
Latency-aware Dynamic Voltage and Frequency
Scaling on Many-core Architectures for

Data-intensive Applications
Zhiquan Lai∗, King Tin Lam†, Cho-Li Wang†, Jinshu Su‡∗, Youliang Yan§ and Wangbin Zhu§

∗National University of Defense Technology, China
†The University of Hong Kong, Hong Kong

‡National Key Laboratory of Parallel and Distributed Processing (PDL), China
§Huawei Technologies Co., Ltd., Shenzhen, China

Abstract—Low power is an important design requirement
for HPC systems nowadays. Dynamic voltage and frequency
scaling (DVFS) has become the commonly used and efficient
technology to achieve a trade-off between power consumption
and system performance. However, most of the prior work using
DVFS did not take into account the latency of voltage/frequency
scaling, which is a critical factor in real hardware determining
the efficiency of the power management algorithm. This paper
investigates the latency aspects of DVFS on a real many-core
hardware platform. We propose a latency-aware DVFS algorithm
to achieve profile-guided power management to avoid aggressive
power state transitions. We evaluate our algorithm on the Intel
SCC platform using a data-intensive benchmark, Graph 500.
The experimental results not only show impressive potential
for energy saving in data-intensive applications (up to 31%
energy saving and 60% EDP reduction), but also evaluate the
efficiency of our latency-aware DVFS algorithm which achieves
12.0% extra energy saving and 5.0% extra EDP reduction, while
increasing the execution performance by 22.4%.

Keywords-power management; DVFS; latency-aware; algo-
rithm; Graph 500; data-intensive

I. INTRODUCTION

Power management is an increasingly important aspect in
both research and industry of high performance computing
(HPC). As computing systems are approaching a huge scale,
power consumption takes a great part in their total costs of
ownership. Dynamic voltage and frequency scaling (DVFS)
is an efficient technology to achieve a trade-off between per-
formance and power by dynamically and adaptively changing
of the clock frequency and voltage [1][2][3][4][5]. However,
most of the prior work based on DVFS did not consider the
latency of voltage/frequency scaling. As we investigated, the
latency of voltage scaling is non-negligible, especially in the
many-core architecture with multiple voltage domains, e.g. the
Single-chip Cloud Computer (SCC) platform [6]. A power
state transition without awareness of the latency would not
achieve expected power efficiency, and even worse sometimes,
introduces performance lost and more energy dissipation.

The goal of this paper is to explore latency-aware DVFS
algorithm for data-intensive applications, which are expected
having more potential for energy saving then compute-
intensive applications [7]. There are a few of existing work
considering the latency overhead of DVFS. Ye et al. [8]

proposed reducing the number of power state transitions by
including task allocation into learning-based dynamic power
management (DPM) for multi-core processors. However, pro-
gram execution pattern usually change according to the work
flow so that the optimal power settings for each phase of
program execution are likely to be different. Although task
allocation reduces the times of DVFS scaling, it does miss
some opportunities for power/energy saving. Ioannou et al.
[9], who also used the Intel SCC for evaluation, realized
the latency overhead problem, but they just make the voltage
transitions more far away with each other using a threshold of
the least distance time.

There are also number of DVFS-based DPM scheme
proposed for many-core systems [9][10][11][12]. Ma et al.
adopted control theory to precisely control the power of
the entire many-core chip [10]. Ioannou et al. proposed a
hierarchical DVFS controller using phase prediction algorithm
for MPI application [9]. David et al. demonstrated a power
management algorithm that runs in real time and dynamically
adjusts the performance of islands of cores to reduce power
consumption while maintaining the same level of performance
[13]. However, they all did not consider the latency overhead
of DVFS, even though they did the evaluation on the real
many-core hardware platforms.

In this paper, we propose a latency-aware DVFS algorithm,
which avoids unnecessary aggressive power state transitions.
The aggressive here means too short the power state transition
is away from last transition. Aggressive transitions will cause
frequent voltage/frequency scalings which should introduce
more overhead of DVFS. According to our experimental
results, the latency-aware algorithm is able to achieve more
significant energy and EDP improvements than the baseline
power management. The contribution of this paper includes
following aspects:

1. First, we study in depth the latency characteristics of
voltage/frequency scaling on a real many-core hardware
platform, Intel SCC. We find the latency of voltage
scale on Intel SCC sometimes can be up to hundreds
of milliseconds.

2. Based on the DVFS latency investigation on many-
core architecture, we propose a latency-aware DVFS

algorithm for our baseline power management approach,
profile-based power management. But the algorithm can
be applied to other power management approaches.

3. We evaluate our latency-aware DVFS algorithm on
the Intel SCC using the Graph 500 benchmark. The
experimental results show that our profile-based DPM
scheme obtains impressive energy and EDP savings.
Moreover, the latency-aware DVFS algorithm achieves
extra improvement in both performance gain and energy
saving.

The remainder of this paper is organized as follows. Sec-
tion II discusses the basic concept of DVFS latency and its
investigation on many-core architecture. We describe our new
the latency-aware DVFS algorithm in Section III. Section
IV presents experiments, and Section V analyzes the results
collected. Finally, we conclude the paper in Section VI.

II. LATENCY OF DVFS ON MANY-CORE ARCHITECTURE

Before proposing the latency-aware DVFS algorithm, we in-
vestigate the latency behavior of voltage/frequency scaling. In
particular, we fucus the study on many-core tiled architecture
with multiple voltage domains.

A. Basic concept of DVFS latency

As an important feature for dynamic power management
(DPM), many chips now provides multiple power states (dif-
ferent states of voltage and frequency) for the system to
adaptively switch betweeen according to different program
execution patterns. One basic but important rule during DVFS
is that, the voltage must support the frequency all the time, i.e.
the current frequency can not exceed the maximal frequency
which the current voltage supports. As shown in Fig. 1, we
assume there are three different frequency values provided
by the hardware, F0, F1, F2, where F0 < F1 < F2.
For each frequency value, there is a theoretical least voltage
value that satisfies this frequency’s need. According to this
condition, we can draw a line of “safe boundary” for all
voltage/frequency states. Thus, all the voltage/frequency states
above this boundary are not safe (or dangerous) as they
violate the basic condition, which could damage the hardware,
whereas all the voltage/frequency states under this boundary
are considered safe.

However, to ensure safe execution, we usually apply a
higher voltage value than the theoretical least voltage value. As
shown in Fig. 1, there is a margin between the least voltage
value and the theoretical safe boundary for each frequency.
Actually, this margin is somehow necessary in practice. Since
the execution performance only depends on frequency, keeping
the voltage at the least voltage values should be the most
power-efficient states (the green states in Fig. 1). Of course,
we can apply much higher voltage than the least voltage for
each frequency (the orange states in Fig. 1). Although these
states are safe, they unnecessarily consume more power than
those least-voltage states with the same frequency.

If we scale the power state (values of voltage and frequency)
from (Vs ,Fs) to (Vd ,Fd), assuming they are both safe states,

Voltage

Fr
e

q
u

en
cy

F0

F1

F2

Vleast0 Vleast1 Vleast2

Power-efficient State

Not Power-efficient State

Dangerous State

Max frequency for
certain voltage

s0 s1 s2

s3
s4 s5

s6 s7
s8

Voltage

Fr
e

q
u

en
cy

F0

F1

F2

Vleast0 Vleast1 Vleast2

Energy-efficient State

Energy-inefficient State

Dangerous State

Safe Boundary

s0 s1 s2

s3
s4 s5

s6 s7
s8

Fig. 1. Relationship between voltage and frequency during dynamic scaling

TABLE I
LATENCY OF DVFS IN DIFFERENT SCALING CASES

Case Strategy of Volt-
age/Freuqency Scaling

Latency

Fs > Fd &&
Vs > Vd

1. Scaling down frequency
2. Waiting till frequency scaled
3. Scaling down voltage

Latency(Fs→Fd)

Fs < Fd &&
Vs < Vd

1. Scaling up voltage fisrt
2. Waiting till voltage scaled
3. Scaling up frequency
4. Waiting till frequency scaled

Latency(Vs→Vd)+
Latency(Fs→Fd)

we indeed have to scale the voltage and frequency separately.
As we know, there is a delay for both frequency and voltage
scaling. However, the latency of voltage scaling is always
much larger than that of frequency scaling. Thus we must
consider whether the power state will exceed the safe boundary
during their scaling. In the case of scaling up voltage and
frequency, if we alter the frequency first, then the voltage may
not be high enough to support the scaled frequency.

We found that the latency of voltage scaling should be taken
into account only when both the frequency and voltage need to
be scaled up. In other cases, where min(Vs, Vd) is high enough
to support max(Fs, Fd), although latency is needed to scale the
voltage from Vs to Vd (also for frequency from Fs to Fd), as
current voltage level is high enough to support the frequency,
the programs can keep going after scaling the frequency first.
Apart from the minuscule latency of frequency scaling, there
is no noticeable latency after scaling down the voltage. In the
case that Vs < Vd and Fs < Fd, after scaling up the voltage
(we always scale up the voltage first for reliability in this case),
we should wait for a moment to let the voltage reach the level
of Vd, which is safe to support the new frequency Fd. If we
scale the frequency to Fd when the voltage level is not high
enough, the CPU will stop working because the voltage can
not support the frequency. This situation is very dangerous and
could damage the chip.

In conclusion, we have the strategies for voltage/frequency
scaling and the corresponding latency. For low power, we

��� � ������ � ∙ ������� �������� � ∙ ����� � ∙ ������� ������ � ∙ ������� � 2

∆�∆������
�� �����ℎ������ � �����→� ������������������

0

50

100

150

200

1 2 3 4 5 6

La
te

n
cy

 o
f

sc
a

li
n

g
 u

p
 v

o
lt

a
g

e

(m
s)

of voltage domains scaling voltage simultaneously

0.8 -> 0.9

0.9 -> 1.1

Fig. 2. Latency of voltage scaling on chip with multiple voltage domains

assume the power states switch between power-efficient states.
In these cases, it is true that Fs > Fd only if Vs > Vd. As
shown in TABLE I, in the case of scaling down the power state,
we scale down the voltage after scaling down the frequency so
that the programs need not wait for voltage scaling to finish.
When scaling up the power state, the programs have to suspend
and wait until the voltage gets scaled, and then continue on
scaling the frequency.

1) Latency of DVFS on many-core architecture: The lack
of the model of DVFS latency for many-core architecture with
multiple voltage domains is a crucial research gap to fill. We
investigate and contribute this model on a real many-core chip,
the Intel SCC [6], which is an experimental 48-core CPU for
many-core software research consists of 6 voltage domains
and 24 frequency domains. On the SCC chip, each 2-core
tile forms a frequency domain, while every four tiles form
a voltage domain. The frequency of each tile can be scaled
by writing the register shared by the two cores of the tile.
The voltage of each voltage domain can be scaled by writing
the voltage controller register (VRC) shared by all the voltage
domains [14].

According to Intel’s documentation [15], voltage changes
in the SCC can happen in the order of milliseconds whereas
frequency changes can happen within 20 CPU cycles. To take
the latency of frequency and voltage scaling into account,
we conducted experiments to measure the latencies accuately.
By our measurement, we found that the latency of frequency
scaling is nearly unnoticeable, and we just concentrate on the
latency of voltage scaling. In the cases that need to wait for
voltage scaling, the latency is introduced by double writing on
the VRC register. The second write of the VRC register will
return when the voltage reaches the desired value.

Fig. 2 shows the measured latency of voltage scaling for
two cases, from 0.8V to 0.9V and from 0.9V to 1.1V. For a
single voltage domain, the latency of voltage scaling in the two
cases is about 30ms. However, when there are multiple voltage
domains scaling the voltage simultaneously, the latency will
be much larger and linearly increases with the number of
domains. Scaling 6 voltage domains simultaneously from 0.8V

to 0.9V needs about 195ms.

III. LATENCY-AWARE POWER MANAGEMENT

A. Phase-based DVFS

Our basic power management approach is phase-based and
implemented into a shared virtual memory (SVM)library. The
latency-aware DVFS algorithm that we are going to propose
will be evaluated based on, but not limited to, this power
management approach. In the SVM programming environ-
ment, applications are generally partitioned by barriers or
locks. Moreover, the code segments across a barrier or a
lock operation are likely to perform different computations
and exhibit different memory access patterns. Phases in our
implementation are defined as stages partitioned by barriers
and locks, including the busy waiting stages in barriers and in
locks.

Thus, one of the key problems of phase-based DVFS is
how to determine the optimal power level for each phase. We
designed a model of power versus performance to predict the
power and runtime performance of each phase at different
power levels. Then we could choose the optimal one. The
power model and performance model are based on two in-
dexes, instructions per cycle (IPC) and bus utilization (ratio
of bus cycles), which are derived from performance monitor
counters (PMC) provided by the CPU. However, as the power
model and performance model are not the main work of the
paper, we will skip their details in this paper.

Assuming the goal of power management is to minimize the
energy delay product (EDP) [16], which is a commonly used
index to represent the power efficiency. We can predict the
EDP of each phase at a certain power level using the power
and performance model as follows:

EDP (f) = Energy(f) ·Runtime(f)

= Runtime(f) · Power(f) ·Runtime(f)

= Power(f) ·Runtime(f)2
(1)

Then we can determine the optimal power level for each
phase to achieve the minimal EDP. However, this method
does not consider the latency of voltage/frequency scaling. If
the power level before the phase starts is different from the
predicted optimal power level for this phase, we have to scale
the power level firstly, and could introduce some latency and
extra power consumption. Thus, the method which does not
take latency into account could make wrong decisions.

B. Latency-aware DVFS

Based on our investigation of DVFS latency in Section
II, latency of voltage/frequency scaling is non-negligible and
must be taken into account of the optimal power level turning.

Besides the latency of voltage/frequency scaling, issuing
power requests can also contribute some portions of the overall
latency as it will cause state switches between user space and
kernel. We denote the latency of scaling up voltage as ∆s

and the latency of issuing a power request as ∆i. The optimal
power level (assuming the optimization is targeted at the least

EDP) for a certain phase, denoted by foptm, should be the
frequency value that minimizes the sum of EDP in running
the phase and the EDP consumed in voltage/frequency scaling
(from current power level fc to frequency f), denoted by
EDPphaseRun(f) and EDP(fc→f) respectively. The minimum
sum of EDPs could be denoted by sumEDPmin as follows:

sumEDPmin

= min
fmin6f6fmax

(EDPphaseRun(f) + EDPfc→f)

= min
fmin6f6fmax

(pf (tf)2 +
1

2
(pfc + pf)(∆i + ∆sfc→f

)2)

(2)

As shown in the above formula, the power during voltage
and frequency scaling is estimated to be the average power of
the powers before and after the scaling .

Thus, the optimal power level foptm can be denoted by
foptm = f s.t. sumEDP (f) = sumEDPmin.

The power at current power level (pfc), power (pf) at
frequency level f and runtime (tf) at f can be estimated using
the performance/power model.

Our current design adopts an offline profile-based approach.
The optimal power level for each phase, i.e. a pair of voltage
and frequency values minimizing sumEDP , can be chosen
from TABLE III in the profiling run. Then these optimal power
settings will be applied to subsequent production runs.

As we reveal in Chapter II, the largest latency for voltage
scaling is about 195ms in our tests. On the other hand, since
the latency of frequency scaling is in the order of cycles, we
can simply ignore this overhead. Thus, we set ∆s to be 195ms
in the above formula. Although the latency for the local core
to issue a power request is in the order of thousands of cycles,
we set ∆i to be 2ms in our experiments to avoid the overhead
introduced by the state switches.

IV. EXPERIMENT

The evaluation of our latency-aware DVFS solution is
conducted on Intel’s SCC using the Graph 500 benchmark.

A. The Graph 500 Benchmark

Graph 500 is a project maintaining a list of the most
powerful machines designed for data-intensive applications
[17]. Researchers observe that data-intensive supercomputing
applications are increasingly important for representing to-
day’s HPC workloads, but current benchmarks do not provide
useful information for evaluating supercomputing systems for
data-intensive applications. In order to guide the design of
hardware architectures and software systems to support such
applications, they proposed the Graph 500 benchmark.

The Graph 500 is a data-intensive program implementing
graph algorithms as its core workload. The main work-flow of
this benchmark is described in TABLE II. We port the Graph
500 benchmark to a shared virtual memory (SVM) library
tailored to the Barrelfish operating system [18] running on
the Intel SCC. The SVM library implements an all-software

TABLE II
ALGORITHM OF GRAPH 500 BENCHMARK

Algorithm 1: Graph 500 benchmark
Step 1: Generate the edge list.
Step 2: Construct a graph from the edge list.
Step 3: Randomly sample 64 unique search keys with degree at least

one, not counting self-loops.
Step 4: For each search key:
Step 4.1: Compute the parent array.
Step 4.2: Validate that the parent array is a correct BFS search tree for

the given search tree.
Step 5: Compute and output performance information.

TABLE III
SAFE FREQUENCY AND LEAST VOLTAGE TABLE

Frequency
Divider

Frequency
(MHz)

Least Voltage
(V)

Least Voltage
Level

2 800 1.1 4
3 533 0.9 2
<=4 = 1600/Fdiv 0.8 1

solution to restore the cache coherence such that programma-
bility at the application level won’t be compromised. In our
experiment, the execution of Graph 500 is divided into 275
phases by barriers and locks, including two times of BFS
searching.

B. Experimental Settings

All the experiments are conducted on 48 cores of the SCC.
The problem size of Graph 500 is set as follows: Scale = 18
(262144 vertices) and Edge factor = 16 (4194304 edges). As
the temperatures of the SCC board is maintained at around 40,
we ignore the impact of the temperature on the power of SCC
chip. The clock frequencies of both the mesh network and
memory controllers (MCs) of the SCC are fixed at 800MHz
during the experiments.

As discussed in Section II.A , the frequency of a frequency
domain could be scaled only if the frequency value is “safe” at
the current voltage. In SCC platform, the frequency is scaled
by a frequency divider (Fdiv) with value from 2 to 16, and
the frequency value will be 1600MHz/Fdiv. According to Intel
SCC documentation [14], voltage of 0.8V is enough to support
533MHz. However, in the case of booting Barrelfish on 48
cores of SCC, if the initial voltage is 0.8V while the initial
frequency is 533MHz, the booting process will always fail
at bootstrap of the 25th core. What’s more, we found that
the system displayed some weird errors when the voltage was
scaled down to 0.7V, especially when we launch programs
on a large number of cores (e.g. 48 cores). In order to keep
the program run safe, we set the least voltage of 533MHz
to be 0.9V, and 0.8V for frequency lower than 400MHz
(inclusively). The safe frequency and least voltage (SFLV)
table we used for the test bed is shown in TABLE III.

Based on the experimental conditions discussed above, we
conducted three experiments with different power manage-

TABLE IV
THE RESULT OF RUNTIME, POWER, ENERGY AND EDP OF GRAPH 500

UNDER DIFFERENT EXPERIMENT SETTINGS

Static800M Latency-unaware Latency-aware
Runtime(s) 28.03 40.86 33.38
Power(W) 62.81 33.76 36.41
Energy(J) 1760.31 1379.24 1215.23
EDP(Js) 110567.83 46560.82 44242.83

Runtime* 1.000 1.458 1.191
Power* 1.000 0.537 0.580
Energy* 1.000 0.784 0.690
EDP* 1.000 0.421 0.400

ment policies. They are “Static800M”, “Latency-unaware” and
“Latency-aware”, which are described as follows:

Static800M: This is the baseline experiment using a static
power model. All the CPUs’ frequencies are set to 800MHz,
and the voltages are set to the least value of 1.1V during this
experiment. The profile information of Graph 500 benchmark
is also derived using this experimental setting.

Latency-unaware: This experiment makes use of our basic
methodology of profile-based power management, except the
latency-aware DVFS algorithm. Although we do not consider
the latency of DVFS in this experiment, we set the latency
of issuing a power request (∆i discussed in Section III.B) to
2ms to take into account the overhead of state switches.

Latency-aware: Based on the “Latency-unaware” setting,
we consider the latency of voltage scaling using the algorithm
described in Section III.B. The latency of voltage scaling up
is set to be the maximal value of 195ms.

V. RESULTS AND ANALYSIS

A. Results

Under the experimental settings described above, the results
of the three experiments are shown in TABLE IV.

In the table, Runtime denotes the entire execution time of
Graph 500, including two times of breadth-first search (BFS)
for simplicity. Power refers to the chip power of the SCC,
including the power of the CPU cores and the network-on-
chip (NoC). Energy is the production of power and runtime;
and EDP is the product of energy and runtime. We also
present the results (the items marked with *) normalized to
the corresponding values in “Static800M”, referring to . For
ease of understanding, we present the normalized values in
Fig. 3.

From the experimental results, we can find that both of
the two experiments using DVFS achieve great energy and
EDP saving compared with the static power model. The
basic profile-based power management policy achieves 21.6%
energy saving and 57.9% EDP reduction. The policy improved
with the latency-aware DVFS algorithm achieve 31.0% energy
saving and 60.0% EDP reduction. This implies there is much
potential for energy saving in the data-intensive application.
Moreover, the system with the latency-aware DVFS algorithm
achieves more energy and EDP savings (12.0% and 5.0%

•

•

∆�
•

0.00

0.40

0.80

1.20

1.60

Static_800M Non Latency-aware Latency-aware

N
o

r
m

a
li

z
e

d
 v

a
lu

e

runtime* power*

energy* EDP*

Fig. 3. The result of runtime, power, energy and EDP of Graph 500 under
different experiment settings. The values are normalized to the corresponding
values in Static 800M

respectively) than that without the algorithm, and improves
the execution performance by 22.4% as well.

B. Analysis and Discussion

Since our power management approach is profile-based, we
present the profile of Graph 500 for dynamic voltage/frequency
scaling. The profile includes the optimal power setting for each
phase. As it is quite common that the program pattern of the
master process (core0) is somehow different from that of the
processes running on other cores, we adopt core0’s profile and
for master process and core1’s profile for other cores.

Fig. 4 shows the profile information derived without the
latency-aware algorithm. The x-asis denotes the phase number,
and y-asis denotes the optimal frequency (MHz) for corre-
sponding phase. As described in Section IV.B, the least voltage
for frequency of 800MHz is 1.1V; for 533MHz it is 0.9V; and
for other frequency levels under 533MHz, it is 0.8V. We can
find that there are many aggressive DVFS decisions due to
the lack of latency awareness. For example, as pointed by the
arrows in the figure, there are many times of frequency scaling
among different voltage levels, which lead to voltage scaling
with long latency.

As proposed in Section III, we expect that the latency-aware
DVFS algorithm can avoid such aggressive DVFS decisions
due to long latency of voltage scaling. Fig. 5 shows the profile
of Graph 500 with our latency-aware algorithm enabled. We
can see that, there are much fewer DVFS decisions among
different voltage levels after applying latency-aware DVFS al-
gorithm. The DVFS decisions are made more “conservatively”
in the cases when voltage scaling is needed.

Fig. 6 shows the chip power of the SCC when executing of
Graph 500 under different power management policies. Before
the 13 seconds of runtime in this figure, the performance and
power under different policies are nearly the same. This is
because the program is performing compute-intensive edge
generation and graph construction in that time range, where
opportunity for power saving is lacking (so that high power
setting is applied). Beyond this range, the program becomes
more data-intensive, so dynamic power management policies

0

200

400

600

800

1000

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

F
re

q
u

e
n

cy
 (

M
H

z)

Phase #

Optimal-frequency-core0 Optimal-frequency-core1

ase #

ore0 ore1

e (s)

800M

aware

aware

Fig. 4. Profile of Graph 500 WITHOUT latency-aware algorithm. In the
figure we can find some aggressive DVFS decisions which will cause power
state transitions between different voltage levels

0

200

400

600

800

1000

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

F
re

q
u

e
n

cy
 (

M
H

z)

Phase #

Optimal-frequency-core0 Optimal-frequency-core1

e (s)

800M

aware

aware

Fig. 5. Profile of Graph 500 WITH latency-aware algorithm

10

30

50

70

90

0 5 10 15 20 25 30 35 40 45

C
h

ip
 P

o
w

e
r

(W
)

Runtime (s)

Power-Static800M

Power-Non-latency-aware

Power-Latency-aware

Fig. 6. Compare of chip power during execution under different power
management polices

get room to lower the power with little performance lost.
Moreover, with the latency-aware DVFS algorithm, dynamic
power management avoids much aggressive DVFS scaling
which costs long latency. So the latency-aware DVFS algo-
rithm achieves better runtime performance.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have investigated the latency characteristics
of DVFS, especially on many-core architecture with multiple
voltage domains. Based on the study, we proposed a novel
latency-aware DVFS algorithm to void aggressive scaling de-
cisions. Experimental evaluations using Graph 500 benchmark
were conducted on the Intel SCC platform. The experimental
results show that our latency-aware DVFS algorithm achieved
22.4% better performance, 12.0% more energy saving and
5.0% more EDP reduction than a basic profile-based dynamic
power management policy.

Currently, the impressive results achieved by our latency-
aware DVFS algorithm hinge on an off-line profiling scheme.
We plan to apply the concept of latency-awareness to on-line
power management policies. We will also present our profile-
based power management scheme in detail soon.

ACKNOWLEDGEMENT

This research is supported by Hong Kong RGC grant HKU
716712E. Special thanks go to Intel China Center of Parallel
Computing (ICCPC) for providing their SCC platform in Wuxi

to support this work. The work of this paper also supported
by Program for Changjiang Scholars and Innovative Research
Team in University (PCSIRT, No. IRT1012) and Aid Program
for Science and Technology Innovative Research Team in
Higher Educational Institutions of Hunan Province.

REFERENCES

[1] M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for
reduced cpu energy,” in Proceeding of the 1st USENIX Conference
on Operating Systems Design and Implementation (OSDI). USENIX
Association, 1994.

[2] K. Govil, E. Chan, and H. Wasserman, “Comparing algorithm for
dynamic speed-setting of a low-power cpu,” in Proceedings of the 1st
Annual International Conference on Mobile Computing and Networking
(MobiCom). 215546: ACM, 1995, pp. 13–25.

[3] D. Qingyuan, D. Meisner, A. Bhattacharjee, T. F. Wenisch, and R. Bian-
chini, “Coscale: Coordinating cpu and memory system dvfs in server
systems,” in Proceeding of the 45th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2012, pp. 143–154.

[4] E. L. Sueur and G. Heiser, “Dynamic voltage and frequency scaling: the
laws of diminishing returns,” in Proceedings of the 2010 International
Conference on Power Aware Computing and Systems. 1924921:
USENIX Association, 2010, pp. 1–8.

[5] J. Donald and M. Martonosi, “Techniques for multicore thermal manage-
ment: Classification and new exploration,” in Proceeding of ACM/IEEE
International Symposium on Computer Architecture (ISCA), 2006, pp.
78–88.

[6] J. Howard, S. Dighe, S. Vangal, G. Ruhl, N. Borkar, S. Jain, V. Erra-
guntla, M. Konow, M. Riepen, M. Gries, G. Droege, T. Lund-Larsen,
S. Steibl, S. Borkar, V. De, and R. V. D. Wijngaart, “A 48-core ia-32
message-passing processor in 45nm cmos using on-die message passing
and dvfs for performance and power scaling,” IEEE Journal of Solid-
State Circuits, vol. 46, no. 1, pp. 173–183, 2011.

[7] K. W. Cameron, R. Ge, and X. Feng, “Designing computational clusters
for performance and power,” Advances in Computers, vol. 69, pp. 89–
153, 2007.

[8] R. Ye and Q. Xu, “Learning-based power management for multi-core
processors via idle period manipulation,” in Proceeding of the 17th Asia
and South Pacific Design Automation Conference (ASP-DAC), 2012, pp.
115–120.

[9] N. Ioannou, M. Kauschke, M. Gries, and M. Cintra, “Phase-based
application-driven hierarchical power management on the single-chip
cloud computer,” in Proceeding of the 20th International Conference on
Parallel Architectures and Compilation Techniques (PACT), 2011, work
mainly done while N. Ioannou was an intern at Intel Labs.

[10] K. Ma, X. Li, M. Chen, and X. Wang, “Scalable power control for many-
core architectures running multi-threaded applications,” in Proceeding of
ACM/IEEE International Symposium on Computer Architecture (ISCA),
2011.

[11] J. Sartori and R. Kumar, “Proactive peak power management for many-
core architectures,” University of Illinois at Urbana-Champaign, Tech.
Rep. CRHC-07-04, 2007.

[12] D. Simone, “Power management in a manycore operating system,”
Masters Thesis, 2009.

[13] R. David, P. Bogdan, R. Marculescu, and U. Ogras, “Dynamic power
management of voltage-frequency island partitioned networks-on-chip
using intel’s single-chip cloud computer,” in Proceeding of International
Symposium on Networks-on-Chip (NOCS), 2011, pp. 257–258.

[14] “Scc external architecture specification (eas) (revision 0.94),” Intel Labs,
Tech. Rep., 2010.

[15] “The scc programmer’s guide (revision 1.0),” Intel Labs, Tech. Rep.,
2010.

[16] A. Weissel and F. Bellosa, “Process cruise control: Event-driven clock
scaling for dynamic power management,” in Proceeding of the In-
ternational Conference on Compilers, Architecture and Synthesis for
Embedded Systems (CASES), 2002.

[17] Graph500, “The graph 500 benchmark.” [Online]. Available:
http://www.graph500.org

[18] A. Baumann, P. Barhamy, P.-E. Dagandz, T. Harrisy, R. Isaacsy, S. Peter,
T. Roscoe, A. SchÃijpbach, and A. Singhania, “The multikernel: A new
os architecture for scalable multicore systems,” in Proceeding of ACM
Symposium on Operating System Principles(SOSP), 2009.

