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On-GPU Thread-Data Remapping for Branch Divergence
Reduction

HUANXIN LIN, CHO-LI WANG, and HONGYUAN LIU, The University of Hong Kong

General Purpose GPU computing (GPGPU) plays an increasingly vital role in high performance comput-

ing and other areas like deep learning. However, arising from the SIMD execution model, the branch diver-

gence issue lowers efficiency of conditional branching on GPUs, and hinders the development of GPGPU. To

achieve runtime on-the-spot branch divergence reduction, we propose the first on-GPU thread-data remap-

ping scheme. Before kernel launching, our solution inserts codes into GPU kernels immediately before each

target branch so as to acquire actual runtime divergence information. GPU software threads can be remapped

to datasets multiple times during single kernel execution. We propose two thread-data remapping algorithms

that are tailored to the GPU architecture. Effective on two generations of GPUs from both NVIDIA and AMD,

our solution achieves speedups up to 2.718 with third-party benchmarks. We also implement three GPGPU

frontier benchmarks from areas including computer vision, algorithmic trading and data analytics. They are

hindered by more complex divergence coupled with different memory access patterns, and our solution works

better than the traditional thread-data remapping scheme in all cases. As a compiler-assisted runtime solu-

tion, it can better reduce divergence for divergent applications that gain little acceleration on GPUs for the

time being.
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1 INTRODUCTION

These days, Graphics Processing Units (GPUs) are no longer merely dedicated to graphics pro-
cessing. As energy consumption has become a significant concern in high performance comput-
ing, fewer supercomputers are built with multicore processors only. Programming models such as
OpenCL [23] and CUDA [17] have facilitated general purpose computing on GPU (GPGPU). On
the Top500 [8] list, the current number of GPU supercomputers is 87, which has increased 8 times
over the last 7 years. Moreover, GPU has become the most popular platform for deep learning.
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The GPGPU community has been shedding light on the branch divergence issue [6, 10, 15,
16, 28], which originates from the Single Instruction Multiple Data (SIMD) execution model. In
the hardware design, GPU cores are grouped into Compute Units (CU, AMD term) or Streaming
Multiprocessors (SM, NVIDIA term). Members of each CU/SM must always execute the same in-
struction in lockstep. When it comes to conditional branching, each CU/SM sequentially executes
all the branch paths taken by the GPU software threads, or work-items1 that it is hosting, and
then masks off wasteful computation results. An if-else branch can already halve GPU execution
efficiency, and nested branches lower computation performance exponentially.

Nontheless, efforts are never stopped to accelerate applications with complex branches on the
GPU platform. The GPGPU frontier has been pushed to highly divergent areas including computer
vision [19], algorithmic trading [4], data analytics [3], artificial intelligence [12], and so on. Nested
branches with over four layers can be found in some applications [5, 14] that have been ported to
GPU for better cost-effectiveness, promising even further acceleration. In such kernels with fre-
quent branching, the majority of branch conditions cannot be evaluated at compile-time. As a case
in point, branches may be wrapped in loop and thus be evaluated to different values across itera-
tions. Even if all the conditions could be correctly predicted, each divergent branch in a single GPU
kernel may possess different characteristics, demanding multiple rounds of divergence reduction.

On-CPU Thread-Data Remapping (TDR) is by far the most widely used software solution [7, 15,
27, 28], but it fails to cater to the new challenges of highly divergent applications. In the context
of branch divergence reduction, each group of work-items, or wavefront, is remapped to datasets
that produce the same branch condition, so that the hosting CU/SM only needs to execute one
branch path. So far, TDR is merely performed as compile-time preprocessing on the host machine
that transfers input data and offloads computation as kernels to the GPU device. On-CPU TDR
tries to evaluate branch conditions in advance and rearrange the input data accordingly, but the
branch conditions often depend on runtime computation results. It causes a lot of redundant com-
putation to get the actual results and then restart the kernel after on-CPU TDR. As a compile-time
solution, traditional TDR can only change the thread-data mapping once for each kernel launch.
When there are multiple divergent branches in a kernel, an optimal thread-data mapping has to
be determined to cover different needs of the branches. However, with each branch demanding a
different mapping, on-CPU TDR has to compromise and miss out on some of the speedup oppor-
tunities. The current remedy for these two issues is kernel splitting [25]. A feedback-optimization
loop is established, where CPU works on the runtime GPU-feedback branch conditions and per-
forms remapping for the following kernel splits. However, this involves great overhead covering
kernel launching and round-trip data transfer.

To handle divergent applications flexibly, we propose Workgroup-Autonomous GPU-NativE
Reference Redirection (WAGNERR) as a compiler-assisted GPU-runtime solution. Since WAGN-
ERR leverages on-GPU TDR, the long-latency feedback-optimization loop in traditional TDR can
be skipped and kernel splitting is not necessary. Our algorithms are designed to run parallelly on
the GPU architecture, and aim to preserve the native latency, hiding as much as possible. WAG-
NERR can realize fine-grained branch divergence reduction, which has a twofold meaning. First,
a kernel is not the smallest unit for divergence reduction as in on-CPU TDR. Multiple branches
in each kernel are treated separately to resolve conflict of demanded mappings. Immediately be-
fore each branch, one pass of TDR is performed according to actual branch conditions, and then
execution is resumed right at the branch with minimized redundant computation. Second, each
workgroup is autonomous and responsible for the TDR of member work-items. Logical work-item
groupings and shared memory usage will not be broken as in some cases of on-CPU TDR [15].

1In this article, GPU software entities are referred to in OpenCL terms. “Thread” and “work-item” are used interchangeably.
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Without any centralized decision-making on the new thread-data mapping, execution synchro-
nization is not imposed on workgroups, leaving inter-workgroup context switching unimpaired.

The contributions of this work are:

—To achieve fine-grained branch divergence reduction, we establish WAGNERR as the first
on-GPU TDR scheme. It only requires source-to-source transformation on the GPU kernels,
which can be widely applied and automated using code parsers.

—We propose Head-or-Tail as an on-GPU TDR algorithm that is specialized for the most com-
mon two-path branches. It minimizes long-latency global memory accesses for TDR com-
putation and incurs an O(m) overhead, where m is the number of global memory arrays
accessed for branch condition computation.

—We propose Data Group Indexing (DGI) as another on-GPU TDR algorithm that works for
general many-path branches. It features a sub-count index on branch conditions that nar-
rows down the per-thread search space. With adjustable overhead on GPU shared memory,
it enhances the applicability of our solution. Global memory accesses are cut to O(m∗log n),
where n is the kernel workgroup size.

By realizing runtime on-GPU TDR, our solution can accelerate branches with compile-time
unknown conditions. Fine-grained divergence reduction is achieved without kernel splitting. It is
no longer a must to compute one and only one thread-data mapping for multiple branches in a
kernel, which changes the paradigm of TDR in divergence reduction.

OpenCL benchmarks are tested on two generations of both NVIDIA and AMD GPUs. Exper-
iments show that WAGNERR achieves on average 71% of the potential performance improve-
ment indicated by the profiled control flow efficiency for third-party applications, with the largest
achieved speedup of 2.718. For detailed evaluation, we implemented three GPGPU-frontier bench-
marks, and WAGNERR proves to be the better solution compared with the traditional on-CPU TDR.

The rest of this article is organized as follows. Section 2 features background knowledge on TDR
and the design challenges of our solution. Section 3 shows the details of WAGNERR. Section 4
shows evaluation results. Finally, Section 5 is related work, and last comes the conclusion.

2 BACKGROUND AND DESIGN CHALLENGES

To the best of our knowledge, no previous work has achieved on-GPU TDR. This section reviews
background of TDR and reveals design challenges of our solution.

2.1 On-CPU Thread-Data Remapping

In the context of branch divergence reduction, threads in the same wavefront are remapped to data
that would produce the same branch conditions or a similar sequence of conditions. In other words,
datasets can be divided into groups based on which path or path vector they point to. Multiple
branches may impose multiple groupings on the datasets, which may conflict with each other
and thus demand different ideal thread-data mappings. To achieve complete divergence reduction,
data in the same group should be fed to threads in the same wavefront, following each mapping
demanded by each branch. In fact, there are two approaches to realize TDR:

Reference Redirection (RR). RR redistributes reference indices to data arrays among threads. In
GPU programming, the reference index is often the thread ID (tid), or an arithmetic expression of
it (e.g., data[tid*2]). Therefore, it is adequate to exchange thread IDs, so that data references issued
within each wavefront are redirected to data from the same group (e.g., data[newTid]).

Data Layout Transformation (DLT). DLT reorganizes physical layout of data storage. Typically,
input data arrays are sorted according to the different data groups. Threads then access the reor-
ganized data with their original reference indices (e.g., newData[tid]).
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Fig. 1. Example of a GPU kernel with two branches, with Branch 2 dependent on computation results of

Branch 1. Data groups are labeled with different colors corresponding to branch paths, and the branches

demand different ideal thread-data mappings. Wavefront size is 4.

As pointed out by Zhang et al. [27], these two implementations are of similar computation
complexity on CPU. Nevertheless, RR often gives rise to non-consecutive reference indices and
thus memory coalescing overheads.

Memory coalescing is a GPU-specific issue. Work-items within a wavefront usually reference
consecutive memory addresses that fall into one memory segment perfectly (e.g., data[tid]). Only
one memory transaction is required for each wavefront. However, when referenced data are scat-
tered across multiple memory segments, multiple memory transactions have to take place to bring
in all the referenced memory segments. A designated hardware component will then align the ref-
erenced data into one memory segment to be accessed by the wavefront. Overhead comes with
the extra memory transactions and hardware coalescing. As a result, Data Layout Transformation
is the more widely used implementation for traditional TDR.

Drawback of on-CPU TDR is showcased in Figure 1. In the given kernel, the outer branch condi-
tion of Branch 2 is dependent on the resulting variable cond of Branch 1, and thus Branch 2 cannot
be evaluated at compile-time. Moreover, the two branches access different arrays and impose dif-
ferent groupings on their datasets, which causes the conflict between ideal mappings. From the
perspective of RR, each thread should take up different IDs for each of the two branches so as to
achieve peak efficiency.

To address the problems, traditional TDR often turns to the heuristic of data sorting [15]. On the
host-end, input data are sorted numerically, assuming that similar numerical value will produce
the same branch value. However, such an assumption does not always hold, and when there are
multiple data arrays as in Figure 1, it is unclear which array should be the sorting key. In this
article, we will demonstrate why on-GPU TDR is a more elegant solution achieving fine-grained
divergence reduction.

2.2 TDR on GPU Memory Hierarchy

GPU has a three-tier memory hierarchy that is different from CPU, which is critical to TDR.

Private Memory. Each work-item possesses a piece of the fastest exclusive private memory.
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Fig. 2. Private data are put onto shared memory, and then retrieved by new owner after on-GPU TDR.

Shared Memory. Each workgroup has shared memory that can be accessed and synchronized by
its members.

Global Memory. The largest and slowest piece of memory is global memory, which can be ac-
cessed by all work-items. However, since workgroup-level execution synchronization is too costly,
global memory data modifications are often not visible to all work-items.

After TDR, datasets need to be accessible to their new owner. However, correct exchange of data
cannot be guaranteed if two exchanging threads come from different workgroups, because in that
case global memory is the only layer that is accessible to both parties.

Therefore, on-GPU TDR should be performed via shared memory and thus within workgroups
to maximize efficiency. As shown in Figure 2, each work-item can write its private data onto shared
memory before TDR (either RR or DLT), which are retrieved by the new owner afterward. The data
in shared memory and global memory are already available to peers in the same workgroup. The
necessary communications for TDR computation can also be made via shared memory.

In a nutshell, on-GPU TDR is feasible within individual workgroups. As pointed out by Liang
et al. [15], on-CPU TDR is also often limited to the intra-workgroup scale due to use of shared
memory and logical groupings. On-GPU TDR algorithms need to be carefully designed so that the
overheads in private and shared memory will not lead to drop in GPU occupancy.

2.3 DLT vs. RR on GPU

The two TDR approaches ought to be compared in the new context of GPU runtime. Numbers in
the following discussion are obtained from prototype tests done for both approaches.

The tests are conducted on NVIDIA GTX 980 with the micro-benchmark as shown in Listing 1.
The main body of the kernel is a short if-else branch. Input array opd stores the operand, and
bc stores the branch condition for each thread. Global memory accesses are minimized to the
initial reads and the final write. To weaken the latency hiding effect arising from GPU context
switches, the total number of threads is set to a small value (1,024). With such settings, we let TDR
overhead dominate the kernel execution time. Branch conditions in bc are either 0 or 1 with equal
probabilities. Outputs are checked against a CPU version.

Data Layout Transformation. DLT needs to move data in the physical storage, and the updated
layout ought to be accessible to all work-items. Unfortunately, in most cases, branch-related data
(input arrays) are stored in the slowest global memory, where modifications are not guaranteed
visible to all. Therefore, global memory data should also be copied to shared memory. Experiments
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Listing 1. Micro-Benchmark Used in Prototype Tests.

show that if each work-item copies one integer from global memory to shared memory in a
coalesced fashion, an overhead of 0.1ms will be incurred.

Reference Redirection. RR only requires the computation of new thread IDs, and thus needs few
data movements. Prototype tests show that the overhead is around 0.01ms including TDR compu-
tation and worst-case memory coalescing.

For on-GPU TDR, memory coalescing overhead seems much smaller than that of global mem-
ory data movement. In fact, intra-workgroup TDR puts an upper-bound on the number of required
memory transactions for each wavefront. After TDR, member threads will not access data owned
by another workgroup. Thus from the perspective of a workgroup, the referenced data remain
unchanged, so no extra memory transaction is needed. Wavefronts in the same workgroup may
benefit from the caching effect, and thus the major overhead of RR is incurred by hardware coa-
lescing, which has been optimized across GPU generations. Our further study confirms that RR is
advantageous over DLT on GPU.

—RR requries only one pass of computation, because it can be realized by exchanging thread
IDs. Each thread is associated with only one ID, but it may need to access multiple arrays,
which leads to multiple rounds of data movements in DLT.

—DLT may also lead to non-coalesced memory accesses, which are found in common GPU
sorting algorithms such as Bitonic sort [20]. In addition, such algorithms run passes of
swapping on shared memory, which requires plenty of synchronization. We also tested a
prototype for DLT using Bitonic sort, and the overhead is around 0.5ms.

—RR allows better parallelism and decentralization. First of all, the need for central storage
of mapping information vanishes. New ID of one thread is worthless to another. Since TDR
becomes part of the kernel, there is also no need to transfer mapping information to another
device (e.g., from CPU to GPU in traditional TDR). On the other hand, the RR-based TDR
computation itself can be fully parallelized and decentralized. Each thread can compute its
new ID without causing data races.

Therefore, RR is adopted in our solution.
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Fig. 3. On-the-fly mechanism specialized for two-path branches. Datasets are inspected individually and

then remapped to one end of the work-item space, depending on the branch value. Parallelization is enabled

by GPU atomic instructions.

2.4 Correctness of Reference Redirection in Kernels with Dynamic Thread IDs

RR makes changes to thread IDs, which may lead to a worry that it breaks correctness for kernels
that are programmed to change thread IDs dynamically. This subsection is dedicated to relieving
such concerns.

Such kernels consist of multiple phases or iterations, each corresponding to a different task. At
the beginning of a new phase, threads obtain a new ID using atomic operation. This technique
is widely used for primitives like prefix scan. One of our evaluation benchmarks, nqueens from
OpenDwarfs [14], also utilizes dynamic thread IDs.

In both this technique and RR, the system-assigned ID is never changed. The changed entity
is actually a private memory variable that stores the current ID value. When the ID variable is
updated, the reference indices in the new phase are based on this new ID value, because it is
what distinguishes a thread from others. The one-to-one mapping between threads and data holds
within each phase, so the correctness of RR is ensured within each phase.

Performing RR in the phase that the branch belongs to will not affect the correctness of other
phases. Threads obtain new identity normally at the border of phases. It is true that the interme-
diate results or work progress by a thread in an earlier phase are picked up by a different thread
in a later phase. As long as every work progress is picked up and threads do not pick up the same
progress, the results will be correct.

In the principle of OpenCL, workgroup is the logical unit for execution and synchronization.
The correctness of kernels that properly obey programming interfaces will not be affected by the
remapping performed within workgroups.

Therefore, RR works in kernels with dynamic thread IDs, and the design of algorithms is
critical.

2.5 General Discussion of On-GPU TDR Algorithms

We believe the bottleneck of on-GPU TDR lies in memory accesses, especially because most
branch-related data are stored in global memory. The mapping decision depends on the actual
data distribution, knowing which may require a round of data traversal. Then, to locate its new
set of data, each thread may have to traverse some data again, if not all.

Nontheless, due to the prevalence of if-else syntax, a typical target branch has two divergent
paths and thus two data groups. We designed an on-the-fly mechanism that does not require prior
knowledge of the number of data belonging to each group, which is illustrated in Figure 3.

In the mechanism, datasets are inspected individually. A Group-1 set will be remapped to thread
with the current smallest ID, and a Group-2 set will be remapped to thread with the current largest
ID. Upon finishing, threads running the two paths are separated with a border on ID.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 3, Article 39. Publication date: September 2018.



39:8 H. Lin et al.

Fig. 4. Three thread-data mappings, labeled with number of memory segments referenced by each wave-

front. Apart from reducing branch divergence, stable remapping reduces memory coalescing overhead as a

heuristic.

Single-layer branch divergence can be targeted with algorithms that implement this mechanism
and handle two paths at a time, referred to as two-path algorithms. Such algorithms inspect each
dataset only once, which reduces memory accesses optimally.

Although, in principle, two-path algorithms can be applied on nested branches recursively, there
is a strong motivation for other designs. Depending on the amount of private data to be exchanged
over shared memory, the basic cost for each round of TDR may be expensive. There is a need for
algorithms that handle more than two paths in each round, or many-path algorithms. Given more
than two paths under consideration, it becomes necessary to count each group of data before TDR.

The reason is as follows. Suppose Group-3 data are added into the scenario in Figure 3, and they
are to be gathered in a region between the other two groups. Without knowing the numbers of
Group-1 and Group-2 datasets, the borders are unknown so the remapping position of Group-3
data is unclear. Every remapping decision on Group-3 data can be proved wrong by future data
sequences, scattering Group-3 data among the other two groups. This problem intensifies with the
increase of branch paths.

Therefore, in a many-path algorithm, the remapping decision should be preceded by group-wise
data counting. The count for each data group is useful not only for making TDR decisions, but also
for detecting non-divergent branches. For instance, TDR can be skipped if all data lead to the same
path. The counts should be obtained in a way that makes good use of GPU parallelism, and should
be known to all threads in the same workgroup.

In the remapping phase that follows the counting phase, we believe it is advantageous to main-
tain the original intra-group order of data, which we denote as stable remapping.

For the example in Figure 4(a), a one-to-one mapping needs to be determined after collecting
the branch value of each dataset. As stable remapping is shown in Figure 4(c), ascending refer-
ence indices to a data group are taken by consecutive threads in the ascending order of ID. Other
mappings may achieve the same divergence reduction (Figure 4(b)), but the coalescing overhead
is larger.
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Fig. 5. On the host machine, WAGNERR engine inserts TDR codes into the original GPU kernel, which is

then compiled normally. Feedback is handled if the kernel is launched multiple times.

The merit of stable remapping is twofold. On one hand, it provides a universal and fully parallel
mechanism for each thread to determine a remapping. The uniqueness of thread ID guarantees
a unique ranking among the threads and thus a correct one-to-one mapping. On the other, this
simple strategy also serves as a heuristic to reduce coalescing overhead. Data referenced by a
wavefront will not be sparsely scattered but close to each other, which may come from fewer
memory segments.

3 WORKGROUP-AUTONOMOUS GPU-NATIVE REFERENCE REDIRECTION

In this section, we present our solution framework and two on-GPU TDR algorithms.

3.1 Solution Framework

WAGNERR is a compiler-assisted runtime solution framework that performs source-to-source
transformation on GPU kernels. As shown in Figure 5, the WAGNERR engine statically analyzes
divergence in the original kernel, and generates the extended kernel by inserting on-GPU TDR
codes. At runtime, the inserted codes will react to the divergence arising from the actual input
data and achieve the best thread-data mapping for each target branch. In the case where the same
kernel is launched multiple times in a loop, runtime information can be passed back to adjust
algorithm-specific configuration. Workflow of WAGNERR engine mainly includes:

—Identify divergent branches
—Analyze dependencies among branches, and divide the kernel into dependency-free frag-

ments
—Insert on-GPU TDR codes into each branch block
—Check if memory usage leads to drop in GPU occupancy; if yes, adjust algorithm configu-

ration
—Declare variables and shared memory at the beginning of the kernel

WAGNERR minimizes the number of TDR rounds by dividing the kernel into dependency-free
fragments. Each fragment contains one or more divergent branches, but their branch conditions
only depend on computation in previous fragments. Dependency checking is carried out by locat-
ing the last modification of variables involved in branch condition computation. These branches
determine the number of branch paths within the fragment, and thus the data groups in each TDR
round. After TDR, kernel execution resumes right at the branch without redundant computation.
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To prevent drop in GPU occupancy due to on-GPU TDR, WAGNERR is cautious with overheads
in registers and shared memory. Both resources are reused in all TDR rounds for the same kernel.
Thus, the amount of shared memory to declare at the beginning of the kernel is the largest shared
memory usage among the kernel fragments.

More implementation details will be discussed after the presentation of two algorithms based on
RR. Please be reminded that the algorithms are fully parallel, and work-item is the unit of execution
for the described steps. Instructions including atomic ones are all supported by both OpenCL and
CUDA, making WAGNERR portable on state-of-the-art GPUs. Our primary design philosophy is
to minimize global memory accesses.

3.2 Head-or-Tail (HoT)

HoT is a two-path algorithm implemented with atomic operations on a pair of shared variables,
head and tail . Initially, they mark the head and tail slots of idpool , a shared array where threads
exchange their IDs. Depending on its original branch condition, each thread writes its ID to the
slot either pointed by head or tail , which are accessed and updated atomically. Regardless of the
distribution of two groups of data, eventually head and tail cross each other, and idpool is full.
After synchronization, each thread reads from idpool with its old ID as the reference index.

ALGORITHM 1: Head-or-Tail (HoT)

Input: workgroup size S , main data array data[S], and thread ID tid
Output: new ID for each thread newtid

1: Define idpool[S], head and tail in shared memory
2: head ← 0
3: tail ← S − 1
4: Intra-workgroup synchronization
5: Compute branch condition cond from data[tid]
6: if cond == true then

7: val ← tid
8: slot ← atomic_add (&head, 1)
9: else

10: val ← tid − S
11: slot ← atomic_sub (&tail , 1)
12: end if

13: idpool[slot]← val
14: Intra-workgroup synchronization
15: newtid ← idpool[tid]
16: if newtid is out of range then

17: newtid ← newtid + S
18: cond ← f alse
19: else

20: cond ← true
21: end if

Detail steps are listed in Algorithm 1. For presentation simplicity, there is only one data array
under consideration. In reality, dataset for branch condition computation may be more complex,
and the index to data arrays may not always be tid . Such information can be obtained with static
analysis, and the inserted codes can be adjusted accordingly. This applies to DGI as well.
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Fig. 6. An illustrative example of two-level parallel counting in DGI. Sub-counts are collected by three neigh-

borhoods.

First, each thread reads its original dataset and computes the branch condition cond (Line 5). If
cond is true, thread will read the value of head and write its thread ID (tid) into the corresponding
slot (Line 13). If cond is false, thread will access tail , and the value written to that slot is tid minus
S (Line 10).

The two shared variables are accessed and managed by atomic instructions, which perform
atomic modification and return the previous value of the variable. Value of head grows upward
(Line 8), and tail grows downward (Line 11). Regardless of how many data are from each group,
head minus tail will always be 1 at the completion of the algorithm.

After synchronization, each thread reads idpool[tid] (Line 15). There is no re-evaluation of
branch condition, as it can be told by whether the read value is within the range of thread ID
for this workgroup. If the value is invalid, the new ID will be that value plus S (Line 17).

In HoT, each dataset is only accessed once for TDR, minimizing global memory accesses.

3.3 Data Group Indexing (DGI)

DGI views threads with consecutive IDs as neighborhoods, and their original datasets are called
blocks. In the first phase, each neighborhood gathers the group-wise data counts of its block,
and the results are shared via shared memory. With such information, each thread first deter-
mines which group its new data should belong to, and its own ranking adhering to stable remap-

ping. Then the shared sub-count array is used as an index to quickly locate the block that carries
the data with the correponding rank. From the perspective of each thread, full data traversal is
avoided as the search space is narrowed down to one and only one block. Detail steps are listed in
Algorithm 2.

3.3.1 Counting Phase. Two-level parallel counting is adopted as shown in Figure 6. For sim-
plicity, the one array is directly labeled with branch conditions, distinguishing two data groups.
N0, N1, and N2 are three neighborhood-block pairs.

To collect group-wise data counts from each block, each neighborhood shares a set of P counters,
where P is the number of divergent paths and also the number of data groups. For better locality
in later computation, counters for the same data group are located consecutively in the storage
layout (e.g., 1-count and 0-count in Figure 6).

In the counting phase, only one data access is made by each thread (Line 2 in Algorithm 2).
Each neighborhood evaluates the branch conditions for the block, and uses atomic operation to
increment the counters accordingly (Line 4). After intra-workgroup synchronization, group-wise
total counts are obtained by each work-item, summing up the counters individually to avoid extra
synchronization (Line 6).

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 3, Article 39. Publication date: September 2018.



39:12 H. Lin et al.

ALGORITHM 2: Data Group Indexing (DGI)

Input: workgroup size S , main data array data[S], thread ID tid , number of paths P and neighbor-
ing factor N

Output: new ID for each thread newtid
1: Define array counter [P ∗ S/N ] in shared memory and initialize to 0
2: Evaluate branch condition with data[tid] and determine the path p
3: Neighborhood ID: nid ← tid/N
4: atomic_inc (counter + p ∗ S/N + nid )
5: Intra-workgroup synchronization
6: Every thread computes the number of sets in each data group {n1,n2, . . . ,np−1}
7: Obtain nativeid using system function
8: if nativeid < n1 then

9: newдroup ← 1
10: rank ← tid
11: else if nativeid < n1 + n2 then

12: newдroup ← 2
13: rank ← nativeid − n1

14: . . .
15: else

16: newдroup ← P
17: rank ← nativeid − n1 − n2 − · · · − nP−1

18: end if

19: mark,blockid ← 0
20: while rank ≥ mark do

21: mark ←mark + counters[newдroup ∗ S/N + blockid]
22: blockid ← blockid + 1
23: end while

24: newtid ←min(blockid ∗ N − 1, S − 1)
25: while mark � rank do

26: Determine the group д where data[newtid] belongs
27: if д = newдroup then

28: mark ←mark − 1
29: end if

30: newtid ← newtid − 1
31: end while

32: newtid ← newtid + 1

3.3.2 Remapping Phase.

DGI Implements Stable Remapping. Although RR exchanges IDs among threads, the system-
generated ID for each thread is never modified, which we denote as native ID (Line 7). Threads in
the same wavefront have consecutive native IDs, and we do not assume the thread ID is equal to
the native one at the start of the algorithm.

From the first P − 1 group-wise total counts, DGI determines P ranges of consective native IDs
corresponding to the data groups. The starting ID of each range is defined in Equation (1):

ID (p) =

{
ID (p − 1) + np−1 p ≥ 2
0 p = 1

. (1)
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Each thread compares its native ID with the starting IDs, and determines its target group, the
data group that it should be remapped to. Its rank among threads in the same range is computed
as native ID minus starting ID. For the example in Figure 6, the total 1-count is 4. Threads with
native IDs smaller than 4 will be remapped to branch condition 1, and the others to 0.

Then, each thread looks up the sub-counts for its target group until the running sum (stored as
mark) exceeds rank (Lines 18–21). The block that it stops at must contain its target dataset.

For example, the thread whose native ID is 7 should be remapped to the fourth dataset that
gives branch condition 0. From the sub-count of N1, we know that the block only contains two
target-group data, so it should be removed from the search space.

Eventually each thread locates the block that carries its target dataset, and traverses it with
descending iterators. Every time it encounters a target-group dataset, it decrements mark . When
mark equals rank , new data and ID for the thread are determined.

Thanks to the indexing design, the data search space is narrowed down to one block (Lines 25–
31).

3.3.3 Neighboring Factor. Neighboring factor N represents the number of threads in each
neighborhood, and there is a tradeoff regarding its value.

Generally speaking, a smaller N requires more shared memory, but leads to less conflicts of
atomic increments and a narrower search space. Counters become more fine-grained and provide
more information to support the detection of non-divergent wavefronts.

Larger N brings the opposite effects. For example, in the extreme case where N equals work-
group size, there is only one counter for each data group. Although total counts are directly ob-
tained, conflicts of atomic increments are maximized, and the search space is never narrowed
down.

3.4 Implementation Details

WAGNERR engine is essentially a code parser. Since OpenCL uses subset of C language syntax,
we generated a pragma-supported parser with ANTLR [18] using context-free grammar of C for
this work. The engine may also be directly incorporated into GPU compilers.

Our engine by default omits branches that depend on thread ID only. Since GPU programmers
have been avoiding branch usage, available applications are usually non-divergent [15]. The most
common branch is the one that checks whether the thread ID is out of the problem space, which is
not truely divergent because the ID is consecutive within each wavefront. Pragmas are available
for the user or profiling system to assist divergence identification.

For kernels with target branches, our engine analyzes the current register and shared memory
usage. With the input of GPU parameters, WAGNERR computes the budget of registers and shared
memory that will not lead to drop in GPU occupancy. On-GPU TDR configurations are adjusted as
described below. In the rare case of an extremely-tight budget, the original kernel will be launched.

First, selection of algorithm is based on characteristics summarized in Table 1.
In terms of shared memory, HoT requires one integer for each thread ID, and two more for the

workgroup (head and tail). That is a bit higher than four bytes per thread. Since intra-workgroup
IDs cover a small range, 16-bit short data type is used if the budget on shared memory is tight,
cutting usage to two bytes per thread but losing some speed as shared memory access is optimized
for 32-bit types. For DGI, the overhead is usually smaller than two bytes per thread, as the number
of paths is usually smaller than half of the neighboring factor. DGI cannot use 16-bit type for
shared counters because short does not support atomic instructions. Last but not least, variables
like array indices that are computed from ID without global memory accesses do not need to be
shared explicitly.
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Table 1. Characteristics of Two On-GPU TDR Algorithms

Algorithm HoT DGI

Many-Path? No Yes
Critical Memory Accesses2 O(m) O(m∗log n)
Shared Memory Overhead3 O(n) O(p∗log n)

Largest Register Overhead per Thread (Bytes) 4 4+4p

In terms of registers, HoT requires one to store the intra-workgroup ID, if there is not one al-
ready. For DGI, we sacrifice readability and explicitly reuse variables as much as possible. The peak
register usage is for counting threads going onto each path. For p paths, we compute the first p − 1
counts that are actually used in the remapping decision, where two more registers are used for
storing the new data group for each thread and its rank. Although compilers may further optimize
by reusing registers in the original kernel, our engine adds these maximum numbers to compute
new register usage for safety. WAGNERR supports the intake of runtime statistics especially re-
lated to actual occupancy to further optimize.

Adhering to the strategy of minimizing TDR rounds, our engine will initially select HoT for
two-path kernel fragments, and DGI with 16 as neighboring factor otherwise. WAGNERR makes
two-way adjustments until the budget is met. If there is register shortage, the number of paths for
each round of DGI is reduced or the algorithm is eventually switched to HoT. If shared memory
is not enough, our engine locates the bottleneck round, and then adjusts by changing the data
type for HoT, switching from HoT to DGI, or doubling the neighboring factor of DGI. A TDR round
is cancelled if it remains the bottleneck when neighboring factor has increased to 64, which is
probably due to a large amount of private data to be exchanged. Pragmas are available to overwrite
the choice of algorithm.

One more technique is worth mentioning. Since both algorithms use atomic instructions, they
can benefit from warp-aggregated atomics [1] if implemented in CUDA, but it is not supported for
OpenCL.

4 EVALUATION

In this section, we present the evaluation of our solution on both NVIDIA and AMD GPUs. The
speedups on each GPU are computed against the execution time of original kernels on that GPU.

4.1 Methodology

All the tested benchmarks are written in OpenCL so as to run on all four GPU cards listed in
Table 2. Below we refer to them with acronyms. They are all hosted by Intel Core i7-4790 CPUs.

Besides speedup and memory statistics, Control Flow Efficiency (CFE) is an ideal metric directly
assessing divergence severeness. CFE is defined as the percentage of thread instructions that are
executed and not masked off due to control flow divergence. Unfortunately, it is in general diffi-
cult to collect runtime statistics on both platforms for OpenCL. AMD APP SDK does not provide
any branch-related statistics. Although CUDA toolkit comes with an OpenCL profiler, it has been
disabled from CUDA 8.0 onward. The remaining CUDA 7.5 profiler does not directly provide CFE
for OpenCL, but there is a counter not_predicated_off_thread_inst_executed for the N980 card. We

2Accesses to condition-related data, which are usually located in global memory. m is the number of input arrays, while n

is workgroup size.
3p is the number of paths under consideration.
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Table 2. GPU Hardware Details

GPU Card NVIDIA GTX 980 NVIDIA GTX 1080 AMD R9 290X AMD VEGA 64

Acronym N980 N1080 A9 A64

Wavefront Size 32 32 64 64

Architecture Maxwell Pascal GCN 2.0 GCN 5.0

Register (KB per CU/SM) 512 256 256 256

Shared Memory (KB per CU/SM) 96 96 64 64

Max Resident Threads per CU/SM 2048 2048 2560 2560

GPU Core Count 2048 2560 2816 4096

Peak Clock (MHz) 1216 1733 1000 1546

GFLOPS 4612 8873 5632 12583

Memory Bus (bit) 256 256 512 2048

Memory Clock (MHz) 1753 1607 1250 945

Bandwith (GB/s) 224 320 320 483.8

OpenCL Driver CUDA 7.5 CUDA 8.0 APP SDK 3.0 APP SDK 3.0

Operating System Ubuntu 16.04 Ubuntu 16.04 Windows 10 Windows 10

Table 3. Benchmark Information on Resource Usage, Divergence, and Profiled Resource Overheads

Benchmark BP HISTO LBM PB SAD MG NQ CVP GDT POL

Workgroup Size 192 256 256 256 61 256 256 256 256 256

Register per Thread (Bytes) 20 56 80 28 96 52 44 68 48 64

Shared Memory (SHM) per Thread (Bytes) 0 88 0 0 0 0 0 16 0 4

# of Branch Layers 1 1 1 1 1 2 5 2 3 5

Longest Path (Lines) 1 25 71 1 44 24 174 13 10 27

Global Memory Accesses in Branch 3 4 0 3 2 22 5 9 3 3

CFE on N980 88.6% 95.7% 86.4% 83.4% 94.4% 48.7% 39.4% 25.9% 19.8% 40.1%

Largest Register Overhead (Bytes) 12 8 8 12 4 16 16 16 12 16

SHM Overhead due to Private Data 0 0 0 0 0 0 20 0 16 0

Largest SHM Overhead due to Algorithm Four bytes per thread (HoT)

calculate CFE by Equation (2), where 32 is the wavefront size for NVIDIA:

CFE =
not_predicated_off_thread_inst_executed

inst_executed × 32
. (2)

Three stages of evaluation are conducted on all four GPUs.
In Stage 1, a micro-benchmark is tested to reveal any systematic flaw in the two TDR algorithms.
In Stage 2, third-party real-life kernels are collected from open-source applications. We use CFE

profiling to assist WAGNERR engine locate kernels with branches and actual divergence.
In Stage 3, we implement three divergent benchmarks from the GPGPU frontier (computer vi-

sion, algorithmic trading and data analytics), each with a different memory access pattern. Our
solution is compared against the traditional on-CPU TDR directly.

Table 3 lists information of benchmarks used in Stages 2 and 3. The listed overheads are the
largest value recorded on the four GPUs. Among the benchmarks, only HISTO is forced to a lower

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 3, Article 39. Publication date: September 2018.



39:16 H. Lin et al.

occupancy by large shared memory usage. Thanks to the small overheads, WAGNERR does not
lead to occupancy drop in all cases. The information will be revisited in later discussions.

4.2 Micro-Benchmark

The main body of the benchmark kernel is a branch, with a configurable number of paths and min-
imum codes outside. Branch condition of each thread is directly generated by the host program
with equal probabilities. The kernel is compute-intensive, and the divergent paths are permuta-
tions of the same set of instructions.

With such an ideal setting, the theoretical slowdown due to divergence equals the number of
divergent paths. We apply both on-GPU TDR algorithms to see if they can speed up the execution
by this factor. Some key findings are listed below, which are also confirmed in Stages 2 and 3.

HoT. Extra experiments are conducted for HoT out of the concern that shared variable head and
tail are atomically accessed by all threads, which has a chance of becoming the bottleneck of TDR.

Inspired by Thread Block Compaction (TBC) [9], we attempt to reduce the number of atomic
operations by dividing each workgroup into a few sub-groups and apply HoT on each of them.
Each thread determines its sub-group by the modulo of its native ID. Similar to TBC, such a design
does not guarantee the ideal thread-data mapping.

We tested HoT and the sub-group design with various modulo bases, but the atomic operation
overhead seemed dominated by other overhead (e.g., synchronization) and the TDR benefits. With
a two-path branch, HoT achieved a stable speedup of 1.997, while the speedup of the sub-group
design was highly fluctuating around 1.5. It seems safe to conclude that HoT suits state-of-the-art
GPU architecture well, let alone that it will benefit from warp-aggregated atomics in CUDA.

DGI. In various cases, neighboring factor N between 4 and 64 gives similar speedups and CFE.
Such a range enables more flexibility in adjusting shared memory overhead. Empirically, 16 is a
good starting point for performance tuning, which is also the default value in our current WAGN-
ERR engine. If a kernel is launched multiple times, the sub-count array can be output to the host,
so as to assist dynamic adjustment of N .

CFE. CFE proves to be a good estimator of performance at least for compute-intensive kernels.
Theoretical speedup is achieved with both algorithms. For an if-else branch, average speedup is
1.995, and CFE rises from 50.0% to 99.7%. For a two-layer nested branch, average speedup is 3.994,
and CFE rises from 25.0% to 99.8%.

If branch divergence is completely eliminated and, given the same total workload, CFE will
approach 100% as no instruction is wasteful. In fact, software solutions may never totally eliminate
real-life divergence due to architectural factors. For example, as long as the number of work-items
running one of the paths is not divisible by the wavefront size, there must still be a divergent
wavefront after TDR. However, CFE still reflects the proportion and severeness of divergence in a
kernel. In Stages 2 and 3, we estimate the potential speedup as 1 over CFE of the original kernel.

4.3 Third-Party Benchmarks

Here we present five benchmarks with single-layer branches, and two with multi-layer ones.

4.3.1 Single-Layer Divergence. The five benchmarks with single-layer branches are:

—BackProjection (BP) from the BEMAP benchmark suite [2]
—PoolingBackward (PB) from Caffe [13]
—HISTO, LBM, SAD from the Parboil benchmark suite [24]
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Table 4. CFE and Speedups of Third-Party Single-Layer Divergence on N980

Benchmark BP HISTO LBM PB SAD

Original CFE 88.6% 95.7% 86.4% 83.4% 94.4%
Potential Speedup (1/CFE) 1.129 1.045 1.157 1.200 1.059

CFE after DGI 95.3% 98.0% 95.8% 88.3% 97.5%
Speedup after DGI 1.064 1.024 1.109 1.048 1.042

CFE after HoT 98.2% 98.9% 96.3% 94.4% 98.4%
Speedup after HoT 1.105 1.021 1.115 1.124 1.060

Fig. 7. Performance improvement (speedup minus 1) on third-party benchmarks with single-layer branches.

The results are displayed in Table 4 and Figure 7. As expected, HoT is more effective with
single-layer branches, giving higher speedup and CFE. To evaluate the completeness of divergence
elimination, we use performance improvement (PI, speedup minus 1) to avoid being mislead by
the non-negativity of speedup. As results on N980 are plotted in Figure 7(a), DGI averages 49% of
the potential PI, while HoT averages 74%. With at most two paths under consideration, HoT is a
better option given that it minimizes global memory accesses. Differences in the final CFE for the
two algorithms can be explained by the fact that more branches are used in the steps of DGI. In

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 3, Article 39. Publication date: September 2018.



39:18 H. Lin et al.

Fig. 8. Third-party multi-layer divergence under WAGNERR’s impact. Percentage is CFE, with the baseline

number next to the label of N980.

a way, TDR is migrating divergence from long branches to the short ones involved in mapping
calculation.

Individual benchmarks are introduced as follows.

BP. BackProjection deals with recovering an image using the projection parameters.

HISTO. Histogram accumulates the number of occurrences in the input for each output value.
The only case where HoT is slower than DGI happens for HISTO on N980, which may root in

the frequent accesses to shared memory. HoT incurs a bigger overhead under heavy contention.

LBM. Lattice-Boltzman Method is a partial differential equation solver in fluid dynamics.

PB. PoolingBackward is the backward kernel of pooling layer in the DNN model of deep learning.

SAD. SAD stands for Sum of Absolute Differences, which is used in video compressing to deter-
mine similarity between video frames.

This kernel features a workgroup size of 61. Since AMD has a wavefront size of 64, no matter
how threads and data are remapped, the sole wavefront in each workgroup will still be divergent.
This is an extreme case where our solution should not be considered. As shown in Figure 7(c) and
(d), the performance loss is less than 2% on both AMD GPUs.

4.3.2 Multi-Layer Divergence. MG from OpenCL NPB [22] and nqueens (NQ) from OpenDwarfs
[14] are found with multi-layer divergence.

Results are shown in Figure 8. When it comes to branches with many paths, DGI conserves TDR
rounds and thus incurs smaller overhead in general. The two benchmarks are introduced below.

MG. MG is a Multi-Grid solver for computing a three-dimensional potential field. Speedups
greater than 1.5 are achieved in all cases, and CFE on N980 is improved to over 90% from 48.7%.

NQ. This N-Queens problem solver has the most complex and divergent OpenCL kernel that we
found. Threads look for solutions in parallel, and a new ID is fetched atomically when one search-
ing task is done. Due to the relatively low solution density in the total search space, divergence is
less severe than it seems, and the measured CFE on N980 is 39.4%. On that card, the computation
speed is estimated to be around 1500 GFLOPS, which is more efficient than running on CPU.

NQ has a giant five-layer branch. Unlike MG, there are computation dependencies between
branches in NQ, which requires more rounds of TDR. However, the kernel keeps many private
data, which need to be exchanged via shared memory and thus make each round of TDR expensive.
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Fig. 9. Execution time of GPGPU frontier benchmarks on 4 GPUs. Version G uses on-GPU TDR (WAGNERR),

while Version C uses on-CPU TDR.

Given that some paths are rarely taken, we manually disabled TDR for the innermost layer, which
boosts performance improvement by an average factor of 1.5. This is partially why the final CFE
falls relatively short from 100%.

4.4 Divergent GPGPU Frontier Benchmarks

In Stage 3, we implemented GPGPU frontier benchmarks representing three areas, including com-
puter vision, algorithmic trading, and data analytics. They display different memory access pat-
terns. Every benchmark has a baseline version, a WAGNERR-processed version, and an on-CPU
TDR (DLT) version.

The results are shown in Figure 9. Combining GPU and CPU time, on-GPU TDR is more effective
than the traditional solution in all cases. WAGNERR also incurs a smaller CPU overhead, especially
for memory-intensive applications, because on-CPU TDR has to process and rearrange input data
every time. Since these kernels all have complex branch nests, WAGNERR selects DGI for them,
which has been confirmed to be the best setting. Individual benchmarks are examined below.

4.4.1 CVP. CVP is a prediction module for computer vision [19] with a baseline CFE of 25.9%. It
represents a memory access pattern where a small amount of data (a tree structure) are frequently
accessed by all the work-items.
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Due to such an access pattern and compile-time unknown branch conditions, on-CPU TDR
can only handle the outmost layer of branch divergence, resulting in longer GPU time than the
WAGNERR-processed version.

Final average speedup is 1.9 for on-GPU TDR (CFE 60.0%), and 1.6 for on-CPU TDR (CFE 42.1%).

4.4.2 GDT. GDT is a genetic-programmed decision tree for financial forecasting and algorith-
mic trading [4] with a baseline CFE of 19.8%. In the GPU kernel, every work-item corresponds
to a huge amount of daily data collected from a two-year period. Therefore, GDT represents the
big-data access pattern with a small mixture of non-coalesced memory accesses.

Fortunately, for on-CPU TDR, the sorting heuristic can be applied because we are able to identify
a major sorting key among hundreds of different data items. The resulting thread-data mapping is
highly similar to the one realized by on-GPU TDR. However, rearranging data on CPU takes a very
long time even with eight computing threads. For GDT, on-CPU TDR overhead will be difficult to
hide.

Final average speedup is 3.0 for on-GPU TDR (CFE 64.8%), and 1.6 for on-CPU TDR (CFE 66.0%).

4.4.3 POL. POL is an original application that assists tax policy decision with a baseline CFE of
40.1%. With a database on tax-related information from thousands of households, POL reveals how
tax statistics react to a given change in tax policy. It represents the current mainstream memory
access pattern, with coalesced accesses to a medium volume of data.

The sorting heuristic is applied again for on-CPU TDR, and works well to our surprise. It can
be explained by the problem nature, because certain patterns exist for households from different
social classes. The resulting thread-data mapping is also similar to the one realized by on-GPU
TDR.

Final average speedup is 1.7 for on-GPU TDR (CFE 76.3%), and 1.6 for on-CPU TDR (CFE 80.0%).

4.5 Analysis on GPU Architectural Factors

Here we present some analysis on architectural factors with additional statistics.

4.5.1 Slow Global Memory. The existence of global memory access is a good static indicator
of severe divergence. Branch paths in BP and PB are very short (1 line), but the global memory
accesses amplify the divergence, as they cost thousands of clock cycles.

4.5.2 Impact on Memory Performance. Although RR is notorious for causing non-coalesced
memory accesses, it is confirmed that on-GPU TDR actually has a postive overall impact on mem-
ory performance. Divergent branch paths have different execution logics and issue different mem-
ory accesses. By bringing threads running the same paths together, wavefronts run fewer paths and
thus issue fewer memory access. For the nine benchmarks with global memory accesses, L2-cache
misses are reduced by 8% (70 misses per 1,000 accesses) on average on the cards with profilers
(N980, A9, and A64).

4.5.3 Time Overhead of On-GPU TDR. For GDT and POL, both on-GPU and on-CPU TDR re-
sult in similar thread-data mappings, which gives us a better sense of on-GPU TDR time overhead.
Since the on-CPU TDR version also comes with the memory benefit, we estimate on-GPU TDR
time overhead as their difference in GPU time. It comprises TDR computation and memory co-
alescing. Instructions introduced by on-GPU TDR rarely involve global memory, so they can be
well hidden by the fast native GPU context switching. As for memory coalescing, it is limited to
the intra-workgroup scale and optimized in each GPU generation. Therefore, we believe the time
overhead should be fairly stable, and will not exceed the value in the case of GDT given that GDT
has a huge data volume. Conservatively speaking, the overhead should be less than 0.05ms for any
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round of on-GPU TDR on state-of-the-art GPUs. This serves as a small threshold for path execu-
tion time, which confirms that branches with global memory accesses are likely to benefit from
on-GPU TDR.

4.5.4 GPU Generation. It can be observed that on-GPU TDR works better for newer gener-
ations. In hardware development, GPU vendors generally optimize memory coalescing, shared
memory, atomic instruction, and so on. The overhead of on-GPU TDR is thus reduced in general.

However, on-GPU TDR speedups are not improved much from A9 to A64 for HISTO, LBM, MG,
and GDT, which are all memory-intensive applications. As shown in Table 2, A64 has a higher
memory bandwidth, but its memory clock is actually slower. For other benchmarks with smaller
data volume, A64 does not have a clear advantage in memory accesses. When it comes to memory-
intensive applications, the advantage in memory bandwidth cuts down memory access time, so the
TDR overhead is not hidden as well as on A9.

4.5.5 NVIDIA vs. AMD. TDR speedup is generally higher on the AMD platform, and there is
an especially huge difference for NQ.

We believe the main reason is the difference in wavefront size. Given the same kernel and data
input, CFE is always lower on AMD, and thus promises higher speedups. Consider a workgroup
of 256 threads, where the 2 work-items at the two ends take a different path from the other 254.
On NVIDIA, 25% of the wavefronts are divergent, but on AMD the percentage is 50%. This effect
is amplified by a long rarely taken path in NQ that leads to a lot of masked-off instructions.

Readers may be aware that the CU/SM width is 16 on both platforms as discussed in [26]. Every
instruction is actually executed four times on AMD or twice on NVIDIA for the wavefront-splits.
However, that does not mean only divergent 16-wide splits need to execute multiple branch paths.
Due to pipelining concerns, extra paths are still executed by non-divergent splits. This has been
verified with a micro-benchmark, and is also supported by the result of SAD on A9 and A64 in
Stage 2.

4.5.6 Impact on Energy Consumption. GPU boost mode is not activated for the experiments, so
the power is held steady. In addition, a drop in bank conflicts is observed, implying less activity by
the memory components. As a pure software solution, on-GPU TDR reduces computation wastage
and shortens the kernel execution time, which helps reduce energy consumption as well.

5 RELATED WORK

Branch divergence solutions for GPU can be classified into two categories: hardware and software.
Fung et al. [10] were the first to address this problem, and laid the foundation for hardware

approaches. A series of hardware solutions followed their idea of compacting work-items running
the same path into new wavefronts [9, 21, 26]. Hardware solutions can reduce branch divergence
with smaller overhead in time, but the integration of new hardware components may affect energy
consumption and computation pipeline, which cannot be turned off for non-divergent kernels.

Zhang et al. [27] started to systematically perform on-CPU TDR. They proposed to build a CPU-
GPU pipeline that hides the TDR overheads. In their later work [28], they also considered the
problem of irregular memory accesses, and designed compile-time methods for computing the
best thread-data mapping.

We did not fully re-implement their work because traditional sorting practices are still the core of
their solution. The novel pipelining technique can also be applied on our solution to hide source-to-
source transformations. We have a weaker motivation because our transformations are not affected
by different inputs like in the case of on-CPU TDR. Assuming CPU overheads are completely
hidden by the pipeline, a rough comparison can be made by only looking at the GPU execution
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time. However, for memory-intensive applications like GDT, the CPU-GPU pipeline will be hard
to configure, and the old mapping may have to be used.

On-CPU TDR cannot be directly used on branches with compile-time unknown conditions, and
multiple branches in the same kernel may require conflicting mappings. Online inspection can
be utilized at the cost of kernel-splitting, which increases management complexity and memory
traffic. As a result, on-CPU TDR often relies on heuristics such as sorting input data according to
numerical values, which may sometimes introduce more divergence or break the logical thread
groupings. To pinpoint and tackle true divergence, Liang et al. proposed to incorporate profiling
runs and their performance model [15], which is not flexible with different inputs.

There are also hardware and software solutions that aim to increase divergence tolerance, rather
than to eliminate source of the problem. Meng et al. [16] demonstrated how wavefront subdivision
helps increase divergence tolerance, and a similar principle called independent thread scheduling

has been incorporated into the NVIDIA Volta architecture. With this new hardware design, branch
divergence does not disappear because still only one instruction is allowed at any time. In fact, our
solution can benefit from the more flexible sub-workgroup synchronization, especially when our
algorithms are applied on nested branches. Software solutions [6, 11] rely on compiler techniques
to move shared instructions out of divergent paths. These approaches are compatible and comple-
mentary to ours.

6 CONCLUSION

In this article, we propose on-GPU TDR as a novel compiler-assisted runtime solution for fine-
grained branch divergence reduction. Unlike traditional TDR solutions, our on-GPU TDR algo-
rithms can be directly applied on branches whose conditions are unknown at compile-time. Each
target branch in a kernel can be treated separately, changing the paradigm of TDR. Three stages
of evaluation are conducted on two generations of GPUs from both NVIDIA and AMD, and some
key findings are listed below.

—For the micro-benchmark, both DGI and HoT achieved theoretical speedups on all four
GPUs. We calculated control flow efficiency from N980 runtime statistics, which turned
out to be a good indicator of divergence severeness and potential speedup.

—For the seven third-party divergent benchmarks, WAGNERR averaged 71% of the poten-
tial performance improvement. As expected, overhead of HoT was smaller for two-path
branches, while DGI is more suitable for many-path branches.

—We implemented GPGPU frontier benchmarks from three areas, each with a different mem-
ory access pattern. The WAGNERR-processed versions were faster than the on-CPU TDR
versions in all cases.

—It was found that on-GPU TDR has an overall positive impact on GPU memory performance,
reducing L2-cache misses by 8% on average.

—Comparing the GPU time of WAGNERR-processed kernels and the on-CPU TDR version,
we estimated the time overhead of each round of on-GPU TDR to be less than 0.05ms.

—Development of GPU hardware would continue to reduce on-GPU TDR overhead. Espe-
cially, the independent thread scheduling in NVIDIA Volta architecture would allow more
flexible application of on-GPU TDR.

In the future, we will implement a parser for CUDA or incorporate WAGNERR into auto-
parallelizers. With the extra disclosed runtime statistics from CUDA and further study on hard-
ware specifications, WAGNERR can be optimized in greater details, and possibly for different GPU
models. Divergence identification will rely less on CFE profiling. We will also optimize the on-GPU
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TDR algorithms and focus on the recursion scenario. We hope on-GPU TDR can facilitate more
divergent applications on the GPU platform.
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