
A Power Modelling Approach for Many-core
Architectures

Zhiquan Lai#, King Tin Lam*, Cho-Li Wang*, Jinshu Su#
#National Key Laboratory of Parallel and Distributed Processing (PDL), Changsha, China

#College of Computer, National University of Defense Technology, Changsha, China
*Department of Computer Science, The University of Hong Kong, Hong Kong, China

{zqlai, sjs}@nudt.edu.cn, {ktlam, clwang}@cs.hku.hk

Abstract—Many-core architectures are playing an important role
in the HPC systems. But they are giving high performance at the
cost of a great electrical power consumption. On Tianhe-2
supercomputer, the Xeon Phi many-core processors contribute
nearly 80% of the system power. Power models are important to
guide the design of dynamic power management (DPM)
algorithms by predicting the power consumption with respect to
power states and program execution patterns. However, the
complexity of many-core hardware design makes power
modelling be a challenging work. These concerns lead us to try a
power modelling approach for many-core architectures based on
the performance monitoring counters (PMC). The key insight is
based on a large number of microbenchmarks on a real many-
core platform, where we find some essential rules determining
the chip power. Following the modelling approach, we develop
an accurate chip power model for the Intel SCC many-core chip.
Experimental comparison shows that our model is much more
accurate than others.

Keywords—many-core; power management; power modelling;
model

I. INTRODUCTION
Energy efficiency is one of the most challenging problems

in the academia and industry of high performance computing
(HPC). Many-core architectures are playing an important role
in HPC systems, but their delivering of the high performance
is also consuming a great portion of electricity in the
meantime. On Tianhe-2 supercomputer, the fastest
supercomputer in the latest Top500 list [1], the Xeon Phi
many-core processors contribute nearly 80% of the system
power. Power management of many-core chips becomes the
urgency to achieve energy efficiency of the whole HPC
systems.

Power models are important to guide the design of dynamic
power management (DPM) algorithms by predicting the
power consumption with respect to the power states (i.e.
voltage and frequency settings) and program execution
patterns. There are many prior works to model the power for
single core or multi-core chips [2, 3]. However, on many-core
architectures, the complexity of hardware designs makes
power modelling be a challenging work. Apart from the a
large number of CPU cores, many-core chips usually have
complex network on chip (NoC), multiple memory controllers,
on-chip caches and some other units [4]. These all increase the

complexity of the modelling work.
There are few of work modelling the power of many-core

chips. Bartolini et al. [5] evaluated the impact of DVFS on the
performance and power consumption of MPI applications.
However, their study only presented the power/performance
results in different power settings rather than proposing any
power model. Sadri et al. [6] proposed a power model for
thermal management on the Intel SCC, but they did not take
account of the voltage. The power model proposed by
Cichowski et al. [7] did not consider the impact of application
pattern to the power consumption of the chip. However, as we
will reveal, the voltage and the program pattern are both the
key factors determining the chip power.

These concerns lead us to develop a power modelling
approach for many-core architectures with consideration of
more factors as possible. The key insight is based on a large
number of microbenchmarks on the Intel SCC platform which
we design to test the chip power of the many-core
architectures. The main contributions of this work are as
follows:

— We develop a power modelling approach for many-core
architectures based on the performance monitoring
counters (PMC). Following this approach, we derive a
chip model of the Intel SCC many-core chip, with
comprehensive consideration of voltage/frequency settings
and the program execution patterns.

— We conduct experiments on the Intel SCC to compare our
model with others. The results show that our model is
more accurate than other models to predict the chip power.

The remainder of this paper is organized as follows.
Section II describes our many-core chip power model and the
process to specify to parameters of the model for the Intel
SCC. Section III presents the experimental evaluation,
including the results and analysis. Finally, we conclude the
paper in Section IV.

II. POWER MODELLING

We will describe our chip power model of many-core
architectures. Then show how we specify the parameters of
the model on the Intel SCC platform.

A. Power Model
The many-core architectures usually have much more

complex hardware design than single core or multi-core chips.
Apart from the a large number of CPU cores, many-core chips
have network on chip (NoC), multiple memory controllers,
on-chip caches and some other units. Thus, the power of chip
is made up with the power of CPU cores, the on-chip mesh
network (NoC) etc.

First of all, Let us consider the main power contributor, the
CPU cores. The power of a single core consists of two parts,
namely static power and dynamic power. Static power
depends on the voltage and the CPU’s thermal design power
(TDP). As described in (1), dynamic core power
(CorePowerdyn(v,f)) has a proportional relationship with
frequency (f), squared supply voltage (v), and the activity
factor (A). The activity factor is not usually a constant
coefficient, but has a functional relationship with the program
patterns. To simplify the power model, we assume the static
core power, denoted by staCorePower is a constant.

� �
2

(,)

(,)

dyn sta

dyn

CorePower CorePower v f CorePower

CorePower v f A f v

� �

� � �
� ��	�

For a certain program, we assume that the activity factor A
is also a constant. So, we can estimate the power of core when
it is used to run a program (or a phase of a program) in any
voltage/frequency settings.

For many-core chips, the chip power is made up with the
power of cores and the NoC etc. As in current many-core
design, dynamic power state tuning of the NoC mesh network
is not supported by the current SCC, we assume the power of
the mesh network and other units except CPU cores, denoted
by NocPower, is a constant. The formula of total chip power
can be expressed as

�
0

0 0

2

0 0

()

((,)) ()

() (()).

Ncore
i

i

N Ncore core
i i

dyn sta
i i

N Ncore core
i

i i i sta
i i

ChipPower

CorePower NocPower

CorePower v f CorePower NocPower

A f v CorePower NocPower

�

� �

� �

� �

� � �

� � � � �

���	�

Let
0

()
Ncore

i
sta

i
sta CorePower NocPowerPower

�

��
 , the above

formula can be expressed as

� 2

1
() ,

Ncore

i i i sta
i

ChipPower A f v Power
�

� � � �
 � ��	�

where the Ai denotes the activity factor of the program on core
i. As some prior works revealed, power dissipation is strongly
correlated to Instructions per Cycle (IPC) [6, 8, 9]. Thus we

assume the activity factor of core i Ai is a function of IPC at a
specific power setting (assuming it’s 800MHz), and name the
function as ()ig IPC .

The next work of power modelling, which is the important
work, is to specify the parameters of Ai and Powersta.

B. Parameter Specifying
We are going to describe how to specify the parameters of

the model on the Intel SCC platform. The Intel SCC is an 48
cores experimental many-core chip with fine-grained DVFS
mechanism [10]. The IPC pattern of each core can be derived
by reading the PMC counters provided by the CPU core
hardware. The real chip power also can be measured using the
mechanism provided by the Intel SCC platform [11].

In order to derive Powersta and the function of ()ig IPC ,
we conducted some micro-benchmarking by designing two
programs, INT and FP. INT performs arithmetical computing
on an array of integer variables while FP does so on an array
of float-point variables. The sizes of the two arrays can be
configured easily. We use these two different programs with
different problem sizes to produce different IPC patterns.
They are launched using 15 V/F settings and seven problem
sizes as shown in TABLE I . All these programs with different
settings are launched on the 48 cores of the Intel SCC (all the
cores perform the same computation). Thus, we have
2×15×7=210 experimental results plotted as Fig. 1 .

TABLE I BENCHMARK SETTING TO DETERMINE POWER MODEL

Program
INT FP

Problem Size
(# of 4B Integers or 8B Doubles)

4 1K 4K 16K 64K 256K 1024K
Frequency/Voltage

(MHz/V)
800/1.1 533/0.9 400/0.8 320/0.8 267/0.8
229/0.8 200/0.8 178/0.8 160/0.8 145/0.8
133/0.8 123/0.8 114/0.8 107/0.8 100/0.8

We make use of a trick here to simplify the chip power

function for specifying the parameters of g(IPCi) and Powersta.
As we cannot measure the power of each core directly, we
launch the same program on all the 48 cores of the SCC, and
set the V/F levels of all cores to be the same. Thus, the
activity factors of each program on all the cores are the same,
denoted by g(IPC). So the ChipPower can be formulated as

� 2() .core staChipPower N g IPC f v Power� � � � � � �
	�

Fig. 1 presents the results of these microbenchmarks. The
x-axis is the value of 2f v� with unit of 2MHz V� , and the y-
axis shows the power of the chip (ChipPower). The results of
each program with different problem sizes are plotted in
different colors. From the results, we observe that the power
consumption of the chip is linear with respect to 2f v� . We
use a linear function Y X� �� � to fit the resulting data of
each program using different problem sizes. In other words,

for each program, we can get a linear function Y X� �� � ,

where X denotes 2f v� , Y denotes ChipPower, � denotes the
fitting value of ()coreN g IPC� and � denotes the fitting
value of staPower . The regression analysis results are showed
in TABLE II .

 20

 30

 40

 50

 60

 70

 80

 90

 0 100 200 300 400 500 600 700 800 900 1000

M
ea

su
re

d
ch

ip
 p

ow
er

 (
W

)

Freq*Volt*Volt (MHz*V*V)

Result of macro benchmarks for power modeling

INT4
INT1K
INT4K

INT16K
INT64K

INT256K
INT1024K

FP4
FP1K
FP4K

FP16K
FP64K

FP256K
FP1024K

Fig. 1 Benchmark results to specify the parameters of the power model

TABLE II RESULT OF REGRESSION ANALYSIS

Program IPC800M � �
INT4 0.9130 0.072 16.14
INT1K 0.7335 0.068 16.39
INT4K 0.7281 0.068 16.17
INT16K 0.4310 0.060 16.07
INT64K 0.4222 0.060 16.09
INT256K 0.0642 0.047 16.45
INT1024K 0.0640 0.047 16.41
FP4 0.1239 0.053 16.37
FP1K 0.5883 0.061 15.86
FP4K 0.2382 0.062 15.91
FP16K 0.2380 0.062 15.91
FP64K 0.0309 0.051 16.30
FP256K 0.0309 0.051 16.33
FP1024K 0.0310 0.051 16.19

Average 16.185

 0.045

 0.05

 0.055

 0.06

 0.065

 0.07

 0.075

 0.08

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

IPC (Instructions per Cycle)

the Alpha
0.068*IPC0.09

Fig. 2 Fitting analysis of active factor Ai

We can see from TABLE II , for each program, the power
is linearly related to 2f v� with almost the same staPower (i.e.
the �) except that the coefficients are slightly different. Thus
we take the average value of coefficient � as the static chip
power as

� 16.185.staPower � � ��	�

On the other hand, to get the specific active factor Ai, i.e.
g(IPC), we use a function to fit the values of the coefficient �
towards IPC (the estimated values of ()coreN g IPC� in our
model) . The � values with respect to IPC are plotted in Fig.
2 . Eventually, using least squares regression algorithm we get
the specified function of ()coreN g IPC� with 2R coefficient =
0.812. It’s described in (6).

� 0.09() 0.068coreN g IPC IPC� � � � ��	�

Thus, since coreN equals to 48, we can derive the activity
factor ()i iA g IPC� for each CPU core i, as described in (7).

� 3 0.09() 1.417i i iA g IPC e IPC�� � � � ��	�

In (7), the IPC equals to the instructions per clock at a
profiling frequency of 800MHz. At last, we replace the
parameters of iA and staPower into (3), and get the chip
power model of the Intel SCC as follows:

� 3 0.09 2

0
1.417 16.185.

Ncore

i i i
i

ChipPower e IPC f v�

�

� � � � �
 � ��	�

The units of the variables are: watts (W) for ChipPower,
MHz for fi, and volts (V) for vi. With this chip power model of
the Intel SCC, we can predict the chip power under any power
states or program execution patterns, as shown in Fig. 3 .
Assuming we always supply the least support voltage for a
certain frequency, we can use the frequency to denote the
power state. As we never see a IPC larger than 2 instructions
per cycle, we present the IPC from 0 to 2 in the figure.
Moreover, we will evaluate this power model in Section III.

Chip power vs. frequency and IPC

Modelled Chip Power
 80
 60
 40
 20

 0 0.5 1 1.5 2

IPC (Instructions/Cycle)
 100 200 300 400 500 600 700 800

Frequency (MHz)

 0
 20
 40
 60
 80

 100
 120

Po
w

er
 (

W
at

t)

 10
 20
 30
 40
 50
 60
 70
 80
 90

Fig. 3 The estimated chip power of the Intel SCC with repect to frequency

settings (i.e. power states) and IPC (i.e. program execution patterns)

III. EVALUATION OF POWER MODEL
In order to evaluate our power model proposed in Section II,

we compare the estimated chip power using our model with
that using power model proposed by Sadri et al. [6]. Sadri et
al. proposed a single core power modelling approach for the
Intel SCC. In their model, they also considered the CPU
frequency and program execution pattern, except the supplied
voltage. Their modelling includes three main steps.

— First, model the core power consumption by splitting it
into idle power and active power, core idle activeP P P� � , and
propose the fitting functions each one.

— Second, measure the power of single CPU core at different
frequency and program pattern settings. The authors use
CPI (Clock per Instruction), which is the multiplicative
inverse of IPC used in our model, to represent the program
pattern.

— Third, use a least square optimization algorithm to find the
coefficients of the fitting power function.

The fitting functions for both idle power and active power
are shown as (9) and (10), where p , q , a , b , c , d , 'a ,

'b and 'c are constant coefficients. After these coefficients
are determined in the third step, we get the core power model
as shown in (11). The unit of coref is GHz.

� idle coreP p q f� � � � ��	�

� '() (' ')c c
active core coreP a b CPI f a b CPI f d� � � � � � � � � ����	�

� 0.085 0.02(0.38 0.24 0.22) 0.41core coreP CPI CPI f� � � � � � � ���	�

According to their modelling approach, we can suppose
that the rest chip power apart from the CPU cores equal to the
chip power when no core is active. By the measurement in
their paper, we find out the rest power is about 34.0 Watt. So
the chip power can be estimated by adding the power of all the
cores and this 34.0 Watt, as shown in (12).

�
0

34.0
coreN

i
chip core

i
P P

�

� �
 � ���	�

There might be some problems in Sadri’s model due to the
power measurement of single core and the model builded
based on this. As most of the many-core chips like the Intel
SCC, do not provide direct power measurement mechanism
(for example, power senses) for each single core. We usually
only get the power of the whole chip, include the power of
CPU cores, Network on chip and other on-chip units. In order
to measure the power of single CPU core, Sadri et al. increase
the number of active cores, and measurement the increase of
the chip power, then the increased chip power is taken as the
power of activated core. But actually this increased chip
power is just the increased dynamic power as the static power,
only affected by the supplied voltage, would not be changed
after the activation. However, the problem is the authors take
the increased power as the sum of idle power and active

power, which we think mean static power and dynamic power
respectively.

To compare our power model with Sadri’s model, we
conduct an experiment on 48 cores at 800MHz/1.1V using
Graph500 benchmark [12]. As we can only get the real power
of the whole chip, we estimate the chip power for comparison
using both models. We estimated the chip power as follows:

First, conduct Graph500 on 48 cores at static 800MHz/1.1V.
At the meantime, we profile the PMC counters of each CPU
core for CPI or IPC of the Graph 500 execution. The real
power is monitored using the mechanism provided by the Intel
SCC platform [11]. As there exits some latency in reading the
real-time power of the chip, we can only achieve the power
values with a rate of 3.3 samples per second. But this is
enough for us to compare it with the modelled power.

Second, based on the profiled CPI or IPC pattern of the
Graph 500 execution, we estimate the chip power using both
the chip power models, our model as (8) and Sadri’s model as
(12).

 40

 50

 60

 70

 80

 0 20 40 60 80 100 120

Po
w

er
 (

W
at

t)

Time (s)

Measured Power
Modeled Power

Modeled Power by Sadri

Fig. 4 Estimated and measured chip power of Graph 500 running on 48 cores

at static CPU frequency of 800MHz

 0

 0.1

 0.2

 0.3

 0.4

 0 20 40 60 80 100 120

IP
C

Time (s)

Core0
Core1

Fig. 5 The IPC of core0 and core1 during Graph 500 execution

 30

 40

 50

 60

 70

 80

 90

 0 20 40 60 80 100 120
 62

 63

 64

 65

 66

 67

 68

 69

 70

Po
w

er
 (

W
at

t)

Po
w

er
 b

y
Sa

dr
i (

W
at

t)

Time (s)

Modeled Power
Modeled Power by Sadri

Fig. 6 Power comaprison by zooming in Sadri’s modelled power

The measured chip power and the modelled power are
shown in Fig. 4 . Comparing with the measured power, it’s
obviously observed that our modelled power is closer to it
than Sadri’s modelled power. During Graph 500 execution,
the chip power changes due to different execution patterns.
But the estimated power by Sadri’s model seems being more
stable without the awareness of the program execution pattern.

However, our model is not perfect yet. At the beginning 12
seconds of the execution, for both modelled powers, we found
the estimated power has much error. This is because we take
this part of program as a single phase, although the patterns at
different time are different. After time of 17s, the estimated
power is more accurate. We observe four places (around 50s,
70s, 85s and 90s) that the errors of estimated power have a
different trend with the measured power. By the analysis of
the IPC pattern of the execution (as shown in Fig. 5), we find
that the IPCs of both master and slave are relatively high at
these four places. These phenomena suggest that our power
model is much more accurate when IPC is low, whereas when
IPC is high (larger than 0.3 instructions per second) our power
model is not so accurate.

As mentioned before, Sadri’s modelled power is too stable.
But when we zoom in it, we find something much more
interesting. As shown in Fig. 6 , the green points in the figure
are our modelled power with left y-tics, the blue lines
represent the Sadri’s modelled power with right y-tics. We can
find that the right y-tics is zoomed in. Then, we can see that
the changing trends of the modelled powers are much similar
and nearly fit the measured power. The only difference is the
granularities. This observation implies two concerns. On one
hand, it’s much necessary to take account of the program
pattern. We can find that at the same power setting, the chip
power changes in a large range. And the models considering
the IPC metric fit the changing trend very well. This implies
that IPC is a good metric to represent the program execution
pattern. On the other hand, our power modelling approach is
more accurate to model the chip power of many-core chips.
Measured as Sadri’s modelling approach, the single core
power does not include the static power. But they still take the
measured single core powers as the sum of the static power
and dynamic power (idle power and active power). This may
be the reason why their model is not accurate enough.

IV. CONCLUSION
In this paper, we propose power modelling approach for

many-core architectures. With this approach, we achieve the
power model of the Intel SCC many-core chip with
considering both of power states and program execution
patterns. Then we conduct the experimental comparison with
other many-core chip power models. The result verifies that

the model derived by the modelling approach is more accurate.
As the future work, we plan to continue to improve our model
and evaluate it by applying it in real-time power management
systems.

ACKNOWLEDGMENT
The work of this paper is supported by Hong Kong RGC

grant HKU 716712E, Program for Changjiang Scholars and
Innovative Research Team in University (PCSIRT, No.
IRT1012) and Aid Program for Science and Technology
Innovative Research Team in Higher Educational Institutions
of Hunan Province (No. 11JJ7003). Special thanks go to Intel
China Center of Parallel Computing (ICCPC) in Wuxi, China
for providing us the SCC hardware platform to carry out this
research work.

REFERENCES

[1] Top500 List - June 2014. Available: http://www.top500.org/lists/2014/
06/

[2] S. Song, "Power, Performance and Energy Models and Systems for
Emergent Architectures," Doctor of Philosophy, the Virginia
Polytechnic Institute and State University, 2013.

[3] J. W. Choi, D. Bedard, R. Fowler, and R. Vuduc, "A Roofline Model
of Energy," in Proceedings of the 2013 IEEE 27th International
Symposium on Parallel and Distributed Processing, 2013, pp. 661-672.

[4] J. L. Manferdelli, N. K. Govindaraju, and C. Crall, "Challenges and
Opportunities in Many-Core Computing," Proceedings of the IEEE,
vol. 96, pp. 808-815, 2008.

[5] A. Bartolini, M. Sadri, J.-N. Furst, A. K. Coskun, and L. Benini,
"Quantifying the Impact of Frequency Scaling on the Energy
Efficiency of the Single-Chip Cloud Computer," presented at Design,
Automation & Test in Europe Conference & Exhibition (DATE),
Dresden, 2012.

[6] M. Sadri, A. Bartolini, and L. Benini, "Single-Chip Cloud Computer
Thermal Model," presented at the 17th International Workshop on
Thermal Investigations of ICs and Systems (THERMINIC'11), Paris,
France, 2011.

[7] P. Cichowski, J. Keller, and C. Kessler, "Modelling Power
Consumption of the Intel SCC," presented at Many-core Applications
Research Community Symposium (MARC), 2012.

[8] T. Li and L. K. John, "Run-time modeling and estimation of operating
system power consumption," in Proceedings of the 2003 ACM
SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems, San Diego, CA, USA, 2003, pp. 160-
171.

[9] W. Bircher, J. Law, M. Valluri, and L. K. John, "Effective use of
performance monitoring counters for run-time prediction of power,"
TR-041104-01, Electrical and Computer Engineering Department,
University of Texas, 2004.

[10] J. Howard, S. Dighe, S. Vangal, G. Ruhl, N. Borkar, S. Jain, et al., "A
48-Core IA-32 Message-passing Processor in 45nm CMOS Using on-
die Message Passing and DVFS for Performance and Power Scaling,"
IEEE Journal of Solid-State Circuits, vol. 46, pp. 173-183, 2011.

[11] "SCC External Architecture Specification (EAS) (Revision 0.94),"
Intel Labs, 2010.

[12] Graph500. The Graph 500 Benchmark. Available:
http://www.graph500.org

