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Abstract—Fully decentralized resource allocation for P2P
desktop Grid allows each participating node to act as both
resource provider and requester. The system performance
indicators (including throughput, makespan, etc) are easily de-
graded by the unbalanced load distribution, which is probably
caused by the fast-changing states of heterogeneous resources
due to arbitrary task submissions. Although the cooperative
load rebalancing methods can mitigate the problem, they are
likely to introduce the contention on under-utilized resources
with growing task arrival rates, leading to the sub-optimal
load balancing efficacy. Our focus is on how to optimize load
balancing status by taking into account minimizing the conflict
of autonomic task migration decisions in P2P desktop Grid.
Our load rebalancing process is modeled as a set of independent
stochastic Bernoulli trials by letting each heavily loaded node
push its surplus loads to its surrounding lightly loaded nodes.
We proved that the surplus load amount should be shifted
based on a proper ratio by considering decision conflicts and
designed a novel load balancing algorithm with provably small
decision conflict probability. We derived an upper-bound for
this probability, which will be reduced down to about 2% under
our algorithm. Finally, we validated via simulation that the
system performance can be significantly improved accordingly.

I. INTRODUCTION

Desktop Grid (or Volunteer Computing Grid) may provide

powerful integrated computational resource by leveraging

desktop computers located at the edge of the Internet.

Such platforms (e.g. BOINC [1] and XtremWeb [2]) have

made great contributions to scientific researches since 2000.

However, they inevitably suffered more and more issues with

increasing system scales and application demands recently.

The most serious one is that with a large number of

volunteer nodes to manage, their traditional central-control

architecture (such as central task scheduling and central data

upload/download), not only faces high management cost and

low flexibility but also causes Single-Point-Of-Failure and

bottleneck problems. Consequently, fully-centralized P2P

Desktop Grid allowing each autonomic desktop computer

to individually allocate resources as a scheduler has become

a promising trend. It is no wonder that there already emerged

quite a few corresponding projects, such as PastryGrid [3],

BonjourGrid [4], Condor-Flock P2P [5], Self-Gridron [6],

[7], etc.

Under this decentralized architecture, dynamic load bal-

ancing algorithm allows each node to periodically and

autonomously balance the uneven load distribution. It is

crucial for gaining high system throughput and reliability

of the dynamic environment. The existing algorithms [8],

[9], [10] usually prefer push-mode (i.e. every heavily loaded

node is allowed to unilaterally push its relatively surplus

tasks to the lightly loaded nodes), owing to its simplicity

and quick adjustment to the state-changes of heavily loaded

nodes (or hot spots). In order to get system-wide balanced

load status, the agent on every heavily loaded node is

likely to view the states of many other lightly loaded nodes

(a.k.a. acquaintance nodes or local-view cache) via multiple
hops of message routing. Since it is inapplicable to coor-

dinate/negotiate the task migration decisions among these

heavily loaded nodes with dynamically changing states, it is

non-trivial to avoid the situation that the lightly loaded nodes

are over-utilized by being imported superfluous workload

from outside (a.k.a. “tragedy of the commons situation”

[11]). Such a decision-conflict problem has been confirmed

by K. Christodoulopoulos et al.’s experiment [12]. The study

undertaken in [13] also shows that PlanetLab environment

usually experiences the similar problem of “flash crowd” as

a growing number of users simultaneously request “slices”

on arbitrarily selected nodes and the bursty behavior of users

inevitably leads to poor system performance.

Our focus is on designing a conflict-minimizing load

balancing algorithm which may effectively balance uneven

workloads for the dynamic P2P desktop Grid without any

negotiation/reconfirmaion support, thus improving system

throughput. We designed a decentralized Bernoulli model
in which each heavily loaded node randomly selects other

lightly loaded nodes to effectively mitigate the task mi-

gration decision conflict. We theoretically prove that our

algorithm can help making best-response decisions for any

node based on its local-view cache in the sense that the

mutual decision conflict probability is minimized. On the

other hand, we theoretically derive an upper-bound of such

a probability to be a function of the load amount every node

tries to shift. Comparatively, many existing decentralized

load balancing strategies (such as CAN based method [10])

could mitigate the load unbalancing level to a certain extent,
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but never explicitly control the side-effect caused by the si-

multaneous task migration conflict during the load balancing

progress. Due to the state-of-the-art simplicity of our design,

many other improvements (such as replica generation policy

[14], [15]) could be easily extended from our approach.

The remainder of the paper is organized as follows. We

first describe related works in Section II. In Section III,

we present the system overview and formulate the research.

In Section IV, we model the decentralized load balancing

problem to be the federated stochastic model and analyze

the probability of the decision conflicts in theory. In Section

V, we propose our conflict-minimizing algorithm, namely

stochastic proportional idle resource allocation (SPIRA),

based on our theoretical analysis. The system performance

will be evaluated in Section VI. We conclude and present

future work in Section VII.

II. RELATED WORK

Most of the solutions rely on the central collection of

global information, thus they are unsuitable for the large-

scale dynamic resource allocation. For instance, the load

rebalancing policy introduced by G. Aggarwal, et al [16],

adopted a PARTITION algorithm and theoretically proved

it to be 1.5-approximation optimal algorithm based on the

global information about any node and task. M. Stillwell,

et. al. proposed another resource allocation algorithm [17]

especially suitable for multiple virtual clusters, also in terms

of the globally collected information.

There are also some fully distributed resource alloca-

tion methods supporting load balancing in P2P desktop

Grids. Most of them [10], [18], [19] are designed based

on Distributed Hash Table (DHT) [20], [21]. Although

DHT performs outstandingly in searching information within

predictable delay, its performance always highly relies on

its stable structure and it is usually complex and costly to

maintain the whole topology in extraordinarily dynamic en-

vironment. In addition, these works usually adopt the selfish

best-response algorithms at the self-organizing nodes but

did not explicitly discuss about decision conflict problem,

probably leading to a sub-optimal load balancing level or

extra delay in making load rebalancing decisions. In com-

parison, not only can our SPIRA algorithm autonomously

mitigate decision conflict efficiently, but it is also based on

unstructured and dynamic connection, which is suitable for

broader applications and flexible demands.

Some unstructured P2P based fair resource allocation (or

load balancing) strategies [9], [22] also emerged these years.

Y. Drougas and V. Kalogeraki [9], for example, proposed an

algorithm based on replication requests specifically suitable

for P2P data sharing applications. Each over-utilized node

will create a new copy on the lightest neighbor node for its

over-requested pieces. This approach is applicable for P2P

data sharing scenarios, but unsuitable for Grid computing

ones, because the computing resource (such as CPU) can

not be replicated at will. Moreover, decision making conflict

problem is also ignorable in their solution.

III. SYSTEM OVERVIEW

Assume there are n heterogeneous nodes in the system,
denoted by pi, each with capacity ci, where 1≤i≤n. The
capacity here means a processing speed of some service,

such as CPU clock rate or other services’ rate in processing

requests. For each load balancing interval (or snapshot), we

assume there are wi independent tasks on pi, denoted as
tik, 1≤k≤wi. tik’s load (i.e. the number of instructions to
perform) is represented as lik. Then, the total load of node

pi can be calculated as li=
wi∑
k=1

lik. We define load factor of

pi (denoted by lf (pi)) in Equation (1) and the higher lf (pi)
is, the busier pi gets.

lf(pi) = li
ci

(1)

Henceforth, how to efficiently balance the load factor among

all nodes can be regarded as our direct objective. We define

the mean value of load factors estimated by pi’s agent to be

LF=

∑
pj∈AS(pi)

⋃{pi} lf(pj)

|AS(pi)
⋃{pi}| , where AS(pi) indicates node pi’s

acquaintance node set. Then, the heavily loaded node (lightly

loaded node) is defined as the node whose load factor is

higher (lower) than LF . Further more, for any lightly loaded
node pi compared to LF , the value of its relatively idle
resource amount divided by its capacity is defined as the

idle load factor ilf (pi), as shown in Equation (2); likewise,
any heavily loaded node pi’s surplus load factor slf (pi) is
calculated by its surplus load amount divided by its capacity,

shown in Formula (3).

ilf(pi) = LF ·ci−li
ci

= LF − lf(pi) (2)

slf(pi) = li−LF ·ci
ci

= lf(pi)− LF (3)

In brief, every lightly loaded node periodically sends

out its state information while every heavily loaded node

asynchronously schedules/migrates its surplus tasks outward.

We present the skeleton design of our conflict-minimizing

load balancing strategy as follows (Algorithm 1):

This algorithm is run on every node to periodically

check if the current node is either lightly or heavily loaded

compared to the average load factor. Line 3∼7 is used to
distributively diffuse the states based on Newscast protocol

[23] if the current node is lightly loaded. Under Newscast

protocol, within every periodic message propagation cycle,

each node needs to randomly choose C new neighbor nodes
from the union set by merging its own original neighbor

nodes and all neighbor nodes of one of its neighbors, incur-

ring a peer sampling effect [24] around the whole system. C
here is a fixed fan-out degree usually set to be log(n). Many
existing researches (such as [23]) have proven that such

protocol may effectively aggregate information with high
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Algorithm 1 Skeleton of conflict-minimizing load balancing
Notice: This algorithm is executed on each node pi
Input: Acquainted lightly loaded node set (LAS(pi)) and local tasks
Output: load reassignment with minimal conflict probability
1: k = d. /*k is used to control the scheduling interval*/
2: while (TRUE) do
3: if (lf (pi)<LF ) then
4: Choose C(=log(n)) neighbors under Newscast protocol [23].
5: Send its current state lf (pi) to the C nodes.
6: k = k − 1.
7: end if
8: if (k==0) then
9: if (lf (pi)>LF ) then
10: Perform SPIRA algorithm. /*Load balancing step*/
11: end if
12: k = d.
13: end if
14: Wait for a tiny period (i.e. a message propagation cycle);
15: end while

robustness even in dynamic environment. The evaluation of

the message propagation protocols is beyond the scope of

our research. At the end of each asynchronous scheduling

interval (containing d message propagation cycles), the
heavily loaded nodes will perform load balancing step based

on our designed SPIRA algorithm which is described later.

The SPIRA algorithm mainly focuses on three key issues:

(1) How much load should be shifted? (2) Which lightly

loaded nodes should be selected as the migration target? (3)

which tasks should be migrated?

IV. CONFLICT-MINIMIZING STOCHASTIC MODEL

We leverage Bernoulli trial model to minimize the conflict

of the task migrations by the autonomous heavily loaded

nodes, achieving the approximated optimal load balancing

status as well as high system throughput.

A. Decentralized Probabilistic Model

On any heavily loaded node pi, the load balancing agent
will independently select target lightly loaded nodes based

on a united probabilistic model. We argue that the proce-

dure of such asynchronously selecting target under-utilized

nodes by every heavily loaded node in the competitive

circumstance could be regarded as a set of Bernoulli trials,

each of which in the theory of probability is defined as an

experiment whose outcome is random and can be either of

two possible results, “success” or “failure”.

No doubt that any heavily loaded node pi is expected
to banish a certain amount of surplus load outward, how-

ever, their task migration decisions are likely to conflict

with others’ because each node is likely to view widely

distributed node status for pursuing global load balancing

objective. We define the conflict decision of one node to
be an event that its load migration makes the target lightly

loaded node become a new heavily loaded node, which is

likely caused by the unknown aforehand occupation of other

nodes’ load migration with the same target. Thereby, the

distributed load balancing procedure could be thought of as

a Bernoulli trial model as follows: Collect redundant tasks

from all heavily loaded nodes and gather all lightly loaded

nodes respectively, as shown in Figure 1. Then throw all

the surplus tasks randomly toward the lightly loaded nodes

according to a probability-based rule, to see if the reschedule

of some task migration will become a conflict decision. For

example, in the case illustrated in Figure 1, all the surplus

tasks will be migrated to lightly loaded nodes according to

a uniform probability distribution, { 310 , 210 , 310 , 210}.

30

20

30

20

1

2

3

4

5

6

7

3j

1j

2j

Figure 1. Decentralized load balancing can be viewed as Bernoulli trial

In terms of the Bernoulli trial model, we could prove

the following lemma and theorems, which serve as the

foundation of our algorithm shown in next section.

Lemma 1: If every heavily loaded node ps banishes
its surplus load (= slf(ps)·cs) and the probability of se-
lecting the target lightly loaded node pk from ps’s ac-
quaintance nodes is P (pk)=

ilf(pk)·ck∑
pi∈LAS(ps)

ilf(pi)·ci (where

LAS(ps)={pj |pj∈AS(ps) and pj is a lightly loaded node}
each with a quite large number of elements), then the
mathematical expectation of every node’s load factor via

such scheduling will approach LF .

Proof. We first consider the case where all the tasks are
of the same-size load and then extend it to heterogeneous

task situation.

(1) In the situation where all tasks have the same load

size μ, such load size can also be defined as one resource
unit. Due to the large size of LAS(ps) with randomly
sampled nodes, every node ps could estimate the LF ac-

curately. Thus, the sum of surplus load amount is close

to the sum of idle load amount, i.e.
∑
pi∈LS ilf(pi) · ci

=
∑
pi∈HS slf(pi) · ci = m·μ, where LS and HS are the

whole set of lightly loaded nodes and heavily loaded nodes

respectively, and m is the total number of surplus tasks.

Therefore, if we let each heavily loaded node select under-

loaded nodes based on the distributed Bernoulli model, the

probability of x out of m tasks being allocated to a node pk
(i.e. probability mass function) can be calculated as Equation
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(4), conforming to Binomial distribution.

Pm→pk
(X = x) = Cxm(P (pk))x(1− P (pk))m−x (4)

Since each node could view masses of lightly loaded nodes,

we assume
∑
pi∈LAS(ps)

ilf(pi) · ci≈
∑
pi∈LS ilf(pi) · ci

(More general situations are discussed later). Hence,

the mathematical expectation of the load amount al-

located to the lightly loaded node pk is E(pk’s re-
ceived load) = μ·(m·P (pk)) ≈ μ·m·( ilf(pk)·ck∑

pi∈LS(pk)
ilf(pi)·ci ) =

m·( ilf(pk)·ck
(
∑

pi∈HS(pk)
slf(pi)·ci)/μ ) = m ·

ilf(pk)·ck
m = ilf (pk)·ck.

For any lightly loaded node pk, since ck and

lf (pk) could be regarded to be two constants w.r.t.

ilf (pk), the mathematical expectation E(updated

lf (pk))=
E(pk

′s received load)
ck

+lf (pk) = ilf (pk)+lf (pk)=LF .
For any heavily loaded node ps, its load factor will also

become LF=lf(ps)− slf(ps)·cs
cs

.

(2) In the situation where the tasks are of different sizes,

let us assume all tasks can be classified into F categories

based on similar sizes: {mi,μi}, where
∑F
i=1 μimi =∑

pi∈LS ilf(pi) · ci =
∑
pi∈HS slf(pi) · ci. Then E(pk’s

received load)=
∑F
i=1 (μimiP (pk))=P (pk)

∑F
i=1 μimi

=
ilf(pk)·ck∑

pi∈LS ilf(pi)·ci
∑F
i=1 μimi = ilf (pk)·ck. Thus,

E(updated lf(pk)) =
E(pk

′s received load)
ck

+ lf (pk) =

ilf (pk) + lf (pk) = LF , so do all the heavily loaded nodes.�
Remark: In the situation where each node

can view the status of all other nodes (i.e.∑
pi∈LAS(pk)

ilf(pi) · ci=
∑
pi∈LS ilf(pi) · ci), the ideal

load balancing status can be reached. In most of other

realistic cases, however,
∑
pi∈LAS(pk)

ilf(pi) · ci may

not exactly approach
∑
pi∈LS ilf(pi) · ci, then the load

balancing can only get an approximated result. For instance,

in the worst case that each heavily loaded node just knows

one lightly loaded node, then the load balancing will be

gracefully degraded to the simple swap algorithm. For

another example, if the whole node set is partitioned to

several groups and any node may view the status of all

other nodes in the same group, the load factor within one

group may get ideal balanced result with high probability.

Theorem 1: The best-response strategy of shifting one
heavily loaded node’s surplus workload with the minimal

decision conflict is migrating its surplus tasks toward its

known lightly loaded nodes based on the probability which

is proportional to the idle resource amount of lightly loaded

nodes (i.e. P (pk)=
ilf(pk)·ck∑

pi∈LAS(pk)
ilf(pi)·ci ).

Proof. Based on Lemma 1 and the large number law,
the overall resource allocation is prone to be of high load

balancing status when the scale of system and the number

of tasks are large. Since every node’s load factor will

approach LF , there will be no decision conflict in such
balanced status. If one heavily loaded node changes its

strategy of selecting lightly loaded nodes to deviate against

the proportional idle resource amount, then all other heavily

loaded nodes will also do the same deviations in that we

assume every node adopts a uniform selection mechanism.

Thereby, the deviation will be much larger than expected and

may probably cause decision conflict on some specific node

according to its definition. Hence, the conclusion follows. �
We call the load balancing policy of each heavily loaded

node selecting lightly loaded nodes with the probability pro-

portional to their relatively idle resource amount stochastic
proportional idle resource allocation (SPIRA).

B. Probability Analysis

In this section, we will calculate the approximated upper-

bound of the probability of decision conflict when using the

SPIRA method mentioned above.

Theorem 2: Given that every heavily loaded node moves
its surplus load to its acquainted lightly loaded nodes

selected by SPIRA method, then the probability of the
decision conflict event on lightly loaded node pk (denoted

by PDC(pk)) is close to or less than
(xP (pk))

Lk+1

(Lk+1)!
, as shown

in Formula (5), where Lk=m · P (pk), x indicates the total
number of tasks to be shifted from all heavily loaded nodes

and ≺ stands for “approaches or smaller than”.

PDC(pk) ≈ 1− e−xP (pk)
Lk∑
i=0

1
i! (xP (pk))i

≺ (x·P (pk))
Lk+1

(Lk+1)!

(5)

Proof. We denote the probability that there is no decision
conflict event on the lightly loaded node pk as PDC(pk),
then PDC(pk)=1−PDC(pk). Since SPIRA is based on

the Bernoulli trial model which conforms to Binomial

distribution, we can get Formula (6) according to Formula

(4), where Lk=
ilf(pk)·ck

μ and x is the total number of
tasks to be shifted from all heavily loaded nodes. For

simplicity, we consider the relatively serious situation

where
∑
pi∈LAS(ps)

ilf(pi) · ci≈
∑
pi∈LS ilf(pi) · ci,

thus, m·P (pk) = m· ilf(pk)·ck∑
pi∈LAS(ps)

ilf(pi)·ci =

ilf(pk)·ck
(
∑

pi∈LS(pk)
ilf(pi)·ci)

/
m
=

ilf(pk)·ck
μ = Lk. Intuitively,

Formula (6) means the probability that the lightly loaded

node pk’s received load amount is no greater than its
tolerable threshold, LF .

PDC(pk) =
Lk∑
i=0

Cix(P (pk))i(1− P (pk))x−i (6)

Without loss of generality, x is very large (i.e. x� Lk ≥ i,
e.g. x = m

2 ) and every P (pk) is relatively tiny due to the
huge system scale, i.e. vast nodes and tasks. Thereby, we

could get Formula (7) (Poisson’s theorem) and Formula (8).

(1− P (pk))x−i ≈ e−x·P (pk) (7)

Cix = x!
i!(x−i)! = x(x−1)(x−2)...(x−i+1)

i! ≈ xi

i! (8)
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Table I
THE ESTIMATED PROBABILITY OF CONFLICT EVENTS OUT OF 9870

LOAD MIGRATIONS TO 140 LIGHTLY LOADED NODES

θ probability θ probability θ probability
1 0.470 0.95 0.288 0.9 0.148

0.85 0.064 0.8 0.025 0.75 0.010

0.7 0.004 0.65 0.001 0.6 9.545×10−4
0.55 4.918×10−4 0.5 2.617×10−4 0.45 1.419×10−4
0.4 7.755×10−5 0.35 4.216×10−5 0.3 2.250×10−5
0.25 1.157×10−5 0.2 5.573×10−6 0.15 2.393×10−6

Thus, we can convert Formula (6) to Formula (9).

PDC(pk) ≈
Lk∑
i=0

1
i!

(xP (pk))ie−xP (pk) (9)

Accordingly, we will get the following deductions:
PDC(pk) = 1− PDC(pk)

≈ 1−
Lk∑
i=0

1
i! (xP (pk))ie−xP (pk)

= 1− e−xP (pk)
Lk∑
i=0

1
i! (xP (pk))i (Taylor′s theorem)

= 1− e−xP (pk)(exP (pk) − (xP (pk))
Lk+1

(Lk+1)!
eξ)

= (xP (pk))
Lk+1

(Lk+1)!
eξ−xP (pk),where 0 <ξ < xP (pk)

< (xP (pk))
Lk+1

(Lk+1)!

Thereby, PDC(pk) ≺ (xP (pk))
Lk+1

(Lk+1)!
�

Based on the Formula (5), it is obvious that different x
will get different probability on decision conflict event. The

value of x is dependent on the load amount every heavily
loaded node wants to dispel. If each heavily loaded node

ps dispels θ·slf (ps)·cs (where 0<θ≤1), then x=θ · m. As
a use case, when θ= 13 (i.e. x=

m
3 ) and node pk’s Lk=10,

PDC(pk)≺ (10/3)
11

11! ≈1.41%.
We can also estimate the overall conflict probability by

calculating the overall conflict events (denoted by EDC (x))
over the total number x(=θm) of tasks to be migrated from
all heavily loaded nodes, as shown in Formula (10).

EDC(x) = x
∑
pk∈LS

P (pk) · PDC(pk) (10)

The overall probability of decision conflict is very small

according to Equation (10). Based on this formula, Table

I presents the estimated probability of conflict events to

contend for 140 heterogeneous lightly loaded nodes whose

idle resource amount (i.e. ilf (pk) · ck) range from 1 to

140, where the total number of imported/migrated tasks

is θ · m=θ ·
140∑
i=1

i=θ·9870. We observe that the conflict
probability is already down to 0.025 if each heavily loaded

node migrates 80% surplus load outward. In next section,

we will formally propose our SPIRA algorithm via psudo-

code. In Section VI, we will evaluate the performance more

comprehensively through simulation.

V. CONFLICT-MINIMIZING LOAD BALANCING SCHEME

We further improve Algorithm 1 based on the above

probability analysis in Algorithm 2:

Algorithm 2 SPIRA algorithm
This algorithm is executed on each heavily loaded node ps
Input: Acquainted lightly loaded node set (LAS(ps)) and local tasks
Output: Reschedule load with the minimum probability of decision con-
flict

1: Compute the selection probability distribution Δ for the lightly loaded
acquaintance nodes; /*the probability of choosing lightly loaded node
pk ∝ ilf (pk) · ck .*/

2: migLoad=θ·slf (ps); /*0<θ≤1*/
3: while (migLoad> 0) do
4: Select one lightly loaded node pj based on distribution Δ.
5: Select one task tik according to Pol(Sf (Sp), R).
6: Migrate tik from ps to pj .
7: migLoad−=lik .
8: end while

Line 1 calculates the probability distribution Δ of select-

ing target lightly loaded nodes based on Lemma 1. Through

line 2∼8, the target lightly loaded node will be selected as
the node to execute the task migrated from the current node

ps according to Δ. Since different θ at Line 2 will introduce
different conflict probability, the final allocation result may

get distinct load balancing level. The exact value of θ could
be determined based on Equation (5), Equation (10) or our

simulation result presented in next section.

The tasks will be chosen based on some policy, denoted

by Pol(Sf (Sp), R), where Sf (Sp) is referred to as the utility
function set, Sp refers to the set of all parameters needed,
and R is the corresponding rule set providing constraints.

The policy is mainly used to filter out the tasks violating the

user’s specific constraints. The detailed design of policy is

able to be separated from our scheme, which is accordingly

very flexible especially to dynamic application demands. As

follows, we give a brief policy example on the transmission

overhead constraint.

VI. PERFORMANCE EVALUATION

In this section, we analyze the SPIRA algorithm through

the simulation over a large-scale fully distributed heteroge-

neous resource allocation test-bed.

A. Experimental Setting

We emulate a near-reality distributed resource sharing

environment. We first construct an emulated physical net-

work with n computers randomly connected with various
bandwidths by Waxman model through Brite topology gen-
erator [25]. Then, we use PeerSim [26] to simulate the

asynchronous events according to the polynomial fitting

curve generated based on the average download/upload rate

distribution reported in PPlive system [27], which serves as a

typical Pareto distribution case to emulate the heterogeneous

workload/capacity of participating nodes respectively. The

distribution is shown as the red curve in Figure 2 and
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Figure 2. Capacity and workload distribution among nodes

the total workload is set as equal to the total capacity.

The neighbors of each node are dynamically changed over

time yet the neighbor degree (=log(n)) is always fixed.
The nodes’ status is delivered via the cycle-driven Newscast

protocol [23] whose cycle length (i.e. the interval between

two sequential messages on one node) is 5 minutes. The

rescheduling interval at each node is 6 cycles, which is also

the lifetime of each message.

The overhead of delivering messages can be neglected:

Without loss of generality, suppose one message contains

data payload of 80 bytes and the header information of 20

bytes, then each state message would only take about 100

bytes in total. Suppose the total number n of nodes is up
to 106, then each lightly loaded node needs to communicate
with other 20 nodes, and the total amount of data trans-

mitted can be estimated as 20×100 bytes=2K bytes per
cycle, which is extremely small compared to the ordinary

bandwidth (at least 1Mbytes). On the other hand, the data
transmission cost is also overlooked in our simulation due to

two factors: (1) In our solution, the line 5 in Algorithm 2 has

filtered all the tasks demanding super high transmission cost.

That is, based on daily-life experiences, the IO-intensive

tasks are not recommended to be rescheduled frequently

unless thus will lead to distinct performance improvement.

(2) In practical cases, due to the queuing model on each

node, the overhead of migrating one task’s data toward any

particular node is likely to overlay with the execution of

previous tasks queued on such node, actually suffering little

task migration cost impact.

B. Simulation Result

We evaluate our conflict-minimizing solution (i.e. SPIRA

algorithm) with different load sizes of tasks, respectively

ranging from 2 through 64 GFloatpoints, as shown in Figure

3. This test is carried out via 1000 simulated heterogeneous

nodes and migration ratio (θ)=0.9 (i.e. about 90% of sur-

plus load on every heavily loaded node will be migrated

outward). We can clearly see that the conflict probability

(a.k.a. conflict event ratio which is calculated as the total

number of conflict events divided by the total times of load

migrations) decreases with the decreasing size of tasks. This

is because the smaller size of task, the larger Lk will be in
Formula (5), then the smaller conflict probability we will get

according to the Theorem 2. The task load will randomly

range from 2 to 32 in the following experiments.
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Figure 3. Conflict probability of SPIRA with various task sizes

The simulation result without any load balancing shows

that the imbalanced workload caused by arbitrary task sub-

missions will be significantly aggravated over time. Through

the simulation of the four-days duration (96 hours), the

final standard deviation of load factor will go up to 170

and the makespan (the highest load factor) will converge

to 1590. Figure 4 (θ=1) presents the conflict probability,
standard deviation of load factor, makespan, and average

residual workload under different dynamic load balancing

algorithms. Inspired by max-cap [28], we devised a max-

cap based load balancing algorithm: Each heavily loaded

node will periodically migrate the surplus tasks to other

lightly loaded nodes based on the probability proportional

to nodes’ capacities. For Idlest Resource First (IRF), each

node will schedule the surplus tasks onto its viewed idlest

resource. Figure 4 indicates that the SPIRA algorithm will

prominently reduce the conflict probability (Figure 4 (a))

and its performance (including load balancing level and total

number of processed workloads) will always outperform the

other two strategies (Figure 4 (b)).

As proved in Section IV.B, the lower migration ratio is,

the lower decision conflict probability is. However, lower

migration ratio does not mean higher system throughput or

load balancing level, because the lower migration ratio will

definitely make the heavily loaded nodes not reach the ex-

pected average load factor (LF ), either do the lightly loaded
nodes. As a result, there must be a tradeoff by considering

the load migration and the control over decision conflict.

Figure 5 shows the load balancing result under different load

migration ratio (i.e. θ). Figure 5 (a) shows that the decision
conflicts are mitigated clearly with decreasing value of θ.
The load balancing status (including standard deviation and

makespan) shown in Figure 5 (b) and (c), however, gets the

best effect when θ approaches 0.9 and very unstable when
θ=1, as well as the system throughput which is reflected

by the average residual workload (ARW) (smaller ARW

means bigger throughput). As analyzed above, the θ=1
causing irregular result is due to the non-ignorable decision
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Figure 4. Comparison among different load balancing strategies

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0  6  12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

C
on

fli
ct

 E
ve

nt
 R

at
io

Time (Hour)

migration ratio = 1
migration ratio = 0.9
migration ratio = 0.8
migration ratio = 0.7
migration ratio = 0.6
migration ratio = 0.5

(a) Conflict Event Ratio

0

 0.5

1

 1.5

2

0 6  12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

St
an

da
rd

 D
ev

ia
tio

n 
of

 L
oa

d 
Fa

ct
or

Time (Hour)

migration ratio = 1 
migration ratio = 0.9
migration ratio = 0.8
migration ratio = 0.7
migration ratio = 0.6
migration ratio = 0.5

(b) Standard Deviation of load factor

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  6  12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

M
ak

es
pa

n 
of

 L
oa

d 
Fa

ct
or

Time (Hour)

migration ratio = 1 
migration ratio = 0.9
migration ratio = 0.8
migration ratio = 0.7
migration ratio = 0.6
migration ratio = 0.5

(c) Makespan

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  6  12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

A
ve

ra
ge

 R
es

id
ua

l W
or

kl
oa

d

Time (Hour)

migration ratio = 1
migration ratio = 0.9
migration ratio = 0.8
migration ratio = 0.7
migration ratio = 0.6
migration ratio = 0.5

(d) Average Residual Workload

Figure 5. SPIRA algorithm under different load migration ratios

conflict. Thus, θ≈0.9 should be recommended in such fully
decentralized competitive platform and we mainly adopt this

value in the rest experiments.

We present the scalability of SPIRA algorithm in Figure

6: The higher scalability of system, the lower conflict

probability, but the system throughput (i.e. average residual

workload) will not be influenced notably.

We note that the conflict probability is usually reduced

down to 2% or even lower in the above stable cases

under our SPIRA algorithm. Further more, we also evaluate

our solution in dynamic situations, where each node may

join/leave over time. In Figure 7, the dynamic factor α means
the ratio of the nodes whose states are arbitrarily changed out

of all nodes every half hour. For instance, α=0.5 indicates
half nodes are disconnected and substituted by new ones.
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Figure 6. Scalability of SPIRA algorithm
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Figure 7. SPIRA algorithm over different dynamic environment

Figure 7 (a) shows the conflict probability is still restricted

to 5% when the portion of arbitrarily changed nodes ranges

from 12.5% ∼ 25%, which can be satisfied in most of cases.

VII. CONCLUSION AND FUTURE WORK

In this paper, we designed a conflict-minimizing dynamic

load balancing strategy suitable for fully decentralized re-

source allocation in P2P desktop Grid based on the Bernoulli

trial model, with the state-of-the-art simplicity. We theoreti-

cally proved the upper-bound for the probability of conflicts

among the autonomous load balancing decisions under our

design should be very small. We also conclude that the

migration ratio (i.e. the ratio of total migrated load amount

and the total surplus load amount on heavily loaded nodes) is

the key factor of impacting the decision conflict and system

performance. Through simulation, we validated that our

solution could significantly mitigate the unbalanced status of

utilization load in dynamic fully decentralized environments,

finally improving the overall performance immensely. In the

future, we will further study how to leverage our algorithm to

facilitate broader QoS, such as better fault tolerance ability.
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