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Abstract. Resources in a grid are dynamic, heterogeneous, and widely distributed. End users
need a simple and efficient way to aggregate and utilize these diverse resources. We introduce a grid
middleware called G-JavaMPI, which combines a high-level message passing interface with the Java
language to support portable messaging-passing programming in a grid. Different from traditional
MPI implementations, it supports transparent migration of MPI processes during execution. This
feature facilitates more flexible task scheduling and more effective resource sharing. The migration
mechanism is implemented by exploiting the JVM Debugger Interface (JVMDI) functions, and minor
bytecode modification. This method is portable and does not require modification of the JVM. To
guarantee continuous MPI communication during process migration, a message redirection mecha-
nism is employed. As a process could be moved across multiple grid points that are under different
control policies for cross-organization resource sharing, we develop an instance-oriented delegation
mechanism that can provide strict protection on multi-hop delegations. We use a BLAST application
to evaluate the performance of process migration and the effectiveness of dynamic task scheduling.
The results attest to the effectiveness and efficiency of the middleware.
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1. Introduction. Grid, or computational grid, is evolving rapidly as a practical
extension to distributed computing technology, with the vision of dynamic and diverse
resource sharing across organizations [1]. Resource sharing over a grid helps existing
computing resources to be utilized in a more cost-effective manner, provides ways to
solve large-scale problems requiring an enormous amount of computing power, and
introduces flexibility in resource coordination.

Grid resources are usually distributed widely and managed under different local
policies. The types of resources in a grid can be highly diverse and their availabilities
can change dynamically. A new grid middleware is therefore needed, to hide the
heterogeneity of the computing resources and to bridge the gaps between different
local policies. The grid middleware should support easy programming and be able to
adapt the applications to the changing environment for efficient execution.

This research aims at the design of a grid middleware called G-JavaMPI, which
can support parallel execution of MPI (Message Passing Interface) programs written
in Java, and location-transparent computations in a grid. It combines the platform
portability of Java with the easy programming of the message-passing paradigm.
Using G-JavaMPI, the programmer can write and execute an MPI program without
having to care about the locations of computing resources and the network topology.
Different from many existing MPI implementations, G-JavaMPI supports transparent
Java process migration and message redirection between “mobile” distributed Java
processes. Our portable migration mechanism exploits the JVM Debugger Interface
(JVMDI) functions to control the execution and capture the runtime states of Java
process. It restores the process states through an exception handler which is inserted
in the Java source code at the preprocessing time. The message redirection mechanism
makes the physical locations of the processes transparent to the user by supporting
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logical ranks in the program and redirects buffered messages to updated location of
the migrating process during process migration.

Another special feature of G-JavaMPI is its instance-oriented delegation mecha-
nism for supporting multi-hop process migration, in which a process could be migrated
for multiple times across grid nodes. With our instance-oriented delegation mecha-
nism, the user grants his/her privileges via a security instance instead of the hosts.
The security instance contains the description of the resource access operations, the
conditions under which the process can perform these operations, as well as a signa-
ture of the user to certify the above contents. Permission to access the resource in
the destination host can then be granted by simply checking the signature in the se-
curity instance and the validity of the specified resource access operations. Whereas
in existing delegation mechanisms, the destination host has to verify all the signa-
tures recorded in the delegation document which were created during migration of
the process through a series of hosts.

With these supports, a process can be migrated transparently and safely between
grid points to avoid running hotspots, to utilize available resource or to move closer
to the data source. The process migration feature also gives the administrator certain
flexibility in managing and deploying execution resources in response to load imbal-
ances and fluctuations. As the result, better resource utilization can be achieved
in the grid environment, which makes it possible to solve large-scale problems more
cost-effectively.

The rest of the chapter is organized as follows. Section 2 gives an overview of
the design of the middleware. Sections 3 and 4 describe our solutions to JavaMPI
binding and transparent Java process migration respectively. Section 5 introduces
the instance-oriented delegation mechanism. Section 6 presents the experiment of
dynamic scheduling of a BLAST application and the performance results. Section 7
discusses the related work. Section 8 concludes the chapter.

2. The G-JavaMPI Middleware. Figure 2.1 displays the main components
of G-JavaMPI in a single grid node, and their interactions. The components on
the left side, including the migration modules and the MPI daemon, mainly perform
execution-related functions. Modules on the right are for decision-making and control,
including the rescheduler module and the information collection module. The delega-
tion module sits in the middle to provide protection and security related information
to the other modules.

Four main operations make up the execution and scheduling of an application:
(1) JavaMPI binding; (2) process migration; (3) instance-oriented delegation; and (4)
rescheduling. The following discusses the role of each of the modules concerned, and
how they interact with one another to carry out the four operations.

Initialization and MPI communication During initialization, the local MPI dae-
mon collects information about the processes from remote daemons, creates
the MPI communicator, and then ranks the processes (labelled (1) in the
figure). At the same time, the security module generates for each process a
delegation document which is to be used to prove the identity and to record
the migration history of the process (2). During MPI communication, the
daemons check the location of the destination process according to the MPI
communicator and redirect messages to it (3).

Process migration At start time, Java processes are augmented with library code
for state capturing. When migration takes place, the library code suspends
the execution at a migration safe point and captures the process state through
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JVMDI (4). The delegation module records the event of migration and ap-
pends it as a new entry to the trace list in a delegation document. The
restoration exception that was inserted into class source code at preprocess-
ing time is invoked to read the process states from the process dump and
restore them into the new process (4). If migration is successful, all the con-
cerned entities are required to sign on the recorded migration event in an
entry of the trace list in order to prove the validity of this event; otherwise,
the entry would be deleted (5).

Migration control Migration control is mainly done by the rescheduler. The resched-
uler needs to check with the security module whether a process is allowed to
migrate, whether the destination host is in the trust list, etc. (5), before it can
issue the instruction to the remote daemon in the destination host (6). The
daemons involved will update the MPI communicator structure, and commu-
nication between the migrated process and other processes can be resumed
(1).

Rescheduling decision The rescheduler makes decisions based on information about
application performance and the system status. Three types of application
performance information are collected by the information collectors: commu-
nication pattern records from the daemons (7); execution prediction infor-
mation from the migration module (8); and migration history and resource
access policy information (such as the trusted hosts list, etc.) from the se-
curity module (9). System status information including CPU utilization and
network availability is obtained by the rescheduler (10).

3. MPI Communication.

3.1. Enabling MPI Communication in Java. We opt for a client-server
design for transferring MPI messages for Java processes. MPI daemons are running
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as servers in all the grid nodes; the Java processes are clients. We follow the MPI
standard to implement the JavaMPI API. The API works as an interface to link Java
processes with the MPI daemons which run the native MPICH-G2 library. A Java
process sends MPI messages to the local MPI daemon by calling the API functions.
Several message queues are reserved by the API functions to transfer requests and
replies between clients and servers. The message data, which are usually arrays of
primitive data types, are packaged into byte streams using the object serialization
mechanism. In addition to primitive data types, messages with Java object types
can also be transferred. The daemon then delivers the messages on behalf of the
process. In the destination host, the bytes are transformed back to the original data
of primitive or object type.

In order to provide efficient MPI communication, native MPI is used by the MPI
daemons to transfer messages. Instead of tightly binding the native MPI library
to the Java language as is done in some previous JavaMPI implementations such
as mpiJava [2] and JavaMPI [3], our client-server design clearly separates the JVM
execution environment from the environment in which the native library is executed.
This approach avoids conflicts on the use of system resources (e.g., conflicts on the
system signals) between the native MPI library and the JVM. It also requires no
modification to the native MPI library.

3.2. Message Redirection and Restorable Communication. The MPI dae-
mons maintain a table called the global communicator mapping table. The table
records information of all the processes including their logical ranks in the MPI com-
municator and physical locations. When a process is migrated from one location
to another, the local daemon serving the process notifies the other daemons of the
change of physical location. All daemons including the local daemon update the
mapping table. The communication channels are reconstructed via the global com-
municator mapping table at the low level. Although its physical location changes after
migration, the process can still be reached as before through its logical rank number.

4. Transparent Java Process Migration.

4.1. State Capturing Through JVMDI. The Java Virtual Machine Debug-
ger Interface (JVMDI) [23] is a native interface available since the introduction of
Java 2, and is used typically by debuggers. It defines the standard services that a
JVM must provide for debugging. Table 4.1 summarizes the JVMDI functions used
in process migration, especially in state capturing. The first group of functions are
used to control thread execution and detect events such as method exit/entry, frame
pop-up and breakpoint. The other functions are used to capture the runtime state of
loaded classes (including their fields and methods), threads, objects, frames and local
variables.

In G-JavaMPI, the migration module is implemented as an external library. It is
loaded into the JVM at startup and runs as a debugging thread. When the migration
module receives a migration instruction, it suspends the execution of the Java process.
All information related to loaded classes and their static fields are saved in bytecode
format using object serialization. All frames are saved in the order that they are
invoked. For each frame, local variables, referenced objects, information of associated
method, and the program counter are captured and saved. All the actions performed
by the migration module are transparent to the application. In addition, the capturing
mechanism is all on top of an ordinary JVM so that no modification of the JVM is
required.
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Table 4.1

Some JVMDI functions used in process migration

Functions Descriptions

SuspendThread(), control the execution of threads
ResumeThread()
SetEventHook(), set events to be detected and the actions responding to the events,
SetEventNotificationMode() mainly the JVM initialization event and breakpoint event
SetBreakpoint(), set and clear breakpoints in migration safe points and starting
ClearBreakpoint() points in invoked methods

GetLoadedClasses() gives all loaded classes in JVM
GetSourceFileName(),
GetClassModifiers()

get the source file name to check whether it is main class, get
access flag to check it is static class

GetClassFields() get static fields in a class to be captured and restored

GetFieldName(), get the access flag of field to check whether it is static, get its
GetFieldModifiers() name to restore its value

GetMethodName(), get the name and access flags of invoked method which are used
GetMethodModifiers() to set breakpoint during restoration

GetLineNumberTable() get line numbers to check whether the current breakpoint is at the
start location of a source line (migration safe point)

GetLocalVariableTable() get list of local variable of a method to be used during capturing
and restoration

GetBytecodes() get bytecode to inspect possible branches for searching for next
migration safe point

IsMethodNative() check whether the invoked frames belong to native methods which
are not migrate safe point

GetAllThreads() get all threads, get reference to main thread
GetThreadStatus(), check whether the thread is daemon thread which will not be
GetThreadInfo() suspended during migration

GetFrameCount() get the number of invoked frames
GetCurrentFrame(), get latest invoked frame and its caller frame, and the references
GetCallerFrame() to all frames can be obtained

GetFrameLocation() get the location in the method code where the execution reaches
in the frame

GetLocalObject(), get the value of local variables with various types such as Int,
GetLocalInt(), . . . Object, Long and etc.
SetLocalObject(), restore the value of local variables
SetLocalInt(), . . .

There are no JVMDI functions for extracting and rebuilding operand stacks.
Moreover, when the execution point is inside a native method (frame), the local data
in the frame are machine-dependent. These factors make it difficult to capture and
restore the complete process state and may destroy the portability of the system.
Our solution is to restrict a migration to happen only when all operand stacks are
empty and the execution point is outside of a native method. This is achieved through
setting migration safe points and bytecode rearrangement.

Migration safe points are defined only for the current frame. The current frame
must be a Java method other than a native method, and no ancestor frame which
invokes the current frame directly or indirectly is a native method. With these con-
ditions, the migration safe points are the execution points at the first bytecode in-
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Fig. 4.1. Frames and runtime states restoration

struction of each source code line in the current frame. This definition is based on the
observation that the operand stack of the current frame is always empty immediately
after the completion of the execution of a Java source code line. If the process is sus-
pended at a point which is not a migration safe point, the execution will be resumed
immediately and the migration will be delayed until reaching the next migration safe
point.

For the operand stacks of all the frames other than the current frame, bytecode
rearrangement is used to make these operand stacks always empty during migration.
The rearrangement is done in the preprocessing stage before execution. It introduces
new local variables to store the intermediate values. Consider for example the state-
ment y = f(x) + g(x). During the valuation f(x), the intermediate value of f(x) is
stored in the operand stack. To prepare for possible migration, this is transformed
into: tmp1 = f(x); tmp2 = g(x); y = tmp1 + tmp2. Here is another frequent state-
ment: y = f(a + g(x)), which is transformed into: tmp1 = g(x); y = f(a + tmp2).
Therefore, intermediate values are stored in local variables rather than the operand
stack.

4.2. State Restoring. During restoration at the destination node, the migra-
tion module reloads all the saved classes and restores their static field values by calling
several JNI functions, including FindClass(), SetStaticIntF ield(), SetStaticObject

F ield(). To restore the runtime state, we resort to the exception handler. During
bytecode rearrangement at preprocessing time, restoration functions are inserted as
an exception handler in the exception area of each method. In the handler code, local
variables of the called methods are reset with the saved information, and a “lookup-
switch” instruction would pass the execution to where the process was suspended
previously.

Figure 4.1 outlines the procedure of re-establishing stack frames and restoring
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runtime state. The migration module in the destination host has a breakpoint at the
start of main() method. The breakpoint is reached immediately after the execution
begins (1). The migration module then throws a restoration exception in the current
method. If there are other frames, it sets a breakpoint at the start of the next invoked
method (frame). The process catches the exception immediately, and jumps to the
restoration exception handler (2). The runtime state of the current method is then
restored. The process then continues execution from the suspension point and invokes
the next method method 1() (3). The second frame is created (4). The restoration of
its runtime state is the same as the main() frame (5)(6)(7). These steps are repeated
until the final frame is restored (8)(9)(10).

5. Security Support During Migration.

5.1. Instance-oriented Delegation Mechanism. To tackle the security is-
sues arising from multiple organizations, the Grid Security Infrastructure (GSI) [18]
has established a trust framework based on Public Key Infrastructure (PKI) in which
general authentication and authorization can be carried out. The user grants his/her
privilege to the hosts. To ensure the trust protection, when a process is about to
move, the host currently hosting the process will be asked to delegate the process’
privilege to the new host to which the process will move. Because authorization is
bounded to hosts, this is called host-oriented delegation. Therefore, to authenticate
the privilege in a multi-hop migration, the destination host has to verify the signa-
tures recorded in the delegation document which were issued by all the hosts along the
process’s migration path. This chain-delegation in fact is not most desirable because
if a privileged host is cracked, the damage can easily spread across the whole network.
Moreover, there is significant overhead in the authentication of chain-delegation.

To allow for more efficient and safe delegations, we introduce the instance-oriented
delegation mechanism [17] which is also based on PKI. A security instance is an encap-
sulation of a set of authorizations from the user for resource access at the destination
host and the relevant conditions for validating these authorizations. The conditions
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can be created with respect to the process’ specific code segments, states or resource
requests. Therefore the user has the flexibility of defining different priorities or poli-
cies on processes, which have to do with resource requirements, maximum handover
time, etc. The user can then delegate his/her privilege to a security instance instead
of to certain hosts. Access privilege at the destination host can be approved by only
verifying one single signature issued by the user in the security instance and validating
the authorizations according to the specified conditions. This avoids having to verify
all delegation signatures in a chain-delegation, and so the authentication procedure
is greatly simplified. To support process migration, the security instance is specified
to protect process state information including code and runtime states and the user’s
privileges.

The security instance is embedded in the delegation document, as shown in Figure
5.1. The first part of the delegation document records the instance details, includ-
ing the identity of the instance, instance properties such as process code, operation
specification such as its policy on trusted and untrusted resources, and the validity
specifications such as the maximum number of handovers, etc. Handover is the oper-
ation of transferring the delegation document from a source host to a destination host
during process migration. To prevent unlimited diffusion of any potential damage,
the maximum number of handovers should be specified. The second part is a trace
list, which records the history of handovers. Each entry in the trace list records the
operation details including a digest on the process states, source host, destination
host, etc. The instance ID is also recorded to prove that the operation is relative to
the exact instance. The initiator and acceptor should sign on the operation, to show
their approval on the entry’s content. For the handover operation, the initiator is
the source host and the acceptor is the destination host. Both the initiator and the
acceptor will hold a copy of the signed record in the entry to prevent any denial on the
operation in future. The handover history in the trace list is an important reference
for trace back purposes should security leaks happen in the future.

5.2. Process Migration in Action. Figure 5.2 shows all the essential opera-
tions and communications during the entire migration procedure. Before migration,
the delegation document is checked whether the proposed migration is allowed. For
example, if the maximum handover time is reached or the destination host is not
in the trusted list, the migration will be denied. If the migration is permitted, the
rescheduler issues a migration instruction to the MPI daemon. The Java process will
find the next migration safe point and suspend the execution at that point. The
local daemon is notified and it in turn notifies all the remote daemons. The desti-
nation node creates a new process instance (a new JVM) that waits, when at the
same time the source process captures the process states. When capturing is finished,
a digest which is an array of 16 bytes is produced from the captured process states
and reported to the delegation module. The delegation module creates a new entry
describing this migration event based on the digest and appends it to the trace list
in the delegation document. The process states are then transferred to the destina-
tion node. Before the new process restores the suspended process states to the new
process, the delegation module computes the digest of the received process states and
compares it with that recorded in the trace list of the delegation document. When
restoration finishes, the delegation module signs on the entry in the trace list to prove
the validity of this migration event.

6. Experimental Results. We divide the experiments into three parts: per-
formance of MPI communication, performance of process migration, and effectiveness
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of scheduling support. The version of G-JavaMPI we use in the experiments is im-
plemented based on: (1) Java Development Kit: Sun JDK 1.4.2 04; (2) MPI library:
MPICH-G2 [6]; (3) Grid toolkit: Globus Toolkit 2.4 [22]. The experiments are con-
ducted on a cluster of PCs, each equipped with a Pentium 4 2.0 GHz processor and
512 MBytes memory, running Linux 2.4.18. Java programs are executed in full-speed
debugging mode provided by Sun Java Hotspot JVM in Sun JDK1.4.2 04.

We collect experiment data from the execution of a G-JavaMPI BLAST (Basic
Local Alignment Search Tool [20]) application that realizes a distributed bioinfor-
matics computation. We set up a simulated grid environment consisting of two grid
points, which is sufficient to demonstrate the features of G-JavaMPI. Each grid point
has some computational machines and a copy of the gene database. The two groups
are denoted as A (machines 0, 1, 2, 5; database 0) and B (machines 3, 4, 6; database
1).

6.1. Performance of MPI Communication and Process Migration. The
performance of MPI communication, shown in Figure 6.1 and 6.2, is evaluated by
benchmarking the time of ping-pong message transfer between two nodes. The
steady bandwidth for long message in G-JavaMPI is about 6.6MB/s. Comparing
with MPICH-G2’s 11.3MB/s, this represents a loss of 42% in efficiency. The addi-
tional overhead is mainly caused by message packaging and copying performed during
client-server message transferring in the JavaMPI binding.

We investigate process migration overheads in the BLAST application under dif-
ferent CPU workloads. We use a collection of computation-intensive calculating-PI
programs with different sleeping times and calculation precisions to produce vari-
ous background workloads on the computational machines. The value of background
workload is taken as the CPU utilization when the background program is executed
alone in a machine. The various types of workload used in the experiments are 98%,
70%, 50% and 0% CPU usage. The detailed timing breakdowns during migration
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under different background workloads are recorded in Table 6.1. The total migration
cost consists of three parts, “Migration-Out”, “Dump-Transfer”and “Migration-In”.
In “Migration-Out”, the “Pre-Migration” operation includes those operations that
must be done before migration, such as closing files or socket connections. For our
experimental application, the gene files must be closed before migration can be carried
out. “Dump” is to extract process state through the migration module of G-JavaMPI
and record it in a dump file. The size of a dump file in our BLAST experiment is
about 2.1 Kbytes. The “Generate-Delegation” operation is to record the migration
event in the contractual history and append it to the process’ delegation file. After
“Migration-Out” is finished, the dump file will be transferred to the destination ma-
chine, and the operation is called “Dump-Transfer”. The “Migration-In” part consists
of four operations. In the “Entrance-Check” operation, the identity in the delegation
of the source JavaMPI process and its resource access privilege are verified. Then
the process state is restored through G-JavaMPI’s process restoration mechanism in
the “Restore” operation. In the “Post-Mig” operation, some files may need to be re-
opened and socket connections re-connected. Finally, if the migration is completely
successful, the contractual history in the delegation document will be signed by all
concerned entities to prove its legality during the “Sign-Delegation” operation.

As Table 6.1 shows, the overheads of all the operations during migration are
not significant (from several milliseconds to hundreds of milliseconds). The time of
“Dump-Transfer” may vary with the available network bandwidth and the size of the
dump file. In our experimental environment, the total migration cost is less than 3.5
seconds, even with very high background workload. The overhead is acceptable for
most long-running applications.

Table 6.2 presents the percentage of overhead due to delegation-related operations
in the total overhead. The delegation-related operations include the “Gen-Dele”,
“Entrance-check” and “Sign-Dele” operations. Their costs are about 15.9%–33.6%
of the total overhead. The overhead of delegation operations is almost independent
of the scales and characteristics of grid applications, because there are only a fixed
number of operations on the delegation document. As the number of migration hops
increases, the size of the delegation document increases because new entries are being
appended. This may increase the time spent by the operations. But the amount
increased is not significant as the appended trace data is of very small size. Therefore
the weights of the delegation operations would tend to diminish in applications of large
problem sizes, which are very common among grid applications. It can be amortized
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Table 6.1

Migration cost breakdowns (ms)

Background Migration-Out Dump- Migration-In

Workload Pre-
Mig

Dump Gen-
Dele

Transfer Entrance-
Check

Restore Post-
Mig

Sign-
Dele

0% 3 194 61 349 189 63 6 61
50% 3 194 78 547 187 62 6 62
70% 3 404 55 844 192 65 6 72
98% 3 740 258 1909 194 62 6 63

Table 6.2

Delegation costs (ms)

Background Delegation Total Cost Migration Delegation
Workload In Migration-Out In Migration-In Total Cost Percentage

0% 61 251 931 33.6%
50% 78 250 1,144 28.8%
70% 55 265 1,645 19.5%
98% 258 257 3,239 15.9%

by the migration benefits.

6.2. Dynamic Scheduling. The BLAST application adopts the database seg-
mentation approach, i.e., the database is divided into many independent segments
and each process compares the query sequence against the individual segments. As
the segments are independent, there is little communication between processes. The
scheduling of this application is naturally an instance of the classical scheduling prob-
lem of mapping independent tasks to heterogeneous machines. In related literature
[21], either iterative heuristics or searching-based algorithms can be used to solve this
problem. We select the min-min heuristic (Min-min) and genetic algorithm (GA)
in our experiment. The estimated completion time (ETC) of a process in a compu-
tational node is calculated as ETC = TotalLoad−FinishedLoad

ProRate
+ MigCost. An ETC

matrix records the ETCs of all pairs of processs and nodes. The algorithms take the
matrix as input and calculate the new mapping solution.

The experiment concurrently runs three BLAST programs: X (8 processes, each
searching about 172MB data), Y (6 processes, each searching about 228MB data), and
Z (4 processes, each searching about 344MB). We evaluate and compare the execution
performance of these three applications with different scheduling algorithms. The
following scenario is used to test the performance.
Stage 1 At the beginning, machine 5 of grid point A and machine 6 of B are not

available to compute. Each of the 18 processes is mapped to one of the five
machines which are ranked in a predefined order.

Stage 2 About 60 seconds later, the system is notified that machines 5 and 6 join the
grid and can provide computational resources. This event is called extension.
The scheduler will make decisions for process re-mapping.

Stage 3 About 300 seconds later, machines 5 and 6 leave the grid and processes
executing there must be migrated. This event is called shrink. The scheduler
will make decisions for process re-mapping again.

In the above formula for estimating ETC, MigCost is obtained from experimental
result. In reality, however, a large amount of simultaneous migrations may cause some
additional overhead. Part of the overhead is the management cost of the daemon which
has to do information update and process management. As migrations involving the
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Fig. 6.3. BLAST execution time breakdowns
with different scheduling algorithms
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Fig. 6.4. Finished workload distributions of
BLAST execution

same machine cannot be overlapped for data consistency reasons, the other part of the
overhead is caused by the sequential execution of certain migrations. In order to truly
reflect the migration overhead and also to avoid excessive migrations, we introduce
cost penalty to the ETC matrix. For the case of extension, penalties are added to the
ETCs of processes on machines which are not newly added. The ETCs of processes on
their own machines are not added the penalties as there are no migration costs. And
the ETCs of processes on newly-added machines would not be added the penalties
because their migrations are desired. We apply a similar policy to add penalties for
the case of shrink. Penalties are added to the ETCs of processes on machines which
will not be removed. The ETCs of processes on their own machines are not added the
penalties. Penalties are not added to the ETCs of processes which originally resided on
removed machines. Finally the ETCs of processes on removed machines should be set
to a very large value because processes are not allowed to migrate there after a shrink.
By adding different penalties, we get six different scheduling algorithms including GA-
M (GA algorithm with moderate penalty), GA-L (GA with large penalty), GA-S (GA
with no penalty), Min-min-M (Min-min algorithm with moderate penalty), Min-min-
L (Min-min with large penalty) and Min-min-S (Min-min with no penalty).

Figure 6.3 and 6.4 report the execution times and finished workloads of the three
applications with different scheduling algorithms in three stages. The amount of
workload is presented by the number of finished iterations. One iteration of workload
is equivalent roughly to searching 1Mbyte database. In stage 1, represented as the
bottom box, the execution times are fixed to be 60 seconds. As the mappings are the
same, the finished workloads are almost the same for all the scheduling algorithms.
In stage 2, the processes are re-mapped after the extension event is triggered. Al-
though the execution times are also fixed to be 300 seconds, the finished workloads
are different. The applications using the GA-M and Min-min-M algorithms finish
more workloads than the others. In stage 3, the processes are re-mapped again after
the shrink event is triggered. The applications with GA-M and Min-min-M finish ear-
lier than the others. This is because they had less remaining workloads and they get
better mappings. Based on the execution times and finished workload, we can obtain
the execution efficiencies in each stage. In stage 2, applications using GA-M have the
highest efficiency of searching about 9 Mbytes per seconds. They also achieve the
highest average efficiency (more than 7 Mbtyes per seconds) of the whole execution.
For the whole execution, GA-M and Min-min-M make the applications run fastest.
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Table 6.3

Number of migrations

Algorithm GA1 Minmin1 GA2 Minmin2 GA3 Minmin3
After Extension 6 4 4 4 13 8

After Shrink 7 7 4 4 7 12

However, GA-S and Min-min-S make the execution worse as many migrations produce
much additional overhead which is not estimated in the algorithms. In the applica-
tions with GA-L and Min-min-L, migrations only happen between the two newly
added machines and other machines, and the workload actually is not fully balanced
among the machines. Therefore they experience worse performance than GA-M and
Min-min-M. Table 6.3 records the number of migrations in each remapping. Algo-
rithms with no penalty cause as many as 20 migrations in total. Algorithms with
large penalty allow the processes to move to or from machines 5 and 6, and therefore
the number of migrations is only 8. In addition to some necessary migrations to newly
added machines, algorithms with moderate penalty also relocate some processes in
the other machines to achieve better load balancing. The number of migrations for
GA-M and Min-min-M are 13 and 11 respectively. Both are less than those of GA-S
and Min-min-S, and larger than those of GA-L and Min-min-L.

Through these experiments, the migration facility of G-JavaMPI has been tested
and verified. With the mapping algorithms, the efficiency and flexibility of applica-
tions are improved through dynamic process migration. In addition to the algorithms,
a practical cost model which accurately measures factors affecting the performance
is very important. In our case, the introduction of additional penalties augments the
overhead estimation in the ETC matrix, which leads to improvements in the perfor-
mance reported.

7. Related Work. There have been efforts to provide MPI for the Java lan-
guage. Existing approaches can be grouped into two types. One is using native MPI
bindings where some native MPI library is called by Java programs through Java
wrappers. Examples include mpiJava [2] and JavaMPI [3]. The other approach is
pure Java implementation as used in jmpi [4] and DOGMA [5]. Our method can
be classified into the first group. However, instead of tight integration, our method
seperates the functionalities of native MPI and Java wrappers. Native MPI is re-
alized in MPI daemons which cooperate with Java wrappers through inter-process
communication (IPC). Therefore, G-JavaMPI is portable to different native MPI im-
plementation, and it can support communication restoration with the help of daemons
when the process is migrated.

There is also research on making existing MPI implementations grid-enabled or
grid-aware through modification or the addition of special features. MPICH-G2 [6]
and MagPIe [7] are some existing implementations optimized for grid environments
through modifications such as network optimization, topology-aware collective oper-
ations, etc. In [8], an add-on mechanism to the MPI paradigm called MPI process
swapping is presented. Through adding some code to iterative MPI applications
and allocating redundant MPI processes, it can improve performance by dynamically
swapping processes to the best available resources. However, there is no implementa-
tion that provides support for transparent MPI process migration.

There are grid middleware or frameworks developed to provide useful abstractions
to the grid programmer. Several systems, including Netsolve [9] and Ninf/G [10], fa-
cilitate the whole or parts of the NES/GridRPC (Network-Enabled Server/Grid-based
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RPC) paradigm which supports server-client programming on grid. The Cactus code
and computational toolkit [11] provides application programmers with a high level set
of APIs which hide features such as the underlying communication and data layers.
During runtime, the best available layer, which is implemented in modules, can be
chosen for a give resource. Cactus modules cover almost all aspects including compi-
lation, programming, I/O, parallel checkpointing, dynamic steering, etc. DataCutter
[12] is an application framework that supports the development of data-intensive ap-
plications requiring access to remote databases. Based on its filter-streaming program-
ming model, the application’s processing structure is implemented as some distributed
processes called filters, with which queries and data transformations can be carried
out.

There are many research projects targeting at the development of application
schedulers for dynamic and heterogeneous environments. Most of them would tie
applications to specific programming models, and derive a performance model from
the programming model to guide the scheduling decisions. The programming model
ranges from task dependency graphs in SEA [13] and communicating tasks having
their own resource requirements in AppLeS [14] to the master-slave model in [15].
AppLeS has little limitation on the programming model. Instead, it provides some
templates for users to specify the performance model. For different performance mod-
els, there are different scheduling algorithms that would fit, including iteration-based
distribution in MARS [16], maximum-flow algorithm in [15], and many other heuris-
tics. There are two unique features in our G-JavaMPI. First, it targets at a broad
spectrum of applications which can be implemented using the MPI paradigm. The ex-
tracted models include independent subtasks, master-slave, tasks with communication
and dependency, and resource-centric applications. Second, it focuses on rescheduling
in space, while most of the other related projects consider only initial scheduling.

8. Concluding Remarks. We aim at developing a grid programming environ-
ment which can achieve easy-of-use, high performance, and flexibility in task schedul-
ing for grid computing. We introduce a new grid middleware called G-JavaMPI to
support programming and optimized execution of JavaMPI applications in the grid
environment. The middleware enables people to write MPI-style programs in the Java
language conveniently. The transparent Java process migration mechanism and the
delegation mechanism provide a basis for developing and realizing dynamic scheduling.
Through the experiments, we have demonstrated the usefulness of process migration
and dynamic scheduling in extension and shrink scenarios. There are however other
types of grid applications, such as tightly cooperative applications, community-centric
applications, and interaction-centric applications, that have yet to be examined for
their MPI programmability or rescheduling strategy. Some tools or methods to rec-
ognize the application characteristics may be extremely useful. What is also worth
some serious study is the issue in integrating migration-based rescheduling with other
system-level or application-level services including time-based scheduling, QoS mech-
anisms, etc. To integrate the middleware in existing grid infrastructures, a standard
interface needs to be developed to facilitate easy and efficient access to G-JavaMPI.
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