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ABSTRACT
In this paper, we aim at optimizing fault-tolerance tech-
niques based on a checkpointing/restart mechanism, in the
context of cloud computing. Our contribution is three-fold.
(1) We derive a fresh formula to compute the optimal num-
ber of checkpoints for cloud jobs with varied distributions
of failure events. Our analysis is not only generic with no
assumption on failure probability distribution, but attrac-
tively simple to apply in practice. (2) We design an adap-
tive algorithm to optimize the checkpointing effect regarding
various costs like checkpointing/restart overhead. (3) We
evaluate our optimized solution in a real cluster environ-
ment with hundreds of virtual machines and Berkeley Lab
Checkpoint/Restart tool. Task failure events are emulated
via a production trace produced on a large-scale Google data
center. Experiments confirm that our solution is fairly suit-
able for Google systems. Our optimized formula outper-
forms Young’s formula by 3-10 percent, reducing wall-clock
lengths by 50-100 seconds per job on average.

1. INTRODUCTION
Cloud computing [1] is becoming a compelling paradigm in

provisioning elastic services and on-demand resources. The
cloud model investigated in our paper is based on Platform-
as-a-Service (PaaS) [1], where users can compose complex
requests (or jobs) based on off-the-shelf web services. Each
job could be made up of one or more tasks and each task
execution requires multiple types of resources. Each task
is executed in a particular virtual machine (VM) instance,
whose resource (such as CPU rate, memory size) is isolated
via virtual resource isolation technology [2, 3].
With the fast advance of web applications, fault tolerance

has become a fairly serious issue in cloud computing. On
the one hand, more and more high performance comput-
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ing (HPC) applications are being developed over cloud plat-
forms. Evangelinos et al. [4], for example, confirmed the fea-
sibility of running coupled atmosphere-ocean climate mod-
els on Amazon EC2 [5]. Nurmi et al. [6] made use of VMs
to build a cloud platform (called EUCALYPTUS) allowing
Grid users to run HPC applications. In general, large-scale
systems always face more or less fault-tolerance problems.
For example, the BlueGene/L system with 100k nodes at
Lawrence Livermore National Laboratory (LLNL) experi-
ences an L1 cache bit error every 8 hours [7], and a hard fail-
ure every 7-10 days. On the other hand, over-commitment
of physical resources is very common in cloud systems, in
order to achieve high resource utilization. According to a
Google trace [8, 9] with 10k+ hosts, for example, Reiss. et
al. [10] showed that the requested resource amounts are of-
ten greater than the total capacity of Google data centers.
Such an over-commitment may cause exhaustion of physical
resources and, eventually, may lead to kill or eviction events
for low priority tasks [9].

In comparison to the traditional HPC/Grid platforms,
fault tolerance issue in the context of cloud computing faces
at least two new challenges. (1) Cloud jobs are much smaller
than Grid jobs (as reported by Di’s work [11] based on
Google trace [9]), so that cloud job execution time is more
sensitive to the impact of checkpointing/restart cost. (2)
The probability of failure occurrences for cloud jobs may
largely differ from that for HPC/Grid jobs. This is due to
the fact that cloud resources are often allocated with more
restrictions, like user payments and task priorities. For in-
stance, Yi et al. [12] showed tthat he failure probability den-
sity function (PDF) of Amazon cloud spot instances is not
only dependent on task length but is also related to user bids.
Cirne et al. [13] showed that the failure probability of Google
jobs, observed through real-world production traces, follows
a distribution with a saw-tooth curve. These observations
contrast the failure probability distribution of HPC/Grid
jobs [14, 15, 16], which is characterized as a rather simple
independent and identical distribution (IID).

In this paper, we mainly answer the four following ques-
tions:

• Based on the characterization of checkpointing/restart
cost and on the statistics of failure events of cloud
tasks, how to optimize the number of checkpoints for
each task? Since cloud task failure events may not sim-



ply depend on a particular probability distribution, we
have to analyze the issue with no assumption on proba-
bility distribution. This contrasts the traditional anal-
ysis like Young’s work [17] or Daly’s work [14], which
assumes that failure probability follows an Exponential
distribution. In this paper, we derive a novel succinct
formula to compute the optimal number of checkpoint-
ing intervals. We also prove that Young’s formula [17]
can be considered a particular case of our new formula.

• How to dynamically tune the optimal solution with
the checkpoint/restart mechanism at runtime, in or-
der to adapt to possible changes of the failure proba-
bility distribution? In the context of cloud computing,
task failure probabilities may change over time. For in-
stance, if a cloud user dynamically changes the bid on
service instances in Amazon EC2 [5], or the priority on
a Google cloud data center [9], the failure probability
changes accordingly.

• How to optimize the tradeoff between checkpointing
a task memory on local disks or on a shared disk?
Checkpointing on shared disks leads to higher relia-
bility and flexibility as it avoids the impact of the
local node failures and supports implicit process mi-
gration. However, this approach incurs heavier check-
pointing costs and possible bottleneck problems. In
contrast, storing memory states in a local disk re-
duces the checkpointing costs, but incurs heavier pro-
cess migration costs. Based on Berkeley Lab Check-
point/Restart (BLCR) [20], for example, before restart-
ing a failed task on another host, one has to transfer
the task memory from the (ram)disk of its last execu-
tion host to the disk of the current host, introducing
extra disk read/write costs.

• What are the experimental results like, when apply-
ing our dynamic optimized fault-tolerant method on
a real-cluster environment deployed with VMs? We
evaluate it on a real cluster environment deployed with
XEN’s hypervisor [18] and BLCR [20], unlike other tra-
ditional work that performs evaluation only by simu-
lation or hypothetical cases. We reproduce the overall
benchmark based on Google’s one-month production
trace [9], in which each job contains one or more tasks
(such as bag-of-tasks like Mapreduce [19]). Experi-
ments confirm that our fault-tolerant solution can ef-
fectively improve the workload processing ratio by 3-10
percents.

The rest of this paper is organized as follows. In Section 2,
we present the overview of our cloud model and introduce
the fault-tolerance mechanism. We formulate our research
problem in Section 3. In Section 4, we present our deriva-
tion of the optimal number of checkpointing intervals in the
context of cloud computing, as well as our adaptive solution
with minimized execution cost. We present experimental
results in Section 5. We discuss related work in Section 6.
Finally, we provide concluding remarks and hints for future
work in Section 7.

2. SYSTEM OVERVIEW
The system architecture of our fault-tolerant cloud plat-

form is shown in Figure 1, which is basically consistent with

most cloud models, e.g., Google task execution model [9]. A
user request (a.k.a., a job) is made up of one or more tasks,
each of which is an instance of a cloud service (or online
application). Job scheduling layer is used to coordinate the
job priorities, so that they can be treated in a fair way or the
overall system can work quite efficiently. Resource alloca-
tion layer is responsible for allocating resource fractions for
cloud tasks based on specific demands, and for performing
resource isolation by hypervisor on selected VMs if needed.

F
a
u

lt
 T

o
le

ra
n

c
e

Figure 1: System Architecture of Composite Cloud
Service System

The overall cloud system is often organized in a loosely-
coupled way. For example, Google web search system [21]
covers 10k+ servers worldwide, each comprising hundreds
of PC commodity machines. The fault tolerance on each
server is autonomously organized for purpose of high relia-
bility and performance. Accordingly, our research is based
on a particular large-scale data center with many execution
hosts.

In our cloud model, each job is processed according to the
procedure illustrated in Figure 2. At the beginning, a job
is submitted and analyzed by job parser, in order to predict
the job workload based on its input parameters. Recently,
many effective workload prediction methods were proposed,
like the polynomial regression method [22]. As there are
available resources, one unprocessed task will be selected
and put in a pending queue, waiting for the scheduling no-
tification with a selected qualified host and a VM instance
running atop it. In our scheduling policy, the physical host
with the lightest load will be selected (In our experiment,
we choose the host with the maximum available memory
size due to Google job’s features, to be further discussed
later). The corresponding hypervisor will perform the re-
source isolation for the selected VM to match the resource
customization. The computing result will be cached in the
VM, in case of data transmission to a succeeding task.

In our design, we use three specific threads to periodically
check the liveness of each physical host, VM, and task run-
ning process. For example, if a host is down, all the tasks
running on the VMs of this host (as recorded in the schedul-
ing queue) will be immediately restarted on other hosts from
their most recent checkpoints. For any task restoration, a
new thread (called restoring thread) will be launched to han-
dle the restoration. We intentionally do not checkpoint an
entire VM’s state at runtime, but instead just the transient
memory of running tasks, because of the heavy overhead in
checkpointing VMs [23]. In particular, BLCR [20] is used to
periodically store the memory of running tasks in local disks,
or shared disks like Network File System (NFS). When an
interrupted task is detected, its execution can be restarted
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Figure 2: Cloud Job Processing Procedure

on an idle VM, using its memory state stored in its most
recent checkpoint.

3. PROBLEM FORMULATION
There are n jobs in the system, denoted by Ji for i=1,2,· · · ,n.

Each job is made up of one or more tasks. We denote the
tasks of Ji by ti(1), ti(2), · · · , ti(mi), where mi is the number
of tasks in job Ji. The execution time (a.k.a., productive
time, excluding the time lost due to checkpoints and fail-
ures) of task ti(j) is denoted by Te(ti(j)).
Statistics of a Google trace with millions of tasks [8] indi-

cate that cloud jobs are likely to encounter failure/interrup-
tion events. Thus, it is necessary to checkpoint cloud jobs
from time to time. Thanks to outstanding checkpoint/restart
tools like BLCR software [20], equidistant checkpointing is
viable. That is, we can take checkpoints (storing any task
memory) at any time in the course of its execution. We for-
mulate the fault-tolerance research in the context of cloud
computing as an optimization problem of equidistant check-
pointing.
Equidistant checkpointing aims at determining the op-

timal number of same-length checkpointing intervals for a
task, in terms of the probability distribution of failure events
for that task. We suppose that the number of failure events
in a task ti(j) follows a probability distribution Pti(j) . That

is, the probability of task ti(j) encountering K failure/inter-
ruption events is denoted as Pti(j)(Y = K). We use Th(ti(j))
to denote the date of task ti(j)’s h-th failure event, and use
Λ(Th(ti(j))) to denote the checkpointing position which is
before and closest to the date Th(ti(j)). According to our
characterization, the checkpointing cost (defined as the in-
crement of the task wall-clock time due to one checkpoint) is
determined by the task memory size (to be discussed later).
Thus, the checkpointing cost is relatively stable for any given
task. Likewise, the cost for restarting a task (called task
restarting cost) is also constant in most cases. As a con-
sequence, we define the checkpointing cost and the task
restarting cost as two constants with respect to a partic-
ular task, denoted by C and R respectively. Considering
the total overhead due to task failure events and checkpoint-
ing/restart costs, the total wall-clock time (a.k.a., wall-clock
length) of a task ti(j) that encounters K failure events can
be represented as Formula (1), where x refers to the number
of checkpointing intervals. Here Th(ti(j))−Λ(Th(ti(j)) refers
to the time wasted on the rollback of the task execution to
its closest checkpoint. This formula means that a task total
wall-clock time is equal to its execution time (a.k.a., produc-

tive time) in processing its workload, plus the total overhead
of taking checkpoints and the total time cost of the rollbacks
of task execution upon failure events:

Tw(ti(j)) =Te(ti(j))+C · (x−1)
+
∑K

h=1(Th(ti(j))−Λ(Th(ti(j)))+R)
(1)

Our objective is to compute the optimal number of check-
pointing intervals for minimizing a task expected wall-clock
time, when we set equidistant checkpoints. A task expected
wall-clock time could be written as Formula (2), where we
omit the notation ti(j) for simplicity of expression, e.g., Te

and Th refer to Te(ti(j)) and Th(ti(j)) respectively.

E(Tw(ti(j)))

=
∞∑
i=0

(
Pti(j)(Y= i)·(Te+C(x−1)+

i∑
h=1

(Th−Λ(Th)+R))

)
(2)

We summarize key notations in Table 1.

Table 1: Summary of Key Notations
Notation Description

n number of jobs
Ji a user request that is made up of multiple tasks
ti(j) the jth task in the job Ji

Pti(j)
(Y=K) probability of K failure events happening to ti(j)

Th(ti(j)) date of the jth failure event of task ti
Λ(Th(ti(j))) checkpointing position that is before & closest to

Th(ti(j))
C checkpointing cost (per checkpoint)
R time cost when restarting a failed task
Te(ti(j)) execution time of ti(j) without failure events, also

excluding checkpointing costs
Tw(ti(j)) wall-clock time of ti(j), including all costs

introduced by failure events and fault tolerance

4. OPTIMIZING FAULT TOLERANCE FOR
CLOUD TASKS

In this section, we compute the optimal number of check-
pointing intervals based on the equidistant checkpointing
model and introduce an adaptive algorithm to minimize ex-
ecution cost regarding checkpointing/restart overhead.

4.1 Optimizing The Number of Checkpoints
For the sake of simplicity, we omit the notation ti(j) in the

following. For instance, we use Tw, P (Y=K), and Th, to
represent respectively Tw(ti(j)), Pti(j)(Y=K), and Th(ti(j)).

Theorem 1. Based on the problem formulation in Sec-
tion 3, if we set checkpoints evenly during a task execution,
then the optimal number (x∗) of checkpointing intervals is
given by Equation (3), where E(Y ) denotes the expected
number of failure events occurring during the execution of
the task.

x∗ =
√

Te·E(Y )
2C

(3)

Proof. E(Tw)

=
∞∑
i=0

(
P (Y = i)·(Te+C(x−1)+

i∑
j=1

(Tj−Λ(Tj)+R))

)
=(Te+C(x−1))

∑∞
i=0P (Y=i)

+
∑∞

i=0

(
P (Y=i)·(

∑i
j=1 (Tj−Λ(Tj))+iR)

)



=(Te+C(x−1)+R·E(Y ))+
∞∑
i=0

(
P (Y = i)·

i∑
j=1

(Tj−Λ(Tj))

)
Let us analyze the expected value of

∑i
j=1(Tj−Λ(Tj)).

Checkpoints are set evenly during a task execution. Be-
cause Te denotes the total execution length in the absence
of fault-tolerance mechanisms and failures, a checkpoint is
taken once the execution of the task has progressed for a
duration Te

x
without encountering any failure event. This is

exemplified by Figure 3, where x=4 in this example.

task execution time (Te)

Te/4 Te/4 Te/4 Te/4

Figure 3: Segment Intervals Separated by Check-
points

Once a task is victim of a failure event, it is either restarted
immediately using an idle VM, or it is restarted later when
some resources become available. Due to the nature of
cloud computing, we can assume that a task is almost never
restarted immediately on the resources it used when it en-
countered a failure event. Because of this assumption, check-
pointing dates and failure events are independent. There-
fore, the expected time cost of the rollback due to a failure
event is Te

2x
, because a failure event happen in an interval of

length Te
x
. Hence, E(Tw) can be rewritten as Equation (4).

E(Tw)
=(Te+C(x−1)+R·E(Y ))+

∑∞
i=0

(
P (Y =i)· i·Te

2x

)
=(Te+C(x−1)+R·E(Y ))+Te

2x

∑∞
i=0 (i·P (Y =i))

=(Te+C(x−1)+R·E(Y ))+Te
2x

E(Y )

(4)

Since ∂2E(Tw)

∂x2 =TeE(Y )

2x3 >0, E(Tw) has a minimum extreme

point when ∂E(Tw)
∂x

=0. Accordingly, we can compute the
optimal value (x∗) by solving Equation (5).

∂E(Tw)
∂x

= C − TeE(Y )

2x2 = 0 (5)

This leads to x∗=
√

TeE(Y )
2C

.

Remarks:

• We give an example to illustrate the theorem. Suppose
that the task execution length is Te=18 seconds and
that checkpointing cost is C=2 seconds. If the number
of failure events follows a Poisson distribution where
P (Y=k) = λk

k!
e−λ and the failure rate λ is equal to

2, then, E(Y )=λ=2. Hence, the optimal number of

checkpointing intervals for the task is
√

18×2
2×2

=3. That

is, the optimal solution is to take a checkpoint every
18
3
=6 seconds during the execution of the task. In

practice, the expected number of failures for a task can
be estimated by the mean number of failures (MNOF)
of the task, and MNOF can be estimated with the
statistics computed based on history.

• Note that our theoretical conclusion does not depend
on any probability distribution, unlike Young’s for-
mula [17] which needs to assume that failure intervals
follow an exponential distribution. Young’s formula is
given by Equation (6), where Tc, C, and Tf refer to
the optimal checkpointing interval, checkpointing cost,

and the mean time between failures (MTBF) respec-
tively.

Tc =
√

2 C Tf (6)

That is, Theorem 1 advances a more generic formula
without any assumption on the probability distribu-
tion. This is significant because different types of tasks
are likely to be victim of different distributions of fail-
ure intervals. For example, Figure 4 presents, with re-
spect to the different task priorities in Google systems,
the cumulative distribution function (CDF) of the un-
interrupted work intervals of a given task. One can ob-
serve that the distributions of uninterrupted intervals
are quite different for the various task priorities (from 1
to 12). Tasks with higher priorities tend to have longer
uninterrupted execution lengths, because low-priority
tasks tend to be preempted by high-priority ones.
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Figure 4: Distribution of Google Task Failure Inter-
vals According to Priorities

• In fact, Corollary 1 proves that Young’s formula is a
particular case of Theorem 1.

Corollary 1. If the failure intervals of a task follow
an exponential distribution and if the checkpointing cost is
small, then Young’s formula can be derived from Theorem 1.

Proof. We denote the Mean Time Between Failures (MTBF)
of a task by Tf . Because the failure events striking a given
task occur independently and because their consecutive in-
tervals follow an exponential distribution, it can be proven
that the number of failures must follow a Poisson process
with the expected number of occurrences per time unit be-
ing equal to 1

Tf
. Then, the expected number of task failure

events during its productive period can be approximated
as E(Y )≈Te× 1

Tf
= Te

Tf
if the checkpointing cost and the ex-

pected number of failures are small with respect to Te. Then,
we can get Young’s formula based on the following deriva-
tion.

Tc = Te
x∗ = Te√

1
2
TeE(Y )/C

= Te√
1
2
Te· Te

Tf

/
C

=
√

2CTf

• Formula (3) is easier to apply than Young’s formula
in many situations. Note that Young’s formula relies
on the distribution of failure intervals. In general, it is
non-trivial to record the accurate time stamps of fail-
ure events due to many factors like non-synchronous
clocks across hosts (failed tasks may be restarted on
a host using a different clock), inevitable influence of
checkpointing cost, or significant delay of failure de-
tection. In contrast, it is easy to record the number



of failures striking a particular task. That is, Formula
(3), which depends on the expected number of failure
events hitting a task, is easier to apply.

• We give a practical example summarized from a one-
month Google trace [8]. We derive the optimal check-
pointing intervals for the execution of a Google task us-
ing both Theorem 1 and Corollary 1. Figure 5 presents
the CDF of the uninterrupted work intervals of a task
in the Google trace, as well as some well-known distri-
bution curves fitted with maximum likelihood estimate
(MLE).
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Figure 5: Overall Distribution of Google Task Fail-
ure Intervals and Distribution Fitting with MLE

We find that a Pareto distribution fits the sample dis-
tribution best in general. However, since a large ma-
jority (over 63%) of task failure intervals last for less
than 1000 seconds, according to our characterization,
one should be more interested in small tasks. If we
just consider failure intervals within 1000 seconds, the
best-fit distribution is an exponential distribution with
failure rate λ=0.004234451233, though it suffers more
or less errors as shown in Figure 5 (b). Hence, in this
situation, suppose the checkpointing cost is always 2
seconds. Then the optimal checkpointing interval can

be estimated as
√

2C 1
λ
=
√

2× 2× 1
0.004234451233

≈30.7
seconds, in terms of Corollary 1.

4.2 Adaptive Optimization of Fault Tolerance
Up to now, we have investigated the optimal number of

checkpointing intervals for a cloud task, by setting check-
points evenly during the task execution. However, the fail-
ure probability distribution a task is subject to depends on
the task priority. Therefore, if the priority of a task changes
during its execution, so does failure probabilities. Thus, we
propose an adaptive solution that recomputes checkpointing
dates in order to cope with potential changes at runtime in
the failure probability distribution.
We also compute the most efficient checkpointing/restart

approach when one can store checkpoints either in local
ramdisks1 or in shared disks. We present the pseudo-code
in Algorithm 1.
At the beginning of Algorithm 1, we compute the first

checkpoint with Formula (3) using the task predicted ex-
ecution workload2 and the corresponding mean number of

1RAMDisk creates a virtual RAM drive, or block of mem-
ory, which the computation host treats as if it were a disk
drive.

2A task workload can be predicted by prediction methods
like polynomial regression [22] or the estimation based on
history [25].

Algorithm 1: Adaptive Checkpointing Algorithm

Input: task ti(j), checkpointing cost C, task execution
time Te

1 Estimate the checkpointing/restart tradeoff between
using shared-disk and local-disk /* Section 4.2.2 */

2 Select the device used to store memory based on the
optimal estimation

3 Compute X∗ based on Formula (3)
4 W0 ← Te/X

∗; W ←W0

5 repeat
6 if (W ≤ 0) then
7 Take a checkpoint for task ti(j) via a new thread
8 Te ← Te −W0

9 if (MNOF changed) then
10 Compute a new X∗ based on Formula (3)
11 W0 ← Te/X

∗

12 W ←W0

13 W ←W −∆t /* countdown */
14 Sleep a tiny period ∆t
15 until task ti(j) is completed

failures (MNOF ). During the task execution, the algorithm
will periodically check whether it is time to take a checkpoint
through a countdown mechanism. This step can also be im-
plemented easily with a notify/wait mechanism, instead of
a polling method.

In the following text, we mainly focus on two key issues:
whether the checkpointing dates should be updated, and
whether to use local ramdisks or shared disks to store check-
points.

4.2.1 Dynamic Optimization of Checkpointing Posi-
tions

We can prove in Theorem 2 that the next checkpoint’s
position needs to be recomputed, if and only if the task’s
MNOF (i.e., E(Y ) in Theorem 1) is changed during the pre-
viously last checkpoint interval (probably due to the cred-
its or priorities tuned by users). That is, although the re-
maining workload of a task decreases over time, the optimal
checkpointing dates remain actually the same if the task
MNOF remains unchanged. More specifically, if the factor
(e.g., task priority) that may influence the task MNOF re-
mains unchanged, the optimal checkpointing positions would
be unchanged for its remaining execution.

Theorem 2. Next optimal checkpointing position will be
changed for the task’s remaining workload (i.e., remaining
execution length), if and only if the task’s MNOF is changed
in the previously last checkpointing interval.

Proof. Without loss of generality, we suppose the cur-
rent checkpointing position is the (k+1)th checkpoint and
its preceding one is the kth checkpoint, and their remain-
ing execution lengths are denoted as Tr(k+1) and Tr(k) re-
spectively. We denote the optimal number of checkpointing
intervals computed at the kth and (k+1)th checkpoints as

X∗ and X(∗) respectively. We illustrate the notations in
Figure 6. In the following text, we will prove X(∗)=X∗−1.

According to Theorem 1, we can represent the optimal
number of checkpointing intervals at the two positions in
Formula (7) and Formula (8) respectively, where Ek(Y ) de-
notes the expected number of failures in the task’s remaining
execution time Tr(k). Obviously, E0(Y )=E(Y )=MNOF.
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X∗ =

√
Tr(k)Ek(Y )

2C
(7)

X(∗) =

√
Tr(k + 1)Ek+1(Y )

2C
(8)

Since each computation of checkpoints is based on equidis-
tant checkpointing model, we can get Tr(k+1) = Tr(k)·X

∗−1
X∗ ,

which can also be derived from Figure 6.
Based on the definition of Ek(Y ), we can derive Ek(Y ) =

Tr(k)
Tr(0)

E0(Y ) = Tr(k)
Tr(0)

MNOF and Ek+1(Y ) = Tr(k+1)
Tr(0)

E0(Y ) =
Tr(k+1)
Tr(0)

MNOF. By combining the condition that MNOF is

unchanged between the kth and (k+1)th checkpoints, we can

further get Ek+1(Y )=Ek(Y )·Tr(k+1)
Tr(k)

. Then, we can derive

X(∗) as follows:

X(∗)=

√
Tr(k+1)·(Ek(Y )

Tr(k+1)
Tr(k)

)

2C
=

√
Tr(k)·X

∗−1
X∗ ·(Ek(Y )X∗−1

X∗ )

2C

= X∗−1
X∗

√
Tr(k)Ek(Y )

2C
= X∗−1

Hence, the next optimal checkpointing position will not
be changed if the task’s MNOF is unchanged. In contrast, if
the task’s MNOF is changed, we can get X(∗) ̸=X∗−1 based
on the similar derivation.

4.2.2 Local Disk vs. Shared Disk Checkpointing
We want to determine what is the most efficient approach,

between storing checkpoints in local disks or in shared disks.
We denote the checkpointing cost over local disks and over
shared disks as Cl and Cs respectively. Based on the two
checkpointing approaches, we call their corresponding task
migrations (a.k.a., process migration) as migration type A
and migration type B. We denote the task restarting cost
based on the two checkpointing approaches as Rl and Rs re-
spectively. Then, based on Formula (4), in order to identify
the most efficient approach we only need to compare their re-

spective expected total costs, Cl(Xl−1)+RlE(Y )+ Te·E(Y )
2Xl

and Cs(Xs − 1) + RsE(Y ) + Te·E(Y )
2Xs

, where E(Y ) and X
respectively refer to the MNOF and the specified number of
checkpointing intervals. That is, it is better to store check-

points on local disks if Cl(Xl − 1) + RlE(Y ) + Te·E(Y )
2Xl

<

Cs(Xs − 1) +RsE(Y ) + Te·E(Y )
2Xs

, and to select shared disks
otherwise.
How to choose a suitable migration type depends on the

system setting. If each VM instance owns a local ramdisk
with relatively large space, migration type A is likely to be
faster than migration type B in that it does not access disks.
However, the local disk space and memory size of a VM in-
stance are often both limited, and our benchmark environ-
ment belongs to this case. This means that, with BLCR,
upon a task failure, we have to move the memory from local
ramdisk to shared disks before restarting it on another host,
introducing some extra cost. Note that it may be more ef-
ficient for a task to precopy its checkpointed memory from
local ramdisk to the shared-disk beforehand in case of task

failures, yet this may induce seriously heavy load on network
or even network congestion, since checkpoints to make are
usually much more frequent than task failures. For instance,
if a task’s length, checkpointing cost and expected number of
failures are 441 seconds, 1 second, and 2 respectively, then,

the number of optimal checkpoints is
√

441×2
2×1
−1 = 20.

Obviously, it is necessary to carefully characterize the
checkpointing cost and task restarting overhead, based on
the above discussion. We evaluate them based on a clus-
ter [26] deployed with BLCR, where each evaluated case is
performed 25 times. We find task’s total checkpointing cost
increases linearly with its consumed memory size and the
number of checkpoints, as shown in Figure 7. As observed,
for the memory size being in [10,240] MB, the checkpointing
cost is [0.016,0.99] seconds when using local ramdisk, while
it ranges in [0.25,2.52] seconds when adopting NFS.
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Figure 7: Checkpointing Cost based on BLCR

We also investigate the issue about checkpointing conflict,
i.e., the situation when checkpointing multiple tasks simul-
taneously on the same hardware. In our characterization,
when two or more tasks are simultaneously checkpointed,
the checkpointing cost over local ramdisk will not be im-
pacted clearly, but the cost with NFS will be significantly
enhanced, as presented in Table 2 (memory size=160MB).
The table shows the checkpointing cost is quite stable when
simultaneously checkpointing tasks and storing memories in
the same local ramdisk, while it increases over NFS with in-
creasing number of simultaneous checkpoints. The increased
checkpointing cost over NFS is due to the network conges-
tion on NFS server or NFS’s synchronous mechanism.

Table 2: Cost of Simultaneous Checkpointing Tasks
on Local Ramdisk and NFS (seconds)
``````````̀type

parallel degree
X=1 X=2 X=3 X=4 X=5

Local min 0.613 0.71 0.51 0.53 0.55
ramdisk avg 0.632 0.81 0.74 0.59 0.58

max 0.667 0.91 0.93 0.69 0.64

min 1.4 2.66 4.66 5.96 8.36
NFS avg 1.67 2.665 5.38 6.25 8.95

max 1.78 2.67 6.05 6.35 9.18

In order to control the simultaneous checkpointing cost
over the shared-disk, we design a distributively-managed
NFS (DM-NFS) by alleviating the bottleneck problem. We
let every physical host in the system serve as an individ-
ual NFS server, and make each VM instance mount each of
NFS server to a different mount point. As it is required to
make a checkpoint for a running task in a VM instance using



Table 3: Cost of Simultaneously Checkpointing
Tasks on DM-NFS``````````̀type

parallel degree
X=1 X=2 X=3 X=4 X=5

min 1.4 1.4 1.54 1.61 1.48
DM-NFS avg 1.67 1.49 1.63 1.75 1.74

max 1.78 1.58 1.66 1.89 1.97

Table 4: Time Cost of a Checkpoint
memory operation memory operation memory operation

size time size time size time
10.3 MB 0.33 sec 82.4 MB 1.46 sec 162 MB 3.68 sec
22.3 MB 0.42 sec 86.4 MB 1.75 sec 174 MB 4.95 sec
42.3 MB 0.60 sec 90.4 MB 2.09 sec 212 MB 5.47 sec
46.3 MB 0.66 sec 94.4 MB 2.34 sec 240 MB 6.83 sec

shared-disk, one of NFS servers will be randomly selected for
storing its memory. In Table 3, we present the checkpointing
cost when simultaneously checkpointing one or more tasks
over the DM-NFS. By comparing it to Table 2, we find that
our design is fairly effective in controlling the mutual im-
pact of simultaneous checkpointing. The checkpointing cost
is always limited within 2 seconds even with simultaneous
checkpointing, which means a much higher scalability.
Based on BLCR, we find that the operation time cost in

making a checkpoint on a running task is determined by its
memory size. Each checkpointing operation (over shared-
disk) takes 0.33-6.83 seconds when task’s memory size is
10-240MB, as shown in Table 4. Hence, the checkpointing
operation should be performed in a new thread in order to
unblock the countdown to the next checkpointing position,
as shown in Algorithm 1 (line 7).
In addition, we also characterize task restarting cost based

on our system setting, as shown in Table 5 (measurement
unit: seconds). It is observed that task restarting cost with
migration type A is much higher than that with migration
type B, due to the extra cost in accessing shared-disk under
migration type A. This is consistent with our analysis above.

Finally, we give an example based on the above character-
ization to illustrate how to determine a suitable migration
type regarding the checkpointing/restarting cost. Suppose a
task’s execution length Te is 200 seconds, its memory size is
160MB, and there are 2 failures (expected number) during
its execution. With respect to the two migration types, the
optimal numbers of checkpointing intervals can be computed

as
√

200×2
2×0.632

=17.79 and
√

200×2
2×1.67

=10.94 respectively. Then,

the total costs are 0.632×(17.79−1)+3.22×2+ 200×2
2×17.79

= 28.29

and 1.67×(10.94−1)+1.45×2+ 200×2
2×10.94

=37.78 respectively.
This means it is better to select local-ramdisk as the memory
storage device in that it suffers lower total cost.

5. PERFORMANCE EVALUATION

5.1 Experimental Setting
We evaluate the checkpointing/restart method and the

dynamic solution through a set of experiments respectively.
We reproduce Google jobs based on a large-scale one-month
Google trace [9]. Each job/task’s execution is exactly con-
sistent with its arrival time stamp, execution lengths, and
task events (e.g., evict, kill or finish events) recorded in the

Table 5: Task Restarting Cost based on BLCR over
VM Ramdisk (Seconds)
memory size (MB) 10 20 40 80 160 240
migration type A 0.71 0.84 1.23 1.87 3.22 5.69
migration type B 0.37 0.49 0.54 0.86 1.45 2.4

trace. The valid workload processed between checkpoints
will be recorded over time. MNOF and MTBF are esti-
mated based on historical task events in the trace, and the
details are to be discussed later.

In particular, we perform the experiments on a powerful
supercomputer at HongKong (namely Gideon-II [26]). We
are assigned 16 physical hosts, each of which has 2 quad-core
Xeon CPU E5540 (i.e., 8 processors per host) and memory
of 16GB. Our experiment maintains 224 VM-images (cen-
tos 5.2) over DM-NFS (14 VMs per host). XEN 4.0 [18]
serves as the hypervisor on each host and dynamically al-
locates customized CPU rates to VMs via credit scheduler.
Although there are only 16 physical hosts, such an environ-
ment can serve up to 600 Google jobs simultaneously, since
the processing parallelism is determined by the limitation of
available memory. The VM selection policy adopts a greedy
algorithm that selects the VM instance with the maximum
available memory size for load balancing.

In Google trace, there are two types of job structures, ei-
ther sequential-task (ST) or bag-of-task (BOT). The struc-
ture of each job emulated in our experiment is exactly based
on a sample job randomly selected from among 300k valid
jobs in the trace. Each task’s memory size and the number
of computation cycles are the same as the values recorded
in the trace. In Figure 8, we present the CDF of the mem-
ory size and execution length of the Google jobs used in our
experiment. We can observe jobs’ memory sizes and lengths
differ a lot based on job’s structure, but most of them are
short jobs with small memory sizes.
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Figure 8: Distribution of Google job’s memory size
and execution length

Any running task would be killed by “kill -9” command
from time to time based on the kill/evict/failure events recorded
in the trace [9]. Each task is checkpointed using BLCR
based on the optimized checkpointing positions. The inter-
rupted/killed ones will be detected by our polling thread and
restarted on another host. If there were network connections
opened before the task’s failure, they will be reopened for
retransmitting data upon the task’s restoration.

In our experiment, the key indicator used to evaluate a
job’s execution efficiency is called Workload-Processing Ra-
tio (WPR), as defined in Formula (9). Ji’s workload pro-



cessed refers to the valid execution length saved by check-
points, excluding the rollback overhead caused by task fail-
ures. The real wall-clock length (i.e., Tw) indicates the du-
ration from its submission moment to its final completion
moment, including any extra costs caused by task schedul-
ing, task interruption/failure, checkpointing, restarting and
data communication.

WPR(Ji) =
J ′
is workload processed

J ′
is real wall-clock length

(9)

5.2 Experimental Results
First of all, we analyze the checkpointing effect based on

all of 300k Google jobs, using our optimized formula (For-
mula (3)) versus Young’s formula respectively. We observe
that if MNOF and MTBF can always be predicted correctly,
the checkpointing effects with the two formulas are very
close, as shown in Table 6. In practice, however, the predic-
tion of the number of failures and failure intervals may be
inaccurate, inevitably leading to the degraded checkpointing
effect. Hence, we also analyze the checkpointing effect with
possible inaccurate prediction of MNOF or MTBF.

Table 6: Checkpointing Effect with Precise Predic-
tion

Formula (3) Young’s formula
avg WPR lowest WPR avg WPR lowest WPR

BoT 0.960 0.742 0.954 0.735
ST 0.937 0.742 0.938 0.633
Mix 0.949 0.742 0.939 0.633

The following evaluation shows that the checkpointing
effect with our Formula (3) is much better than the one
with Young’s formula, when we estimate MNOF and MTBF
based on priorities. That is, we first categorize all sam-
ple jobs into 12 groups based on 12 priorities and compute
MNOF and MTBF for each group. We perform the check-
pointing with our Formula (3) and Young’s formula via the
priority-based MNOF and MTBF respectively.
In Figure 9, we present the cumulative distribution func-

tion (CDF) of WPR in the situation with ST jobs and BoT
jobs respectively. It is observed that the checkpointing/restart
method with Formula (3) significantly outperforms the one
with Young’s formula with high probability. In absolute
terms, for sequential-task jobs, the average WPRs of the
two solutions with different Formulas are 0.945 and 0.916
respectively. The average WPRs of bag-of-task jobs under
the two solutions are 0.955 and 0.915 respectively. More-
over, With Formula (3), 7% of ST jobs’ WPRs are lower
than 0.88, while with Young’s formula, the corresponding
ratio is about 20%. With Formula (3), 56.6% of BoT jobs’
WPRs are higher than 0.95, while with Young’s formula, the
ratio is only 46.5%.
The main reason why our Formula (3) exhibits much bet-

ter checkpointing effect than Young’s formula, is that our
formula is based on the MNOF estimated while Young’s for-
mula relies on the estimated MTBF. The MNOF and MTBF
estimated based on priorities are shown in Table 7 (unit: sec-
ond). We can observe that MTBF based on each priority is
usually very large, due to the typical Pareto distribution of
failure intervals as presented in Section 4.1. That is, ma-
jority of failure intervals are short while tiny of them are
extremely long, leading to the large MTBF on average thus
large prediction errors for most of tasks. This will eventually
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Figure 9: CDF of WPR with Different Checkpoint-
Restart Formulas over Google Trace

cause Young’s formula is not proper due to its assumption
with exponential distribution of failure intervals. In con-
trast, the checkpointing effect with our Formula (3) (shown
in Figure 9) is pretty close to the effect with precise pre-
diction of the number of failure events (shown in Table 6).
There are two key factors for that. (1) Our formula does
not depend on particular distribution like exponential dis-
tribution, as discussed in Section 4.1. (2) The mean number
of failures (MNOF) estimated based on priority in Google
trace would not change a lot with task lengths, rather than
MTBF, as shown in Table 7. For instance, MNOF and
MTBF of the tasks with priority=2 and lengths≤1000 sec-
onds are 1.06 and 179 respectively, while for all tasks with
priority=2 and no limitations on task lengths, MNOF and
MTBF are 1.21 and 4199 seconds respectively. That is, if
we set MTBF to 4199 seconds, the prediction will definitely
lead to large errors for short tasks.

Table 7: MNOF & MTBF w.r.t. Job Priority in
Google Trace
limit Seq-Task Bag-of-Task Mixture
(sec) Pr MNOF MTBF MNOF MTBF MNOF MTBF

task 1 0.24 130 1.12 126 0.77 127
length 2 1.0 3377 1.06 179 1.06 179
≤ 7 0.4 186 1.0 80.5 0.15 180
1000 10 12.0 37.1 4.5 37.4 11.9 37.1

task 1 0.52 184 1.18 180 0.72 183
length 2 1.0 3377 1.08 396 1.08 396
≤ 7 0.57 303 1.0 198 0.58 300
3600 10 13.0 37.9 3.5 93 11.8 37.6

task 1 3.33 6005 3.46 1074 3.36 5106
length 2 0.5 3258 1.27 4274 1.21 4199
≤+∞ 7 0.57 303 1.0 198 0.58 300.3

10 9.5 51 3.14 571 9.34 55.5

We also present the minimum/average/maximum values
of WPR in Figure 10, for the ST jobs and BoT jobs, with
respect to various priorities. The bottom-edge, middle black
line, and upper-edge refer to the minimum, mean, and maxi-
mum values respectively. The results at some priorities (such
as priority 4, 8, 11 and 12) are missing due to no job fail-
ure events or no jobs normally completed according to the
Google trace. Through Figure 10, we observe that for al-
most all priorities, the checkpointing method with Formula
(3) significantly outperforms that with Young’s formula, by
3-10% on average.

We also investigate the execution performance especially
for relatively short jobs with a certain restricted length (RL),
with respect to ST jobs and BoT jobs respectively, using
a one-day period experiment with totally about 10k jobs.
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Figure 10: Min/Avg/Max WPR with respect to Dif-
ferent Priorities

MTBF (as well as MNOF) are estimated using correspond-
ing short tasks based on priorities, in order to estimate
MTBF with as small errors as possible for Young’s formula.
We show the distribution of Workload-Processing Ratio in
Figure 11, for the two types of jobs. Under the approach
with our Formula (3), 98% of jobs’ WPR is greater than
90%, while Young’s formula leads to up to 40% of jobs’ WPR
being lower than 90%.
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Figure 11: Distribution of WPR in the Test over
One-day Google Trace

In Figure 12, we present the real wall-clock lengths of the
jobs in our experiment, where task lengths are limited within
1000 seconds and 4000 seconds respectively. It is observed
that majority of jobs’ wall-clock lengths are incremented by
50-100 seconds under Young’s formula compared to our For-
mula (3). Such a difference is actually quite large due to the
fact that majority of jobs in Google data centers are quite
short (200-1000 seconds) [11].

(a) RL=1000 seconds (b) RL=4000 seconds

Figure 12: Wall-Clock Length in Experiment with
One-day Google Trace

Through Figure 13, we observe that not all jobs exhibit
shorter wall-clock lengths when using our Formula (3) than
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Figure 13: Portions of Jobs using Different Solutions
(RL=1000 seconds)

using Young’s formula, but a large majority of jobs are fin-
ished much faster under our solution. In Figure 13 (a), a
job’s ratio of wall-clock length is defined as the ratio of the
wall-clock length under our solution with Formula (3) to
the one with Young’s formula. Comparing our Formula (3)
to Young’s formula, about 70% of jobs’ wall-clock lengths
are reduced by about 15% on average, while only 30% of
jobs’wall-clock lengths are increased by 5% on average.

Finally, we evaluate the effectiveness of our dynamic de-
sign with varied MNOF (i.e., line 8-11 in Algorithm 1) as
opposed to the static approach with fixed MNOF, in Fig-
ure 14 (with one-day trace). In the experiment, each job’s
priority is changed once in the middle of its execution. Upon
the change of a task’s priority, MNOF will change accord-
ingly in our dynamic algorithm, while it will stay fixed in
the static algorithm. Via Figure 14 (a), it is observed that
dynamic algorithm significantly outperforms the static one.
In absolute terms, the worst WPR under dynamic solution
stays about 0.8 while that under static approach is about
0.5. Figure 14 (b) shows 67% of jobs’ wall-clock lengths
exhibit similar under the two different solutions, while over
21% of jobs run faster in the dynamic one than static one by
10%. The key reason why the static algorithm suffers low
WPR is that the checkpointing effect would be degraded
with skewed MNOF.
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Figure 14: Comparison between Dynamic Solution
and Static Solution

6. RELATED WORK
The research most related to equidistant checkpointing is

Young [17] and Daly [14]. In 1977, Young [17] proposed
a mathematical checkpoint/restart model and derived the
optimal checkpointing interval with first order approxima-
tion. In 2006, Daly [14] extended this work to a higher



order approximation ,and also took into account the task
restarting overhead. Their models both aim at deriving the
optimal checkpointing interval for a task, which is similar to
our equidistant checkpointing model with Theorem 1. How-
ever, they have three significant limitations, and their re-
sults are not suited to cloud environments (contrarily to our
approach). First, their analysis does not take into account
task execution lengths (in fact, they assume very long or in-
finite jobs), but only analyzes the relation between optimal
checkpointing interval and the probability of failure inter-
val. Second, their results depend on the assumption that
task failure intervals always follow an Exponential distribu-
tion, while ours does not have such a limitation. Finally,
their results hold approximately if and only if the check-
pointing/restart overhead is relatively small compared to
the checkpointing interval. In fact, cloud tasks are usually
small as reported by [11], which means that their results
would suffer from large errors (to a certain extent) in this
context. In contrast, the derivation of Theorem 1 does not
suffer from the limitation of checkpointing/restart overhead,
being more suitable for cloud frameworks.
More theoretical research on checkpoint/restart-based fault

tolerance focuses on stochastic models, which can be found
in [28, 29, 30]. Leung and Choo [28] analyzed in-depth job
wall-clock lengths by taking into account the probability dis-
tribution of failure intervals, restarting overhead, and job’s
execution length. Their model does not depend on a particu-
lar distribution of failure events. However, their work suffers
two limitations: (1) It ignored the checkpointing cost. (2)
It just derived an expression of task wall-clock lengths in
presence of failures, but did not give the optimal number of
checkpointing intervals. Walter summarized many stochas-
tic models for checkpointing at program level in his book
chapter [29], including equidistant checkpointing, random
checkpointing, forked checkpointing, and so on. However,
all of the theoretical results depend on the Poisson process
of failure events (or Exponential distribution of failure in-
tervals). Nakagawa [30] introduced a bunch of reliability
models for optimizing the retrial numbers in presence of
failure events, including standard model, checkpoint model,
Markov Renewal Process, Bayesian model, and automatic-
repeat-request (ARQ) model. They cannot be directly used
in clouds because of its common limitation which is ignoring
the shortness of cloud job lengths.
Fault-tolerance issue in the context of cloud computing

has been extensively studied recently [23]. Nicolae and Cap-
pello [23] proposed a novel checkpoint-restart mechanism
(namely BlobCR) especially for high-performance comput-
ing applications on Infrastructure-as-a-Service (IaaS) clouds
at system level. They summarized four key principles, aim-
ing to improve the robustness of running virtual machines
using virtual disk image snapshots. In comparison to their
work, this paper focuses on the theoretical optimization of
the cloud task execution,and corresponding implementation
issues, at the application level. Tchana et al. [31] also fo-
cused on the fault-tolerance at system level, on cloud plat-
forms deployed with virtual machines. They tried to im-
prove the tradeoff in the collaboration between provider and
consumer, but did not optimize tasks execution performance
based on their failure characterization. AmazonWeb Service
(AWS) [32] built a queuing model, called Amazon Simple
Queue Service (SQS), for tolerating the inevitable failures
of message processing. Such a design cannot checkpoint and

restart tasks during their execution, significantly restricting
the fault-tolerance granularity. In summary, the significant
contribution of our work is that we not only optimize the
cloud task execution based on our in-depth theoretical anal-
ysis with the characterization of real-production traces, but
also propose an adaptive solution by taking into account var-
ied failure probability distributions and the checkpointing
tradeoff between using local-disk and shared-disk. We eval-
uate our method using a real cluster environment deployed
with BLCR and XEN, and the experiments are performed
in accordance with Google trace [9].

7. CONCLUSION AND FUTURE WORK
In this paper, we proposed a novel approach to check-

point/restart task execution in order to improve the execu-
tion performance with failure events in the context of cloud
computing. Our fault-tolerance model aims at optimizing
the number of checkpoints and their positions for running
tasks, with minimized checkpointing/restarting cost. Unlike
the traditional analysis like Young’s work, our theoretical
results do not depend upon assuming a particular failure
distribution. We also designed a dynamic algorithm based
on the characterization of checkpointing cost, to adapt to
the task varied remaining workload to process and to possi-
ble changing failure probability. We evaluate our optimized
fault-tolerance solution with Google trace, which was pro-
duced with 10k+ machines and millions of jobs. Some key
findings are listed below:

• Our designed DM-NFS can effectively mitigate check-
pointing cost when simultaneously checkpointing tasks.
The checkpointing cost is always limited within 2 sec-
onds even with simultaneous checkpointings, which means
a high scalability.

• For all Google jobs, our approach significantly outper-
forms Young’s solution by 3-10 percent. The average
WPRs under our new formula and under Young’s for-
mula are about 0.95 and 0.915 respectively.

• Most job wall-clock lengths are incremented by 50-100
seconds under Young’s formula as compared to our for-
mula.

• On average, our formula leads to about 70% of jobs
running faster by 15% than Young’s formula, and only
30% of jobs running slower by 5%.

• The dynamic solution with adaptive MNOF based on
priority significantly outperforms the static one for a
majority of jobs. The worst WPR under dynamic so-
lution stays about 0.8 while that under static approach
is about 0.5. 67% of job wall-clock lengths exhibit sim-
ilar under the two different algorithms, while over 21%
of jobs run faster in the dynamic one by 10%.

In the future, we plan to improve our method to better suit
high performance computing applications like MPI programs
with extremely large scales.
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