
Adaptive Live VM Migration over a WAN:
Modeling and Implementation

Weida Zhang, King Tin Lam, Cho-Li Wang
Department of Computer Science
The University of Hong Kong

Hong Kong, China
{wdzhang, ktlam, clwang}@cs.hku.hk

Abstract—Recent advances in virtualization technology enable
high mobility of virtual machines (VMs) and resource provision-
ing at a data-center level. Various strategies have been proposed
for fast VM live migration over a local-area network (LAN). The
most common solution uses memory pre-copying and assumes
storage is shared on the LAN. When applied to a wide-area
network (WAN), a new design philosophy in VM live migration
algorithms is necessary to address like challenges of long latency,
limited or unstable bandwidth and storage relocation. This paper
proposes a three-phase, fractional, hybrid pre-copy and post-copy
solution for both memory and storage to achieve highly adaptive
and responsive WAN-wide migration. Our strategy is to selectively
migrate an important fraction of memory and storage in the pre-
copy and freeze-and-copy phases, while the rest (non-critical data
set) is post-copied or demand-paged. We propose a new metric
called performance restoration agility, which considers both the
downtime and VM speed degradation during the post-copy phase,
to evaluate the migration process. We also develop a profiling
framework and a novel probabilistic prediction model to adap-
tively find a predictably optimal combination of the memory and
storage fractions to migrate. Our solution is implemented on Xen
and evaluated in an emulated WAN environment. Experimental
results show that the solution achieves better adaptiveness than
others for various applications over a WAN while retaining the
responsiveness of post-copy algorithms.

Keywords—cloud computing; virtualization; live migration;
hybird-copy; wide-area networks; performance modeling; Xen

I. INTRODUCTION

Cloud computing is emerging as an important paradigm
shift in how computing demands are being met in future.
It is transforming the role of IT in businesses in recent
years. With cloud architecture, computing resources can be
rapidly provisioned or scaled-out by live virtual machine (VM)
migration with minimal management effort or service provider
interaction [1]. Such elastic infrastructure marks the beauty
of cloud computing for enhancing IT delivery’s efficiency
and cost-effectiveness. With VM migration technology, one
can pool or shrink compute resources as desired by moving
VM instances around over a cluster or even a wide area
network (WAN), facilitating dynamic load distribution, fault
resilience, and improved system administration (e.g. server
consolidation). The importance of VM mobility is evidenced
by paramount work like VMWare vMotion [2] and Xen [3].

Most VM systems implement live migration which moves
the memory image while the VM is still running to mini-
mize downtime. By pre-copying memory pages and iteratively

copying dirty pages, Xen and vMotion achieve sub-second
downtime for non-write-intensive applications, albeit with tens
of seconds of total migration time. Other solutions [4] adopt
a post-copy strategy that defers memory transfer until after
the VM’s CPU state gets resumed on the target. Essentially,
post-copying ensures that each memory page is transferred
at most once, thus avoiding duplicate transmission overhead
of pre-copying. Whichever strategy is used, it will penalize
the normal execution for a substantial period throughout the
migration process. Common solutions assume the disk image
is put on some shared networked storage (SAN/NAS) so that
it can be immediately accessible to all destination hosts. VM
migration also hinges on the assumption that the hosts are in a
common network segment for seamless migration of network
connections. Thus, the uses of VM migration have been largely
restricted to local area networks (LANs).

Nevertheless, wide-area VM migration, which is parallel to
the vision of global resource scheduling and disaster recovery,
has been gaining interest and adoption. Several projects—
Shrinker [5], VM Turntable [6] and ABSS [7]—have been
steering towards this goal. They have to cope with challenges
like how to maintain existing network connections despite a
change in the VM’s IP address [8], and how to transfer the
persistent state of the big local storage efficiently over long-
haul networks with bandwidth bottlenecks. Pure pre- or post-
copy and basic hybrid-copy strategies have been proposed for
WAN situations. However, the proposed solutions are usually
inflexible and perform poorly in the changing network envi-
ronment. Due to much longer latency and limited bandwidth
of a WAN, a pure pre-copy algorithm could spend longer time
on repeatedly transferring some dirtied pages which turn out
to be unneeded by the VM resumed on the remote site. Worst
still, it fails to converge to zero downtime if the dirtying rate
outruns the link bandwidth. Therefore, pure pre-copying on
a WAN could result in long migration time as well as long
downtime. In some cases, the pre-copy iterations are repeated
even when the network performance has fallen behind the
memory dirtying rate. Thus, a vanilla pre-copy solution (e.g.
[2], [3]) is usually hard coded with ending conditions to force
migration at a predetermined stage to avoid generating addi-
tional dirty pages and unnecessary network traffic. Tuning the
ending condition however does not improve the performance
of pre-copy algorithms in many situations (e.g. write-intensive
workloads) [9]. A pure post-copy approach in bad network
conditions performs poorly upon resumption due to the large
amount of remote data access after the VM resumes execution

at the destination. Therefore, full-system post-copying was
researched restrictively on high-speed LANs only [4]. Hybrid-
copy approaches have been proposed to reduce the downtime
and remote uptime. But the way they hybridize is rather static,
e.g. fully pre-copy memory and fully post-copy storage.

By studying the limitations of wide-area VM migration,
this work advances the state of the art to a new level—
a profile-guided fractional hybrid-copy strategy—so as to
achieve better migration performance in various aspects, par-
ticularly adaptiveness and responsiveness, in a WAN situation.
While existing solutions adopt WAN-wide post-copying for
storage but not for memory, we do apply pre- and post-copying
to both memory and storage, yet in a fractional manner. Our
proposed hybrid solution relies on two fractional variables M
and S, representing the critical portions of memory and storage
images to be migrated during the pre-copy and freeze-and-
copy phases, while the remaining are migrated in the post-copy
phase. By adjusting M and S, we can achieve adaptiveness in
response to the network conditions and application behaviors.
The contributions of this work are elaborated as follows.

• We investigate the algebraic relation between total
migration time (T), downtime (D), remote uptime
(U), performance degradation (PD) and other param-
eters, such as dirtying rate of memory/storage and
bandwidth to make a thorough performance model.
In particular, we propose a new metric—performance
restoration agility (Γ)—as a quantitative measurement
of how fast the performance gets restored to a nearly
full-speed level under different M and S settings. The
definition of Γ has embedded D and PD1 which are
in some inverse relationship. In essence, Γ models
the wrestling between pre-copy and post-copy effects
which favor PD and D respectively.

• This is the first work to propose and analyze a
fractional, hybrid (pre/post-copy) approach to WAN-
wide live migration of both memory (M) and storage
(S). We see that finding the best portion of (M ,S)
that achieves an agile migration while still minimizing
the degradation during the post-migration execution is
an important research gap to fill, and we provided a
non-trivial prediction model and its implementation at
page level on Xen accordingly. We devise a profiling-
based and model-based solution to determine M and S
that are adaptive to the underlying network condition
and the application’s memory/storage access patterns.
They could be carefully determined to ensure Γ is
above a certain level. This can achieve reasonable
performance even when vanilla pre-copy algorithms
cannot converge to small downtime, and can counter-
act degradation during the post-copy phase.

The motivation behind this work is an attempt to make
WAN-wide live migration more useful in real life. For instance,
one may need to continue some work during the travel time
from office to home. Then a mobile working environment
could be enabled by migrating a VM instance from his
office PC to his laptop, providing the same view of software

1Basically, PD and D are relatively more important than T and U because
they affect not only the experience perceived by the system administrator who
triggers the migration but also the user of the VM.

applications as if he were working in office. Though a fully
post-copy scheme gives the shortest remote uptime U that
allows his work to resume as soon as possible, it entails the
longest low-performance period after the VM gets resumed. A
balance between the data amounts to pre-copy and post-copy
is thus important to let the user perceive an acceptable VM
performance after the migration. So our solution is useful here,
by trading off some access profiling overheads and slightly
longer downtime for better post-copy performance.

For the rest of this paper, we review the existing solutions
in Section II. Section III and Section IV present the modeling
and implementation of our proposed fractional hybrid-copy
live VM migration for a WAN, respectively. In section V,
we evaluate the performance of Xen with our model-based
solution implemented. Section VI concludes this paper.

II. LITERATURE REVIEW

Pre-copy migration strategies [2], [3] aim at reducing down-
time. In a LAN environment, only memory is to be migrated
and is transmitted in an iterative way. In the first iteration,
all the memory pages are transmitted. In each subsequent
iteration, all the memory pages that are dirtied during the
previous iteration are transmitted, assuming that the number
of dirtied pages in each subsequent iteration will decrease and
converge to a small amount at some point.

Clark et al. [3] characterize the downtime of pre-copy mi-
gration by the writable working set (WWS) of the application.
The WWS is a set of pages being frequently updated to an
extent that it is unwise to transmit them before the last iteration
since they will be updated again in every short period, and
any previous transmissions would be wasted. However, Clark
et al. did not analyze the relationship between WWS and
the network condition. A later piece of work by Akoush et
al. [10] provides simulation models that can predict the total
migration time and downtime based on the pre-copy scheme.
They conclude that the ratio between the page dirtying rate and
the link speed has a strong impact on VM migration behaviors.
They model the page dirtying rate with two approaches: AVG
models it as an average, and HIST models it as a history log.
They run simulations over the dirtying rate model to predict the
downtime and total migration time of a migration. We find that
the AVG model is too simple while HIST is too heavyweight
for our usage since we are going to run the simulation for
many times. In this work, we model the dirtying rate as the
probabilistic expected value of the access frequencies of every
page within an observation window.

As far as we know, Bradford et al. [9] proposed the first
work that accomplished VM migration over a WAN. Both
memory and storage are migrated using pre-copying. They
applied write-throttling to slow down some disk writes and de-
crease the dirtying rate so as to ensure convergence. However,
disk write operations cannot tolerate aggressive throttling. For
memory pre-copying, write-throttling is difficult to implement
and with high overheads. Thus we have not seen any existing
work on memory write-throttling. Recent work—ABSS [7]—
done by Akoush et al. streamlines repeated transmission of
storage blocks during the pre-copy stage. They analyze the
storage access patterns to predict whether a data block is to be
rewritten in near future. If it is the case, the system postpones

the transmission of that block, thus reducing the number of
blocks to retransmit and the total migration time.

Post-copy strategies transmit all the processor state to the
destination and intend to resume the VM execution as fast as
possible, while actively pushing the VM’s memory pages from
source to destination. Any memory pages that are faulted at
the destination but not yet pushed, are demand-paged over the
network. Post-copying thus ensures that each memory page is
transferred at most once, thus avoiding the duplicate transmis-
sion overheads of pre-copying. Hines et al. [4] implemented a
post-copy solution called dynamic self-ballooning (DSB) for
live VM migration across a gigabit LAN. While the DSB
technique works well on a LAN, there will be problems if we
extend it for the hybrid migration on WANs. First, fetching of
memory pages through the guest storage driver will in turn
goes through the Xen’s storage migration driver. This will
introduce long latency. Second, getting the guest OS memory
shrunk well before the pre-copy phase means performance
degradation gets started sooner. To avoid these drawbacks, we
implement another method, namely page tracking, proposed
by Hines. Hirofuchi et al. [11] introduce post-copying for live
storage migration over a WAN. They also propose background
copying, which can transfer the blocks without affecting the
performance of the migrated VM. Overall, post-copy migration
can achieve small remote uptime and improve interactivity. It
however cannot guarantee the performance of the migrated
VM. As network speed is slower than local memory, a mi-
grated VM could suffer severe degradation at the destination.

Noack [12] mentioned about a hybrid-copy algorithm com-
posed of a single pre-copy round plus post-copying of dirty
pages. Luo et al. [13] and Hirofuchi et al. [11] adopt pre-
copying for memory pages and post-copying for storage.
Zheng et al. [14] add data locality-based prediction to pre-
copy, post-copy and hybrid-copy storage migrations over a
WAN. To the best of our knowledge, this work is the first
to propose a VM migration strategy using a fractional hybrid-
copy approach for both memory and storage.

III. MODELING

A. Hybrid Migration Framework

As shown in Fig. 1, we divide the whole migration process
into three phases, namely pre-copy phase, freeze-and-copy
phase and post-copy phase. After the pre-copy and freeze-
and-copy phases, the percentage of transferred memory image
is M , while the percentage of transferred storage is S.

The hybrid migration scheme works as follows:

1) In the pre-copy phase, storage is pre-copied first.
2) Once S of storage is migrated, the system switches

to move storage in background and starts memory
pre-copying to move M of memory. However, if
further iterations during the pre-copy phase are not
expected to improve the situation (i.e., page dirtying
rate is greater than transmission rate), the system
could choose to enter the next phase.

3) During the freeze-and-copy phase, we continue the
migration until M of memory and S of storage are
fully migrated.

4) In the post-copy phase, the remaining memory (1 −
M) and storage (1 − S) continue to be migrated.

When the (1−M) memory migration is not finished,
the storage migration only maintains a small back-
ground transmission rate.

5) Once the memory migration is finished, the storage
migration is performed at full speed.

Fig. 1. Hybrid migration of memory and storage

We model T , D and U based on the work of Akoush et
al. [10]. However, Akoush’s prediction on dirtying rate is either
too simple (AVG model) or too heavyweight (HIST model).
Instead we propose prediction of the dirtying rate based on as
few as ten samples per page. We model the page dirtying rate
as a function dirty(τ), where τ could be any predicted length
of a pre-copy iteration. To calculate the total migration time
(T), we add U to the predicted time of the post-copy phase,
during which the remaining memory (1−M) and storage (1−
S) are transmitted. Since during the post-copy phase, a page
or a block will not be transmitted twice, the total elapsed time
is simply determined by the transmission rate.

The performance restoration agility, Γ , is defined as a ratio
of the execution speed of the virtual machine with migration to
that without migration. Intuitively, it symbolizes how fast the
migrated VM regains the full speed since the VM suspension.
Graphically, it refers to the ratio between the triangular area
and the rectangular area as shown in Fig. 1 (the graph at
the top). Suppose w is a constant workload, which takes the
VM δT time to finish it at full processing speed (i.e. without
migration). Suppose the full processing speed of the VM is a
constant c, then c = w/δT . To accomplish the workload w
during the VM migration process, the VM stops its service
during the downtime D and can only resume its execution at
sub-optimal speed during the first few seconds (∆T) at the
beginning of post-copy phase. It is likely that ∆T > δT since
the performance is degraded while fetching memory or storage
left on the source host. The workload completed at this stage
equals the triangular area. The average speed of the VM during
the period of (D + ∆T) is w/(D + ∆T). So we define Γ as
the ratio of these two average speeds:

Γ =
δT

D + ∆T
(1)

Using an automobile as a metaphor, we are measuring the
speed of a broken car when we do not have a mileometer. So
we first drive the car in good condition for δT and mark its
distance traveled. Later, when the car is broken, we drive it
for the same distance above, and measure the time elapsed as
∆T . Then we can understand the performance degradation of

the car. δT could be any reasonable length of time considering
the precision of the ‘stopwatch’ and ‘distance marker’. In our
experiment, we find 20 seconds a good choice. We also use
this δT as the unit time for profiling and the model to simplify
the algebraic calculation.

B. Data Access Modeling

The model of T , D, U and Γ relies on two intermediate
variables dirty(τ) and ∆T . Predicting dirty(τ) is equiv-
alent to telling how many pages are expected to be written
within τ time. As for ∆T , its implication is about how
many pages will be fetched on demand during the post-copy
phase, thus penalizing the performance before a workload of
w is completed. Both dirty(τ) and ∆T are modeled as the
mathematical expectations of some random variables in the
following statistical model.

We model the access to memory or storage as a Poisson
distribution. Suppose X is a random variable suggesting how
many times a page will be accessed during a period of time
τ . Each page is associated with a parameter λ (the expected
value and also variance of a Poisson distribution). Then the
probability of accessing a page k times per unit time is

Pr(X = k) =
e−λλk

k!
(2)

Typically, we are interested in whether a page i will be
accessed during any time period, e.g. τ . The probability
of no access to a page within τ is Pri,τ (X = 0) =
e−λ·τ (λτ)0/(0!) = e−λ·τ .

C. Measurement of Frequency of Access

Before we can predict dirty(τ) and ∆T , we first need to
estimate λ. This is done by profiling the access frequencies of
each page/trunk of the memory and storage, and calculating the
maximum likelihood estimation (MLE) of λ from the profiling
samples.

1) Storage Profiling: The storage profiling is relatively easy.
We simply extend the disk driver backend to track all the I/O
requests from the VM without introducing high overheads. To
minimize the overhead of storing profiling data, each trunk of
64 contiguous 512-byte blocks is the basic unit for profiling.
Suppose we perform profiling for n time slots during which
the profiler recorded that a trunk is accessed k1, k2, · · · , kn
times. Thus,

λ̂MLE =
1

n

n∑
i=1

ki =
Σk

n
(3)

where Σk is the abbreviated form of
∑n
i=1 ki. In the following

contexts, we use Σk to denote the sum of the samples of a
storage trunk.

2) Memory Profiling: To obtain a more realistic cost model,
our memory profiling involves a localized migration (source
and destination being the same machine) with all the net-
work protocol bypassed. We run the pre-copy and post-copy
mechanisms during memory profiling to sample the memory
access behaviors in a fast manner, inducing a small amount of
memory copying and ‘minor’ page faults. A minor page fault
refers to a fault that can be resolved quickly without swapping.

Reads and writes are sampled separately: read operations are
observed in post-copy phases while write operations in pre-
copy phases. However, differing from storage profiling, it
introduces high overheads to record every memory access. For
both kinds of access, we can only observe if there is one access
event during a period τ . But this measurement is sufficient to
estimate λ by applying the following mathematics.

The probability of a Poisson distribution is defined in (2).
So Pr(X = 0) = e−λ, Pr(X 6= 0) = 1−e−λ; suppose we have
n samples j1, j2, · · · jn, indicating whether a page is accessed
(j = 1) or not (j = 0) during each unit time. Let f(j|λ) denote
the probability of observing j in each unit time, then f(0|λ) =
Pr(X = 0), f(1|λ) = Pr(X 6= 0), and f(j|λ) = (1−2e−λ)j+
e−λ. To find the maximum likelihood estimation (MLE) of λ,
we solve the maximum likelihood function: likelihood(λ) =∏n
i=1 f(ji|λ). Suppose Σj =

∑n
i=1 ji, and consider that ji

has only two values 0 and 1, the likelihood function has its
maximum value when λ = log n/(n− Σj), i.e.,

λ̂MLE = log
n

n− Σj
(4)

When Σj = 0, λ̂MLE = 0; when Σj = n, without loss of
generality, λ̂MLE is +∞. However, either λ̂ = 0 or λ̂ = +∞
suggests that the profiling window is not appropriate for the
specified page. If many pages have such a situation, adjustment
of the sampling time (unit time) should be considered. By
shortening the sampling time, we can observe ji = 0 even
for frequently accessed pages. On the contrary, lengthening
the sampling time leads to ji = 1 observable even for rarely
accessed pages.

D. Dirtying Rate Modeling

In our model, one critical task is to calculate the dirtying
rate of a set of memory pages or storage trunks, given the
observation window τ . While traditional approaches ([3] and
AVG model in [10]) use a simplified version dirty(τ) = d ·τ ,
we use the probabilistic expected value (unit: pages/τ). For
page/trunk i during a period of time τ , X is a random variable
of the number of writes, Pri,τ (X 6= 0) is the probability that
page i is written during τ . λ is already estimated in (3) and
(4). Summing up the probabilistic values of all pages/trunks,
we can get the expected number of dirty pages/trunks during
τ :

dirty(τ) =

m∑
i=1

Pri,τ (X 6= 0) (5)

where m equals the number of the pages/trunks concerned.

The quantity dirty(τ) would be calculated for different τ ’s,
but it is not necessary to enumerate every page each time. The
pages/trunks with the same Σj or Σk are aggregated to speed
up this calculation.

E. Performance Restoration Agility

We calculate the performance restoration agility (Γ) as
defined in (1). That is, we need to find δT , D and ∆T . Note
that we already fix δT as a given argument. D is the result of
a combination of the methodology by Akoush et al. [10] and
our dirty(τ) function (5).

D = Result of Akoush simulation using dirty (τ) (6)

∆T is calculated as follows. At the beginning of the post-
copy phase, suppose Kmem memory pages are expected to be
fetched on demand when handling the workload of w. We
have:

Kmem =

m∑
i=1

Prmem,i,δT (X 6= 0) (7)

where m here is the number of pages to be post-copied.
In the same way, suppose Kstorage storage trunks are ex-
pected to be fetched on demand, then we have: Kstorage =∑m
i=1 Prstorage,i,δT (X 6= 0), where m is the number of trunks

to be post-copied.

In addition, we know that such delayed memory and storage
operations will affect the overall performance of the migrated
VM during ∆T . Note that the migrated VM has to complete
a workload of w within ∆T , i.e. (∆T − δT) CPU time is
wasted in waiting for some memory or storage to be fetched
remotely from the source. Suppose the penalty is denoted by
φ, we have (8):

∆T = δT + φmem ·Kmem + φstorage ·Kstorage (8)

With δT , D and ∆T , we can apply (1) to find Γ .

IV. IMPLEMENTATION

A. Model-based Search for Optimal M and S

We define the optimal solution as one that can achieve
the highest Γ (1). If two migrations have similar Γ ’s (their
difference is less than 1%), the one with shorter downtime,
remote uptime, and then total migration time are preferred
(in the above order). We argue Γ can truly reflect the user
perceived performance during the migration process.

To find the optimal M and S, we first isolate the two
variables and find the best S by ignoring memory. Then the
calculated S is used as a parameter to search for the best M .
Suppose we are given S and are now searching for the best
M . If the predicted downtime at M = 100% is zero, then the
downtime is zero for any M < 100%. So Γ is monotonically
increasing until it reaches 100%. If we can pre-copy a1%
and a2% (a1 < a2) of memory with convergence, then both
situations have zero downtime, and ∆T for a2% must not
be larger than ∆T for a1% because the a2% case has more
prepared memory pages at the resuming time. In this case, we
will consider U and T , which favor a small M . We can use
binary search to find the minimum M whose Γ is 100%.

On the other hand, if the memory pre-copying cannot
converge at M = 100%, then the downtime is non-zero. Γ
is not 100% for M = 100%. The best Γ is obtained for some
M between 0% and 100%. For any percentage smaller than
that value of M , the downtime is smaller; yet performance
degradation is heavier. While for any percentage larger than
that M , performance degradation gets lighter but the downtime
becomes longer. By ignoring the noises caused by discreteness
and computation errors, it can be assumed that the whole curve
of (M,Γ) is a unimodal curve. By this assumption, we can
use the ternary search to find the best value of Γ . We can
combine the binary search and the ternary search into a novel
search algorithm listed in Algorithm IV.1.

Algorithm IV.1: TERNARYSEARCH(left , right)

if right − left is small enough
then return ((left + right) /2)

else


l← left + (right − left)/3
r ← right − (right − left)/3
if Γ (r) = 100% or Γ (l) > Γ (r)

then TernarySearch(left , r)
else TernarySearch(l, right)

When the same algorithm is applied to storage to find S,
as mentioned before, memory is ignored. If storage does not
converge, memory is unlikely to converge as well since all the
storage access actually goes through memory. If we choose
an S value that cannot converge, then the high update rate of
storage would make the pre-copied blocks updated again while
waiting for memory pre-copying to finish. So for storage, we
only find the best Γ with D = 0.

B. System Implementation on the Xen VM

hypervisorhypervisor

modified
xc_save

modified
xc_restore

memory
other
devices

block
device

memory
other
devices

block
device

VM VM

modified

MM
modified

driver

modified

driver

control
data

Fig. 2. Our system design overview

1) System Design: Fig. 2 shows an overview of our system
architecture. We extend the existing Xen migration manager
(i.e. xc save and xc restore, which run on the source and
destination hosts sending and receiving memory pages respec-
tively). In vanilla Xen, xc save and xc restore only have the
pre-copy and freeze-and-copy phases. They are extended to
support post-copying. xc save’s pre-copy phase is modified to
copy only M% of the memory. The remaining memory pages
are marked in a bitmap (to postcopy) for moving during the
post-copy phase. We also extend the QEMU disk backend sys-
tem with a new layer for traditional storage drivers to support
migration storage migration over a WAN. During the pre-copy
phase, the dirtied trunks in the S% of storage are maintained
in a priority queue based on the write frequencies of each
trunk, which are collected since profiling and continuously
maintained during the pre-copy phase. The least frequently
updated trunks will be migrated first.

2) Page Tracking: The page tracking method is used to
handle the pages marked in the to postcopy bitmap. We ensure
each page table entry (PTE) pointing to such pages has a
specified reserved-bit marked. During the post-copy phase,
access to a marked PTE will trigger what we call a post-copy
fault. A page-copy fault is handled by the hypervisor’s handler,
and will not be passed to the guest’s handler. For performance
reasons, when a page is removed from the to postcopy bitmap,
the update of its corresponding PTE is deferred. So there might
be situations that a marked PTE points to a page which is no
longer in to postcopy. In this situation, the handler just clears
the reserved bit and returns immediately. In other situations,

an on-demand request is sent from xc restore to the xc save.
The VM then keeps retrying the same instruction until the
page is resolved. A scheduler “yield” is used to reduce such
retrying and to wake up xc restore to send the request sooner.
Besides this, if the guest is faulting at a non-critical location,
for example at user level or along a preemptable kernel path,
then the page-faulting process will run out of time slices and
be scheduled out by the guest OS itself soon. However, this
might cause another post-copy fault, so the post-copy handler
must support parallel page requests.

3) Whole Page Overwriting: A method called whole page
overwriting is used to improve the performance of the post-
copy phase. When the hypervisor handles a write post-copy
fault that overwrites a to postcopy page entirely (e.g. when
the VM calls Intel instructions rep movsb and rep stosb with
edx equal to a multiple of page size), it overwrites the page
immediately without sending an on-demand request. Storage
migration could also use whole page overwriting since storage
operations are always in units of blocks. In this way, we not
only save the bandwidth for more critical data, but also reduce
the performance degradation caused by on-demand fetching.
For example, the v8 benchmark suite (v8-bench) [15], in which
nearly 20% of the memory pages are overwritten, can exploit
this technique well.

V. PERFORMANCE EVALUATION

In this section, v8-bench [15] and SysBench [16] are used to
evaluate the proposed migration framework. We installed two
machines A and B in a cluster to act as the source machine
and destination machine. To emulate a WAN environment,
another machine W is used to redirect packets between A
and B, restricting the bandwidth between them as well as
adding delays to packets. The tun/tap driver overhead in A
and B is the same as in any overlay network solution of wide-
area migration such as our previous work WAVNet [8]. All
the machines are equipped with Intel Core2 Duo CPU E6750
running at 2.66GHz with 2GB memory each. Host and guest
OSes are both Linux 3.3.4. The hypervisor is Xen version 4.1.2
with memory management and QEMU backend modified.

A. Evaluation of Access Frequency Profiling

We run the benchmark programs on the VM, and carry out
profiling for 10 time slots. After each time slot, we randomly
restart the VM and delay some time before the next time slot.
These 10 time slots are used to estimate λ and predict the
probability of access to each page/trunk. Another time slot
is profiled to be the test case. j∗ and jactual represent the
predicted and actual values of whether a page/trunk is accessed
respectively. The prediction is based on (2), (3) and (4).

We first use v8-bench to evaluate the memory profiling.
v8-bench is a suite of Javascript-based benchmarks including
cryto, raytrace, regexp, etc. which are executed on the Google
V8 Javascript engine [15]. Each benchmark takes about two
seconds and reports a score. We configure it to repeatedly
execute each of the benchmarks so that a sequence of scores
and timestamps are collected afterward. The results are listed
in Table I. We find that v8-bench is quite memory-intensive.
Within 20 seconds, 36.4% and 45.5% of the memory pages
are read and written respectively. In general, the accuracy of

TABLE I. OVERALL EVALUATION OF THE MEMORY PREDICTION

Read Write
PPPPPj∗

jactual 0 1
PPPPPj∗

jactual 0 1

0 59.8% 10.1% 0 54.1% 3.5%
1 3.8% 26.3% 1 0.4% 42.0%

accuracyR 86.1% accuracyW 96.1%

TABLE II. OVERALL EVALUATION OF THE STORAGE PREDICTION

Read Write
XXXXXXXj∗

jactual 0 1
XXXXXXXj∗

jactual 0 1

0 75.1% 0.9% 0 96.6% 3.4%
1 2.2% 21.9% 1 0.0% 0.0%

accuracyR 96.9% accuracyW 96.6%

memory profiling is good. We found accuracyR and accuracyW
are as high as 86.1% and 96.1% respectively.

We also evaluate the prediction of storage access based on
an I/O-intensive program—SysBench [16]. In this test, we run
SysBench in fileio test-mode with read/write ratio equal to 15.
SysBench will issue random read/write requests to one of the
benchmark files (total size is about 2 gigabytes). The results
are summarized in Table II. Both read and write accuracies
(accuracyR and accuracyW) are above 96% in this case.

B. Evaluation of the Prediction Model

We use our modeling method to predict the migration perfor-
mance of v8 benchmarks. We validate our model by comparing
the predicted results with the real-world experimental results.
The experiments are conducted in a virtualized network with
5-MBps bandwidth and 5-ms round-trip time (RTT).

We first apply estimated λ to predict dirty(τ), and then
use the method as in Akoush et al. [10] to predict the total
migration time, remote uptime and downtime. For the case of
(M,S) = (60%, 50%), as shown in Table III, the predicted
downtime is 49.2s while the actual downtime is 53.7s, which
has an error of 8.4% only.

After D is predicted, from (7) and (8), we use λR to
predict ∆T so as to get Γ . δT is set to 20 seconds. In our
experiments, we could achieve 11ms of on-demand fetching
delay. Therefore, we assume the performance penalty of each
memory miss (φmem) is 11ms. The storage fetching delay
is a little longer as it is with higher latency. We assume
φstorage = 20ms. For v8-bench, the storage activity is so low
that most storage access is cached by the VM memory.

For the case of (M,S) = (60%, 50%), we predict ∆T =
366.28s, which means that it will take the VM D + ∆T =
415.48s to finish the w workload in 20 seconds at full speed.
The performance, as Γ suggests, is only 5%. Thus, we can
tell M = 60% is not a good choice. We plot the predictions
for different combinations of S and M in Fig. 3. In Fig. 3 (a),
only storage is considered, so φmemory is temporarily considered
zero. The storage reads are more frequent than storage writes,

TABLE III. PREDICTION OF T , U AND D

Predicted (s) Actual (s)
Total migration time (T) 1063.3 988

Remote uptime (U) 554.3 493
Downtime (D) 49.2 53.7

so the downtime D is not severe when S grows. However,
∆T increases when S falls below 5%. When S >= 5%,
Γ approaches 100% and the downtime is nearly zero. Our
search algorithm will then consider the remote uptime and
total migration time, which favor smaller S.

In Fig. 3 (b), S is given, e.g. 50%. As long as the storage
could converge, the Γ curve of M would not vary too much
because storage will not introduce extra downtime and storage
on-demand fetching. Because v8-bench is a memory-intensive
benchmark, the best Γ (at M = 95%) in the figure does not
exceed 20%. By applying our search algorithm, we can look up
the solution at a finer resolution. The combination of (M,S)
at (95%, 3%) was thus found.

0

Γ
(%

)

100

100
S

(a) Consider only storage

M

D

D

0
100

100

Γ
(%

)

D
(s

)
0

120

0

P

(b) S = 50%

Fig. 3. The predicted Γ with under different (M,S)’s

 0 200 400 600 800 1000

(a)(0%, 3%)
 0 200 400 600 800 1000

(b)(0%, 50%)
 0 200 400 600 800 1000

(c)(0%, 100%)

 0 200 400 600 800 1000

(d)(20%, 3%)
 0 200 400 600 800 1000

(e)(20%, 50%)
 0 200 400 600 800 1000

(f)(20%, 100%)

 0 200 400 600 800 1000

(g)(40%, 3%)
 0 200 400 600 800 1000

(h)(40%, 50%)
 0 200 400 600 800 1000

(i)(40%, 100%)

 0 200 400 600 800 1000

(j)(60%, 3%)
 0 200 400 600 800 1000

(k)(60%, 50%)
 0 200 400 600 800 1000

(l)(60%, 100%)

 0 200 400 600 800 1000

(m)(80%, 3%)
 0 200 400 600 800 1000

(n)(80%, 50%)
 0 200 400 600 800 1000

(o)(80%, 100%)

 0 200 400 600 800 1000

(p)(100%, 3%)
 0 200 400 600 800 1000

(q)(100%, 50%)
 0 200 400 600 800 1000

(r)(100%, 100%)

memory storage

pre-copy freeze-and-copy post-copy

migration progress:

migration phases:

performance

Fig. 4. Comparison of 18 migrations using different (M,S)’s

To validate our model, 18 combinations of M and S are
experimented; their results are shown in Fig. 4. The pre-
copy, freeze-and-copy and post-copy phases are separately
shown in rose, white and yellow background. The green curve

(with circle markers) represents the migration progress of
storage, increasing from zero to 100%. The red curve (with
cross markers) refers to the migration progress of memory,
starting from somewhere when S of the storage is migrated.
The blue curve is the score of v8-bench, normalized to the
range [0, 100%]. From these 18 figures, we can validate the
predictions we have made:

1) Storage converges even for S = 100%: in Fig. 4
(c)(f)(i)(l)(o)(r), we can see that the percentage of
migrated storage reaches 100% before the memory
starts the pre-copy phase in all cases;

2) Storage does not introduce performance degradation
when S ≥ 3%: in figures (p)(q)(r), the blue curve
stays above 90% during the post-copy phase;

3) The predicted downtime shown in Fig. 3 (b) matches
the width of the freeze-and-copy phases (white areas)
in figures (b)(e)(h)(k)(n)(q).

By comparing the simulated results and the experimental
results, we conclude that the proposed model can predict the
real migration behavior accurately. We can see the (95%, 3%)
case lies between Fig. 4(m) and (q). That means the optimal
solution selected by our model-based solution performed better
than the vanilla pre-copy algorithm (Fig. 4 (r)) and pure post-
copy algorithms (Fig. 4 (a)).

C. Migration Performance Comparison

We compare six different configurations of v8-bench migra-
tions, as shown in Table IV. We tried to compare the model-
based solution with different combinations of pre-copy and
post-copy settings, and try to evaluate the adaptiveness of the
model-based solution.

TABLE IV. SIX CONFIGURATIONS OF MIGRATIONS

Memory (M) Storage (S) Name shown in the figures
pre-copy (100%) pre-copy (100%) pre-copy
pre-copy (100%) post-copy (0%) 100-0
post-copy (0%) pre-copy (100%) 0-100

hybrid-copy (50%) hybrid-copy (50%) 50-50
post-copy (0%) post-copy (0%) post-copy

fractional hybrid-copy FHC

1) Performance of CPU-bound Workloads: For v8-bench,
after adopting the whole-page overwriting technique, the
model-based solution outputs M = 48%, S = 0%. In Fig.
5, we can see that the model-based results, denoted by FHC
in the table, are among the best configurations in every metric.
Notably, the model-based solution can avoid long downtime as
in any configurations with large M , and can also maintain a
reasonable performance.

2) Performance of I/O-bound Workloads: In this test, we
run SysBench. It accesses the files randomly with both read
and write operations, where the read/write ratio is about 4:1
and the cache usage is limited to be within 50 megabytes.

In this case, the model-based solution outputs (M =
98%, S = 25%). The results are compared with other con-
figurations and shown in Fig. 6. As we can see, the FHC
solution achieves 87% Γ and at the same time, unlike pure pre-
copy, the remote uptime stays within 677 seconds. Compared
to a post-copy solution, FHC avoids the severe performance
degradation at the cost of one extra second of downtime,

F
H
C

F
H
C

F
H
C

F
H
C

Fig. 5. Overall performance of v8-bench

F
H
C

F
H
C

F
H
C

F
H
C

Fig. 6. Overall performance of SysBench

which is reasonable. This again demonstrates a good overall
performance of the model-based solution.

VI. CONCLUSION

This work explores the solutions of live VM migration
over a WAN. We propose a flexible and adaptive migration
framework, which seamlessly integrates pre-copy and post-
copy strategies for migrating both memory and storage. By
adjusting the fraction of memory and storage (i.e., M and
S) to be migrated before the VM is resumed at the des-
tination, we are able to model the migration behaviors and
predict four aspects of migration performance, including total
migration time, downtime, remote uptime and performance
degradation. We propose a model-based method to find the
best M and S combination that adapts well to the current
network condition and application behavior, and results in
the fastest performance restoration to full speed. The solution
includes the memory and storage profiling methods, simulation
of pre-copying, performance prediction of post-copying, and
the ternary search for the best (M,S) pair. We implement
the solution into the Xen VM and validate it step by step.
To support the hybrid migration, the implementation employs

a unique page tracking technique to perform memory post-
copying, and a modified QEMU to support pre- and post-copy
storage migration. Our results are compared with traditional
pre-copy and post-copy solutions. The all-round and adaptive
design of our system helps migrate a VM with balanced and
reasonably good performance in all the four aspects.

ACKNOWLEDGMENT

This research is supported by Hong Kong RGC grant HKU
7180/11E.

REFERENCES

[1] P. Mell and T. Grance, “The NIST definition of cloud computing,”
National Institute of Standards and Technology, Information
Technology Laboratory, Tech. Rep., 2009. [Online]. Available:
http://csrc.nist.gov/groups/SNS/cloud-computing/cloud-def-v15.doc

[2] M. Nelson, B.-H. Lim, and G. Hutchins, “Fast transparent migration
for virtual machines,” in Proceedings of the USENIX Annual Technical
Conference, 2005, pp. 391–394.

[3] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, “Live migration of virtual machines,” in Proceedings
of the 2nd USENIX Symposium on Networked Systems Design and
Implementation (NSDI), vol. 2, 2005, pp. 273–286.

[4] M. R. Hines, U. Deshpande, and K. Gopalan, “Post-copy live migration
of virtual machines,” SIGOPS Oper. Syst. Rev., vol. 43, pp. 14–26, July
2009.

[5] P. Riteau, C. Morin, and T. Priol, “Shrinker: Efficient wide-area live
virtual machine migration using distributed content-based addressing,”
INRIA, Rennes, France, Tech. Rep., February 2010.

[6] F. Travostino, P. Daspit, L. Gommans, C. Jog, C. de Laat, J. Mambretti,
I. Monga, B. van Oudenaarde, S. Raghunath, and P. Y. Wang, “Seamless
live migration of virtual machines over the MAN/WAN,” Future Gener.
Comput. Syst., vol. 22, pp. 901–907, October 2006.

[7] S. Akoush, R. Sohan, B. Roman, A. Rice, and A. Hopper, “Activity
based sector synchronisation: Efficient transfer of disk-state for WAN
live migration,” in Proceedings of the 19th IEEE International Sympo-
sium on Modeling, Analysis Simulation of Computer and Telecommu-
nication Systems (MASCOTS), 2011.

[8] Z. Xu, S. Di, W. Zhang, L. Cheng, and C.-L. Wang, “WAVNet: Wide-
area network virtualization technique for virtual private cloud,” in Pro-
ceedings of the 40th International Conference on Parallel Processing
(ICPP), 2011, pp. 285–294.

[9] R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schiöberg, “Live
wide-area migration of virtual machines including local persistent
state,” in Proceedings of the 3rd ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments, 2007, pp. 169–179.

[10] S. Akoush, R. Sohan, A. Rice, A. W. Moore, and A. Hopper, “Predicting
the performance of virtual machine migration,” in Proceedings of the
18th IEEE International Symposium on Modeling, Analysis Simulation
of Computer and Telecommunication Systems (MASCOTS), 2010, pp.
37–46.

[11] T. Hirofuchi, “A live storage migration mechanism over WAN and its
performance evaluation,” Science and Technology, pp. 67–74, 2009.

[12] M. Noack, “Comparative evaluation of process migration algorithms,”
Ph.D. dissertation, Dresden University of Technology, 2003.

[13] Y. Luo, B. Zhang, X. Wang, Z. Wang, Y. Sun, and H. Chen, “Live and
incremental whole-system migration of virtual machines using block-
bitmap,” in Proceedings of 2008 IEEE International Conference on
Cluster Computing, 2008, pp. 99–106.

[14] J. Zheng, T. S. E. Ng, and K. Sripanidkulchai, “Workload-aware
live storage migration for clouds,” in Proceedings of the 7th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution En-
vironments (VEE), vol. 46, no. 7, 2011, pp. 133–144.

[15] “V8 benchmark suite - version 7.” [Online]. Available:
http://v8.googlecode.com/svn/data/benchmarks/v7/run.html

[16] “Sysbench: a system performance benchmark.” [Online]. Available:
http://sysbench.sourceforge.net/

