, MCM’s result is always the lowest,
while RAS is between GH and MCM, even better than MCM
occasionally.

We present the average migration cost in Figure 5. GH
and MCM produce largest overhead and NM costs about
half amount of them. In RAS, the average migration cost ob-
served at each node is less than 1.12 seconds for all testing
cases. Even in a large-scale system (n=2000), the migration



 0  200  400  600  800  1000
x  0

 200
 400

 600
 800

 1000

y
 0

 0.2

 0.4

 0.6

 0.8

 1

(a) Intialization State
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(b) Static: after 4th epoch
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(c) Static: after 8th epoch
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 0  200  400  600  800  1000
x  0

 200
 400

 600
 800

 1000

y
 0

 0.2

 0.4

 0.6

 0.8

 1

(e) Dynamic: after 4th epoch
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(f) Dynamic: after 8th epoch
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(h) Dynamic: after 16th epoch

Figure 1. Snapshots of Load Balancing Effect (RAS: a desktop Grid with 500 nodes)
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Figure 3. Standard Deviation of Load Level
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Figure 4. Makespan of Load Level
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Figure 5. Average Migration Cost



cost of RAS is only 10% and 5% of those measured by NM
and MCM respectively. This is mainly because we filter out
the target nodes with low bandwidth in evaluation function
f3 so that the nodes with the bandwidth≥8M/b are selected
with higher probability. We also observe that the number of
processes migrated is in the range from 2.3 to 2.5 per node
for all testing cases.

We also compare the computation times of load balanc-
ing algorithms. Our algorithm is much better than MCM
though a little worse than the others. MCM consumes the
longest time, from 1 to 12 seconds, to iteratively search the
relatively optimal solution among the solutions computed
by GH. NM consumes the least time, from 0.003 to 0.036
second, as each node just considers their neighbors accord-
ing to simple greedy selection and these operations can be
concurrently executed by each node. Our algorithm is also
run by each node in parallel, costing from 0.016 to 0.10 sec-
ond in each epoch, about 10% of the time cost by MCM.

5 Conclusion and Future Work

In this paper, we design a gossip-based approach to
solve dynamic load balancing in self-organized decentral-
ized desktop Grid environment. Our focus is on how to get
the best load rebalancing effect with minimized process mi-
gration overhead in such environment. We overcame a set
of challenges, such as restricting transmission overhead and
avoiding reassignment conflict phenomenon. Our approach
is suitable for dynamic and large-scale environment due to
gossip protocol. With our rank-based autonomous schedul-
ing algorithm, each node can autonomously make effec-
tive decisions on process migration at runtime based on our
mathematical analysis. By intensive simulation, we prove
our algorithm always outperforms the traditional global
greedy algorithms. Our load balancing effect (makespan
and standard deviation of load level) is very close to the ap-
proximately optimal solution (estimated by Markov Chain
Meta-heuristic) and the average migration overhead can be
well limited. As a future work, we shall improve our strat-
egy for complex demands, such as with more data depen-
dencies.
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