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Abstract—Many-core architectures are playing an important role 
in the HPC systems. But they are giving high performance at the 
cost of a great electrical power consumption. On Tianhe-2 
supercomputer, the Xeon Phi many-core processors contribute 
nearly 80% of the system power. Power models are important to 
guide the design of dynamic power management (DPM) 
algorithms by predicting the power consumption with respect to 
power states and program execution patterns. However, the 
complexity of many-core hardware design makes power 
modelling be a challenging work. These concerns lead us to try a 
power modelling approach for many-core architectures based on 
the performance monitoring counters (PMC). The key insight is 
based on a large number of microbenchmarks on a real many-
core platform, where we find some essential rules determining 
the chip power. Following the modelling approach, we develop 
an accurate chip power model for the Intel SCC many-core chip. 
Experimental comparison shows that our model is much more 
accurate than others.  

Keywords—many-core; power management; power modelling; 
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I. INTRODUCTION 
Energy efficiency is one of the most challenging problems 

in the academia and industry of high performance computing 
(HPC). Many-core architectures are playing an important role 
in HPC systems, but their delivering of the high performance 
is also consuming a great portion of electricity in the 
meantime. On Tianhe-2 supercomputer, the fastest 
supercomputer in the latest Top500 list [1], the Xeon Phi 
many-core processors contribute nearly 80% of the system 
power. Power management of many-core chips becomes the 
urgency to achieve energy efficiency of the whole HPC 
systems.  

Power models are important to guide the design of dynamic 
power management (DPM) algorithms by predicting the 
power consumption with respect to the power states (i.e. 
voltage and frequency settings) and program execution 
patterns. There are many prior works to model the power for 
single core or multi-core chips [2, 3]. However, on many-core 
architectures, the complexity of hardware designs makes 
power modelling be a challenging work. Apart from the a 
large number of CPU cores, many-core chips usually have 
complex network on chip (NoC), multiple memory controllers, 
on-chip caches and some other units [4]. These all increase the 

complexity of  the modelling work. 
There are few of work modelling the power of many-core 

chips. Bartolini et al. [5] evaluated the impact of DVFS on the 
performance and power consumption of MPI applications. 
However, their study only presented the power/performance 
results in different power settings rather than proposing any 
power model. Sadri et al. [6] proposed a power model for 
thermal management on the Intel SCC, but they did not take 
account of the voltage. The power model proposed by 
Cichowski et al. [7] did not consider the impact of application 
pattern to the power consumption of the chip. However, as we 
will reveal, the voltage and the program pattern are both the 
key factors determining the chip power. 

These concerns lead us to develop a power modelling 
approach for many-core architectures with consideration of 
more factors as possible. The key insight is based on a large 
number of microbenchmarks on the Intel SCC platform which 
we design to test the chip power of the many-core 
architectures. The main contributions of this work are as 
follows: 

— We develop a power modelling approach for many-core 
architectures based on the performance monitoring 
counters (PMC). Following this approach, we derive a 
chip model of the Intel SCC many-core chip, with 
comprehensive consideration of voltage/frequency settings 
and the program execution patterns.  

— We conduct experiments on the Intel SCC to compare our 
model with others. The results show that our model is 
more accurate than other models to predict the chip power. 

The remainder of this paper is organized as follows. 
Section II describes our many-core chip power model and the 
process to specify to parameters of the model for the Intel 
SCC.  Section III presents the experimental evaluation, 
including the results and analysis. Finally, we conclude the 
paper in Section IV. 

II. POWER MODELLING 

We will describe our chip power model of many-core 
architectures. Then show how we specify the parameters of 
the model on the Intel SCC platform. 



A. Power Model 
The many-core architectures usually have much more 

complex hardware design than single core or multi-core chips. 
Apart from the a large number of CPU cores, many-core chips 
have network on chip (NoC), multiple memory controllers, 
on-chip caches and some other units. Thus, the power of chip 
is made up with the power of CPU cores, the on-chip mesh 
network (NoC) etc.  

First of all, Let us consider the main power contributor, the 
CPU cores. The power of a single core consists of two parts, 
namely static power and dynamic power. Static power 
depends on the voltage and the CPU’s thermal design power 
(TDP). As described in (1), dynamic core power 
(CorePowerdyn(v,f)) has a proportional relationship with 
frequency (f), squared supply voltage (v), and the activity 
factor (A). The activity factor is not usually a constant 
coefficient, but has a functional relationship with the program 
patterns. To simplify the power model, we assume the static 
core power, denoted by staCorePower  is a constant. 
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For a certain program, we assume that the activity factor A 
is also a constant. So, we can estimate the power of core when 
it is used to run a program (or a phase of a program) in any 
voltage/frequency settings. 

For many-core chips, the chip power is made up with the 
power of cores and the NoC etc. As in current many-core 
design, dynamic power state tuning of the NoC mesh network 
is not supported by the current SCC, we assume the power of 
the mesh network and other units except CPU cores, denoted 
by NocPower, is a constant. The formula of total chip power 
can be expressed as 
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where the Ai denotes the activity factor of the program on core 
i. As some prior works revealed, power dissipation is strongly 
correlated to Instructions per Cycle (IPC) [6, 8, 9]. Thus we 

assume the activity factor of core i Ai  is a function of IPC at a 
specific power setting (assuming it’s 800MHz), and name the 
function as ( )ig IPC .  

The next work of power modelling, which is the important 
work,  is to specify the parameters of Ai and Powersta. 

B. Parameter Specifying 
We are going to describe how to specify the parameters of 

the model on the Intel SCC platform. The Intel SCC is an 48 
cores experimental many-core chip with fine-grained DVFS 
mechanism [10]. The IPC pattern of each core can be derived 
by reading the PMC counters provided by the CPU core 
hardware. The real chip power also can be measured using the 
mechanism provided by the Intel SCC platform [11]. 

In order to derive Powersta and the function of ( )ig IPC , 
we conducted some micro-benchmarking by designing two 
programs, INT and FP. INT performs arithmetical computing 
on an array of integer variables while FP does so on an array 
of float-point variables. The sizes of the two arrays can be 
configured easily. We use these two different programs with 
different problem sizes to produce different IPC patterns. 
They are launched using 15 V/F settings and seven problem 
sizes as shown in TABLE I . All these programs with different 
settings are launched on the 48 cores of the Intel SCC (all the 
cores perform the same computation). Thus, we have 
2×15×7=210 experimental results plotted as Fig. 1 . 

TABLE I  BENCHMARK SETTING TO  DETERMINE POWER MODEL 

Program 
INT FP 

Problem Size 
(# of 4B Integers or 8B Doubles) 

4 1K 4K 16K 64K 256K 1024K 
Frequency/Voltage 

(MHz/V) 
800/1.1 533/0.9 400/0.8 320/0.8 267/0.8 
229/0.8 200/0.8 178/0.8 160/0.8 145/0.8 
133/0.8 123/0.8 114/0.8 107/0.8 100/0.8 
 
We make use of a trick here to simplify the chip power 

function for specifying the parameters of g(IPCi) and Powersta. 
As we cannot measure the power of each core directly, we 
launch the same program on all the 48 cores of the SCC, and 
set the V/F levels of all cores to be the same. Thus, the 
activity factors of each program on all the cores are the same, 
denoted by g(IPC). So the ChipPower can be formulated as 

� 2( ) .core staChipPower N g IPC f v Power� � � � � � �
	�

Fig. 1  presents the results of these microbenchmarks. The 
x-axis is the value of 2f v� with unit of 2MHz V� , and the y-
axis shows the power of the chip (ChipPower). The results of 
each program with different problem sizes are plotted in 
different colors. From the results, we observe that the power 
consumption of the chip is linear with respect to 2f v� . We 
use a linear function Y X� �� �  to fit the resulting data of 
each program using different problem sizes. In other words, 



for each program, we can get a linear function Y X� �� � , 

where X denotes 2f v� , Y denotes ChipPower, �  denotes the 
fitting value of  ( )coreN g IPC�  and �  denotes the fitting 
value of staPower . The regression analysis results are showed 
in TABLE II . 
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Fig. 1  Benchmark results to specify the parameters of the power model 

TABLE II  RESULT OF REGRESSION ANALYSIS 

Program IPC800M � � 
INT4 0.9130 0.072 16.14 
INT1K 0.7335 0.068 16.39 
INT4K 0.7281 0.068 16.17 
INT16K 0.4310 0.060 16.07 
INT64K 0.4222 0.060 16.09 
INT256K 0.0642 0.047 16.45 
INT1024K 0.0640 0.047 16.41 
FP4 0.1239 0.053 16.37 
FP1K 0.5883 0.061 15.86 
FP4K 0.2382 0.062 15.91 
FP16K 0.2380 0.062 15.91 
FP64K 0.0309 0.051 16.30 
FP256K 0.0309 0.051 16.33 
FP1024K 0.0310 0.051 16.19 

Average 16.185 
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Fig. 2  Fitting analysis of active factor Ai 

We can see from TABLE II , for each program, the power 
is linearly related to 2f v�  with almost the same staPower  (i.e. 
the � ) except that the coefficients are slightly different. Thus 
we take the average value of coefficient � as the static chip 
power as 

� 16.185.staPower � � ��	�

On the other hand, to get the specific active factor Ai, i.e. 
g(IPC), we use a function to fit the values of the coefficient � 
towards IPC (the estimated values of ( )coreN g IPC�  in our 
model) . The � values with respect to IPC are plotted in Fig. 
2 . Eventually, using least squares regression algorithm we get 
the specified function of ( )coreN g IPC�  with 2R  coefficient = 
0.812. It’s described in (6). 

� 0.09( ) 0.068coreN g IPC IPC� � � � ��	�

Thus, since coreN  equals to 48, we can derive the activity 
factor ( )i iA g IPC�  for each CPU core i, as described in (7). 

� 3 0.09( ) 1.417i i iA g IPC e IPC�� � � � ��	�

In (7), the IPC equals to the instructions per clock at a 
profiling frequency of 800MHz. At last, we replace the 
parameters of iA  and staPower  into (3),  and get the chip 
power model of the Intel SCC as follows: 

� 3 0.09 2

0
1.417 16.185.

Ncore
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The units of the variables are: watts (W) for ChipPower, 
MHz for fi, and volts (V) for vi. With this chip power model of 
the Intel SCC, we can predict the chip power under any power 
states or program execution patterns, as shown in Fig. 3 . 
Assuming we always supply the least support voltage for a 
certain frequency, we can use the frequency to denote the 
power state. As we never see a IPC larger than 2 instructions 
per cycle, we present the IPC from 0 to 2 in the figure. 
Moreover, we will evaluate this power model in Section III. 
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Fig. 3  The estimated chip power of the Intel SCC with repect to frequency 

settings (i.e. power states) and IPC (i.e. program execution patterns) 



III. EVALUATION OF POWER MODEL 
In order to evaluate our power model proposed in Section II, 

we compare the estimated chip power using our model with 
that using power model proposed by Sadri et al. [6]. Sadri et 
al. proposed a single core power modelling approach for the 
Intel SCC. In their model, they also considered the CPU 
frequency and program execution pattern, except the supplied 
voltage. Their modelling includes three main steps. 

— First, model the core power consumption by splitting it 
into idle power and active power, core idle activeP P P� � , and 
propose the fitting functions each one.  

— Second, measure the power of single CPU core at different 
frequency and program pattern settings. The authors use 
CPI (Clock per Instruction), which is the multiplicative 
inverse of IPC used in our model, to represent the program 
pattern.  

— Third, use a least square optimization algorithm to find the 
coefficients of the fitting power function.  

The fitting functions for both idle power and active power 
are shown as (9) and (10), where p , q , a , b , c , d , 'a , 

'b and 'c  are constant coefficients. After these coefficients 
are determined in the third step, we get the core power model 
as shown in (11). The unit of coref  is GHz. 

� idle coreP p q f� � � � ��	�

� '( ) ( ' ' )c c
active core coreP a b CPI f a b CPI f d� � � � � � � � � ����	�

� 0.085 0.02(0.38 0.24 0.22 ) 0.41core coreP CPI CPI f� � � � � � � ���	�

According to their modelling approach, we can suppose 
that the rest chip power apart from the CPU cores equal to the 
chip power when no core is active. By the measurement in 
their paper, we find out the rest power is about 34.0 Watt. So 
the chip power can be estimated by adding the power of all the 
cores and this 34.0 Watt, as shown in (12). 
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There might be some problems in Sadri’s model due to the 
power measurement of single core and the model builded 
based on this. As most of the many-core chips like the Intel 
SCC, do not provide direct power measurement mechanism 
(for example, power senses) for each single core. We usually 
only get the power of the whole chip, include the power of 
CPU cores, Network on chip and other on-chip units. In order 
to measure the power of single CPU core, Sadri et al. increase 
the number of active cores, and measurement the increase of 
the chip power, then the increased chip power is taken as the 
power of activated core. But actually this increased chip 
power is just the increased dynamic power as the static power, 
only affected by the supplied voltage, would not be changed 
after the activation. However, the problem is the authors take 
the increased power as the sum of idle power and active 

power, which we think mean static power and dynamic power 
respectively.  

To compare our power model with Sadri’s model, we 
conduct an experiment on 48 cores at 800MHz/1.1V using 
Graph500 benchmark [12]. As we can only get the real power 
of the whole chip, we estimate the chip power for comparison 
using both models. We estimated the chip power as follows: 

First, conduct Graph500 on 48 cores at static 800MHz/1.1V. 
At the meantime, we profile the PMC counters of each CPU 
core for CPI or IPC of the Graph 500 execution. The real 
power is monitored using the mechanism provided by the Intel 
SCC platform [11]. As there exits some latency in reading the 
real-time power of the chip, we can only achieve the power 
values with a rate of 3.3 samples per second. But this is 
enough for us to compare it with the modelled power. 

Second, based on the profiled CPI or IPC pattern of the 
Graph 500 execution, we estimate the chip power using both 
the chip power models, our model as (8) and Sadri’s model as 
(12).  
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Fig. 4  Estimated and measured chip power of Graph 500 running on 48 cores 

at static CPU frequency of 800MHz 
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Fig. 5  The IPC of core0 and core1 during Graph 500 execution 
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Fig. 6  Power comaprison by zooming in Sadri’s modelled power 



The measured chip power and the modelled power are 
shown in Fig. 4 . Comparing with the measured power, it’s 
obviously observed that our modelled power is closer to it 
than Sadri’s modelled power. During Graph 500 execution, 
the chip power changes due to different execution patterns. 
But the estimated power by Sadri’s model seems being more 
stable without the awareness of the program execution pattern. 

However, our model is not perfect yet. At the beginning 12 
seconds of the execution, for both modelled powers, we found 
the estimated power has much error. This is because we take 
this part of program as a single phase, although the patterns at 
different time are different. After time of 17s, the estimated 
power is more accurate. We observe four places (around 50s, 
70s, 85s and 90s) that the errors of estimated power have a 
different trend with the measured power. By the analysis of 
the IPC pattern of the execution (as shown in Fig. 5 ), we find 
that the IPCs of both master and slave are relatively high at 
these four places. These phenomena suggest that our power 
model is much more accurate when IPC is low, whereas when 
IPC is high (larger than 0.3 instructions per second) our power 
model is not so accurate. 

As mentioned before, Sadri’s modelled power is too stable. 
But when we zoom in it, we find something much more 
interesting. As shown in Fig. 6 , the green points in the figure 
are our modelled power with left y-tics, the blue lines 
represent the Sadri’s modelled power with right y-tics. We can 
find that the right y-tics is zoomed in. Then, we can see that 
the changing trends of the modelled powers are much similar 
and nearly fit the measured power. The only difference is the 
granularities. This observation implies two concerns. On one 
hand, it’s much necessary to take account of the program 
pattern. We can find that at the same power setting, the chip 
power changes in a large range. And the models considering 
the IPC metric fit the changing trend very well. This implies 
that IPC is a good metric to represent the program execution 
pattern. On the other hand, our power modelling approach is 
more accurate to model the chip power of many-core chips. 
Measured as Sadri’s modelling approach, the single core 
power does not include the static power. But they still take the 
measured single core powers as the sum of the static power 
and dynamic power (idle power and active power). This may 
be the reason why their model is not accurate enough.  

IV. CONCLUSION 
In this paper, we propose power modelling approach for 

many-core architectures. With this approach, we achieve the 
power model of the Intel SCC many-core chip with 
considering both of power states and program execution 
patterns. Then we conduct the experimental comparison with 
other many-core chip power models. The result verifies that 

the model derived by the modelling approach is more accurate. 
As the future work, we plan to continue to improve our model 
and evaluate it by applying it in real-time power management 
systems. 
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