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Abstract—With increasingly mature virtual machine (VM)
technology, the compute resources provided by Cloud systems
can be divided or isolated on demand under a payment model.
By leveraging such a feature, we design and implement a cloud
system that can optimize the overall performance of processing
user requests which are made up of composite services.
Specifically, we aim to minimize the response time for each
user request, and also maximize the fairness of the treatment
for the competitive situation in short supply. We first design
an optimal VM resource allocation scheme with a minimized
VMM operation cost for each task. Then, for maximizing
the fairness of the treatment in the competitive situation, we
design a best-suited queuing policy and a resource sharing
scheme adjusted based on Proportional-Share model, which
can effectively disperse the resource contention. Experiments
confirm two points: (1) the mean task response time is close to
the theoretically optimal value in the non-competitive situation;
(2) when the system runs in short supply, each request could
still be processed efficiently, with just a slight extension on
their response times compared to their ideal values. The
solution that combines Lightest Workload First (LWF) queuing
policy with our designed Adjusted Proportional-Share Model
(LWF+APSM) exhibits the best and stable performance. It
outperforms other solutions in the competitive situation, by
38% w.r.t. the worst-case response time and by 12% w.r.t. the
fairness of the treatment.

I. INTRODUCTION

Cloud computing [1] has become such a flexible platform
that allows users to customize their own services based on
specific purposes. Platform as a Service (PaaS) is one of
its classical paradigms. A typical example is Google App
Engine [2], which provides a platform for users to easily
deploy and release their own services on the Internet.

Our Cloud scenario is similar to the PaaS model, in which
the users can compose complex requests based on their spe-
cific needs, by combining a set of off-the-shelf web services
in series. These services are supposed to be composed by
some authorized users (a.k.a., service makers). Each service
is associated with a price, which is assigned by its maker.
When a user submits a compute request that calls other
services, he/she needs to pay the usage of these services
and the payment is determined by how much resource to
be consumed. On the other hand, to maximize the resource
consolidation, we leverage the VM technology to refine the
resource allocation, which is completely transparent to users.
The key question is how to split the physical resources
according to different users’ requirements, how to minimize

the negative side-effect (a.k.a., overhead) of data transmis-
sion and virtual machine monitor (VMM) operations, and
how to queue user requests when necessary.

Our objective is to optimize and stabilize the QoS of
each user request, in both non-competitive (or adequate
supply) and competitive (or short supply) situations. We
use the term user request, job and task interchangeably
in the following text. For the non-competitive situation,
the available resources are relatively adequate for users’
demands, so the optimality is mainly determined by task’s
intrinsic structure. In our Cloud system, each task is made
up of a set of subtasks (instance of web service) connected
one by one (like a serial workflow), and the whole response
time (or wall-clock time) of each task is expected to be
minimized. We formulate such a problem to be a convex-
optimization model [3], with a particular task execution type
and specific budget constraint. Thus, it is feasible to find the
optimal solution quickly. However, a few practical issues
(e.g, related to the VM-invocation overheads and network
communication cost) have to be taken into account. Since
the output of any non-terminal subtask will be treated as
the input of its succeeding one, the data transmission delay
cannot be overlooked if the data size is huge. On the other
hand, since we will take advantage of the VM resource
isolation to refine the resource allocation, the cost of VMM
operations (such as the time cost in performing CPU-
capacity changing command for VMs at runtime) is also
supposed to be minimized. Our cost-minimization strategy
is performing the data transmission and VMM operations
concurrently, based on the characterization of their costs.

For the competitive situation where the system runs in
short supply, we aim to keep each task’s QoS at a high level
and maximize the overall fairness of treatment meanwhile.
This issue is quite challenging in that each task’s execution
is determined by a different structure that is made up of
multiple subtasks corresponding to various services, and
also associated with a varied budget to restrict its total
payment. A competitive situation with limited available re-
sources may easily delay some particular responses, tending
to cause the unfairness of the treatment. In our experi-
ment, we find that assigning different priorities to tasks
in the task scheduling phase and the resource allocation
stage would induce significantly different effects on the
overall fairness and stability. Hence, we investigate the
best-suited queuing policies for maximizing the processing



fairness of QoS in a Cloud environment. The candidate
queuing policies include First-Come-First-Serve (FCFS),
Shortest-Optimal-Length-First (SOLF), Lightest-Workload-
First (LWF), Shortest-SubTask-First (SSTF) (a.k.a., min-
min), and Slowest-Progress-First (SPF). SOLF assigns
higher priorities to the tasks with shorter theoretically
optimal execution length estimated based on our convex-
optimization model, which is similar to the Heterogeneous
Earliest Finish Time (HEFT) [4]. LWF and SSTF can be con-
sidered Shortest Job First (SJF) and min-min algorithm [5]
respectively. The intuitive idea of SPF is similar to Earliest
Deadline First (EDF) [6], wherein we adopt two criteria to
evaluate the task execution progress. In addition, we further
exploit a best-fit resource allocation scheme to adapt to
the competitive situation. Specifically, we investigate how
to coordinate the divisible resource allocation among the
running tasks in terms of their structures like workload or
varied estimated progress.

Based on the cloud composite service model, we imple-
ment a distributed prototype that is able to solve/calculate
complex matrix problems submitted by users. Experiments
show that the worst-case performance under SWF is higher
than that under other policies by about 38% when overall
resource amount requested is about twice as the resource
amount that can be allocated. Another key lesson we learned
is that in the competitive situation, short jobs (with the
short single-core execution length) are better to be assigned
with more powerful resources than the theoretical values
optimized by the convex-optimization theory.

In the remainder of the paper, we will use the term
host, machine, and node interchangeably. In Section II, we
describe the architecture of our Cloud system, namely cloud
composite service system. In Section III, we formulate the
research problem in our Cloud environment, to be aiming
to maximize individual task’s QoS and the overall fairness
of treatment meanwhile. In Section IV, we discuss how
to optimize the execution of each task with minimized
overheads, and how to stabilize the QoS especially in a
competitive situation. We present experimental results in
Section V. We discuss the related works in Section VI.
Finally, we conclude the paper with a vision of the future
work in Section VII.

II. SYSTEM ARCHITECTURE

The system architecture of our cloud composite service
system is shown in Figure 1 (a). The top layer is user
interface, which is used to spawn particular threads to
receive and respond to user requests. A user request (a.k.a., a
task) is made up of multiple subtasks, which are connected in
series. Each subtask is an instance of an off-the-shelf service
that has a very convenient interface (such API) to be called.
For example, a user may submit a task which is composed of
a set of simple matrix calculations: matrix-product, matrix-
normalization, matrix-decomposition, and so on. Each such

matrix calculation can be considered a subtask, and the
whole task is expected to be completed as soon as possible
under the constraint of its budget. Task scheduling is a key
layer used to coordinate the priorities of the tasks such
that they can be treated in a fair way. Resource allocation
layer is responsible for calculating the optimal resource
fraction for the subtasks, and performing the task execution
on the isolated virtual resources. Each physical host runs
multiple VMs, on each of which are deployed with all of
the off-the-shelf services (e.g., the libraries or programs that
compute matrix formulas). Each subtask will be executed on
a VM, with an amount of virtual resource (a.k.a., resource
fraction) tuned by the substrate VM monitor (VMM, a.k.a.,
hypervisor). Our work will be focused on the three issues
that involve the five bottom layers, how to schedule the
tasks with as fair treatment as possible, how to allocate the
virtual resources to get the optimal performance, and how
to perform the task execution with minimized overheads.
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Figure 1. System Overview of Cloud Composite Service System

Each task is processed according to the pseudo-code
shown in Algorithm 1, also as shown in Figure 1 (b). At

Algorithm 1 PROCEDURE OF PROCESSING A TASK

Input: Task t={t(1),t(2),· · · ,t(m)};
Output: The computing output of the task t.
1: Predict workload for task t, denoted as l(t)=(l(t(1)),· · · ,l(t(m)))T ;
2: for (i=1 → m) do
3: Compute the optimal resource for t(i), t(i+1), · · · , t(m), based on

convex optimization;
4: Put t(i) in a queue and wait until receiving an execution notification;
5: Upon receiving the notification, perform the resource isolation for

the VM selected by the task scheduler;
6: Trigger the web service on the VM, and execute t(i);
7: end for

the beginning, the task submitted will be analyzed by a task
parser (in the user interface module), in order to predict
the subtask workloads based on their input parameters. The
optimal resource vector for all the subtasks in the task
t will then be computed based on convex optimization,
and the output is denoted as r∗(t)=(r∗(t(1)), r∗(t(2)), · · · ,
r∗(t(m)))T . After that, the first unprocessed subtask (denoted
as t(i)) will be put in a queue and registered with its
optimal resource demand (denoted as r∗(t(i))), waiting for
the task scheduling notification with a selected qualified
physical host on top of which running an idle VM. As t(i) is
scheduled, the hypervisor of the selected physical machine



will perform the resource isolation for the selected VM to
match t(i)’s demand. The corresponding service on the VM
will be called with t(i)’s input parameters, and the output
will be cached in the VM, waiting for the notification of the
data transmission for its succeeding subtask.

We adopt XEN’s credit scheduler [7] to perform the
resource isolation among VMs on the same physical ma-
chine. With XEN [8], we can dynamically isolate some
key resources (like CPU rate and network bandwidth) to
suit the specific usage demands of different VMs. There
are two key concepts in the credit scheduler, capacity and
weight. Capacity specifies the upper limit on the CPU rate
consumable by a particular VM, and weight means a VM’s
proportional-share credit. On a relatively free physical host,
the CPU rate of a running VM is determined by its capacity.
If there are over-many VMs running on a physical machine,
the real CPU rates allocated for them are proportional to
their weights. Both capacity and weight can be dynamically
tuned at runtime no matter whether the target VMs are
running some applications or not.

III. PROBLEM FORMULATION

Assuming there are n tasks to be processed by the system,
and they are denoted as ti, where i=1,2,· · · ,n. Each task
can be considered a series workflow, which is made up
of multiple subtasks connected in series. We denote the
subtasks of the task ti to be ti(1), ti(2), · · · , ti(mi), where mi

refers to the number of subtasks in ti. Such a design glitters
a generic execution model, wherein any user request can be
constructed by multiple embedded composite services.

Since each task is composed of a series of subtasks,
its total execution time (or execution length) can be de-
noted as T (ti)=

∑mi

j=1
li(j)
ri(j)

, where li(j) and ri(j) are re-
ferred to as the workload of subtask ti(j) (such as the
number of instructions, data to read from disk) and the
compute resource allocated (such as CPU rate, disk I/O
bandwidth) respectively. Such a definition specifies a de-
facto broad set of applications (an affine transformation),
each of which can be executed with varied resources over
different stages, adapting to dynamic changes of resource
intensities. We will use execution time, execution length,
response length, and wall-clock time interchangeably in the
following text. Subtask’s workload can be characterized us-
ing {resource processing rate×subtask execution length}
based on past traces or workload prediction approaches like
polynomial regression method [9]. Each subtask ti(j) will
call a particular service API, which is associated with a
service price (denoted as pi(j)). The service prices ($/unit)
are determined by corresponding service makers in our
model, since they are the ones who pay monthly resource
leases to Infrastructure-as-a-Service (IaaS) providers (e.g.,
Amazon EC2 [10]). The total payment in executing a task
ti on top of service layer is equal to

∑mi

j=1 [ri(j) · pi(j)]. Each
task is associated with a budget (denoted as B(ti)) by its

user in order to control its total payment. Hence, the problem
of optimizing task ti’s execution can be formulated as
Formula (1) and Formula (2) (convex-optimization problem).

min T (ti) =
∑mi

j=1

li(j)

ri(j)
(1)

s.t.
∑mi

j=1
[ri(j) · pi(j)] ≤ B(ti) (2)

There are two metrics to evaluate the system performance.
One is Response Extension Ratio (RER) of each task (de-
fined in Formula (3)).

RER(ti) =
t′is real response time

t′is theoretically optimal length
(3)

The RER is used to evaluate the execution performance for
a particular task. The lower value the RER is, the higher
execution efficiency the corresponding task is processed with
in reality. A task’s theoretically optimal length (TOL) is
the sum of the theoretical execution time of each subtask
with the optimal resource allocation. The optimal resource
allocation is the solution to the above convex-optimization
problem (Formula (1) and Formula (2)), to be described later.
The response time here indicates the whole wall-clock time
from its submission moment to its final completion moment.
In general, the response time of a task is made up of the
following 4 parts of all of its subtasks, subtask’s waiting
time, overhead before the subtask’s execution (such as on
resource allocation and data transmission), the subtask’s
execution time, process overhead after its execution. We try
best to minimize the cost at each above part in our design.

The other metric is the fairness index of RER among all
tasks (defined in Formula (4)), which is used to evaluate the
fairness of the treatment in the system. Its value is ranged
in [0, 1], and the bigger its value is, the higher fairness of
the treatment is. Based on Formula (3), the fairness is also
related to the different types of execution overheads. How to
effectively coordinate the overheads among different tasks
is a very challenging issue. This is mainly due to largely
different task structure (i.e., the subtask’s workload and the
order of its connection), task budget, and dynamically varied
resource availability over time.

fairness(ti) =
(
∑n

i=1 RER(ti))
2

n
∑n

i=1 RER2(ti)
(4)

Our final objective is to minimize the RER for each indi-
vidual task (or minimize the maximum RER) and maximize
the overall fairness meanwhile, especially in a competitive
situation where over-many tasks compete limited resources.

IV. OPTIMIZATION OF SYSTEM PERFORMANCE

In order to optimize QoS, we need to minimize the
overheads raised at each step in the course of its exe-
cution. In general, there are two major reasons for over-
large RER and unfairness of the treatment, especially in a
competitive situation: (1) the remarkable waiting time cost
in task scheduling; (2) the possible overheads in performing



the task execution. We exploit the best-fit solution to the
above problem on the three facets, resource allocation, task
scheduling, and minimization of overheads.

A. Adjusted Resource Allocation

We design an adjusted scheme to dynamically allocate
isolated resources for running tasks. It sets tasks’ resource
fractions to be their theoretically optimal values in non-
competitive situation. We also exploit the best-suited so-
lution for the competitive situation such that each task
execution can still be kept with a high QoS in a fair way.

In a non-competitive situation (i.e., the available resources
are assumed to be unlimited), the resource fraction allocated
to some task is mainly restricted by its user-set budget,
which can be formulated as a convex-optimization problem,
including a target function (Formula (1)) and a constraint
(Formula (2)). We solve it below.

Theorem 1: To minimize T (ti) subject to the constraint
(2), ti’s optimal resource vector r∗(ti) is shown as Equation
(5), where j=1, 2, · · · , mi.

r∗i(j) =

√
li(j)/pi(j)∑mi

k=1

√
li(k)pi(k)

·B(ti) (5)

Proof: Since ∂2T (ti)
∂rj

=2 li(j)
r3
i(j)

>0, T (ti) is convex with a
minimum extreme point. By combining the constraint (2),
we can get the Lagrangian function as Formula (6), where
λ refers to the Lagrange multiplier.

F (ri) =
∑mi

j=1

li(j)

ri(j)
+ λ(B(ti)−

∑mi

j=1
ri(j)pi(j)) (6)

We derive Equation (7) via Lagrangian multiplier method.

ri(1) : ri(2) : · · · : ri(mi)=

√
li(1)

pi(1)
:

√
li(2)

pi(2)
: · · · :

√
li(mi)

pi(mi)
(7)

In order to minimize T (ti), the optimal resource vector
r∗i(j) should use up all the budget (i.e., let the total payment
be equal to B(ti)). Then, we can get Equation (5).

As follows, we discuss the significance of Theorem 1 and
how to split physical resources among different tasks based
on VM resource isolation in practice. According to Theorem
1, we can easily compute the optimal resource vector for
any task based on its budget constraint. Specially, r∗i(j) is
the theoretically optimal resource vector (or processing rate)
allocated to the subtask ti(j), such that the total wall-clock
time of task ti can be minimized. That is, even though
there were more available resources compared to the value
r∗i(j), it would be useless for the task ti due to its limited
budget. Hence, our designed resource allocator will set each
subtask’s CPU capacity1 (i.e., the maximum CPU rate) as
its theoretically optimal resource vector, Formula (5).

If the system runs in short supply, it is likely the total sum
of their optimal resources (i.e., r∗(ti)) may exceed the total

1the capacity-setting command is “xm sched-credit -d VM -c r∗
i(j)

”.

capacity of physical machines. At such a competitive situa-
tion, it is necessary to coordinate the priorities of the tasks
in the resource consumption, such that none of tasks’ real
execution lengths would be extended noticeably compared
to its theatrically optimal execution length (i.e., minimizing
RER(ti) for each task ti). In our system, we improve the
proportional-share mechanism with XEN’s credit scheduler
to control subtask’s resource utilization.

Under XEN’s credit scheduler, each guest VM on the
same physical machine will get its CPU rate that is propor-
tional to its weight2. Suppose on a physical host (denoted
as hi), ni scheduled subtasks are running on ni stand-alone
VMs separately (denoted vj , where j=1,2,· · · ,ni). We denote
the host hi’s total compute capacity to be ci (e.g., 8 cores),
and the weights of the ni subtasks to be w(v1), w(v2), · · · ,
w(vni). Then, the real resource share (denoted by r(vj))
allocated to the VM vj can be calculated by Formula (8).

r(vj) =
w(vj)∑ni

k=1 w(vk)
ci (8)

Now, the key question becomes how to determine the
value of the weight for each running subtask (or VM) on
a physical machine. Based on the definition of RER, a large
value of RER tends to appear with a short task, which can
also be confirmed by our experiments. This is mainly due to
the fact that the overheads (such as data transmission cost,
VMM operation cost) in the whole wall-clock time are often
relatively constant regardless of the total task workload. That
is, based on the definition of RER, short task’s RER is
more sensitive to the execution overheads than that of a
long one. Hence, our design tends to assign higher priorities
to short tasks in their resource allocation. Specifically, our
intuitive idea is adopting a proportional-share model on most
of the middle-size-tasks such that their resource fractions
received are proportional to their theoretically optimal re-
source amounts (r∗i(j)). Meanwhile, we enhance the credits
of the subtasks whose corresponding tasks are relatively
short and decrease the credits of the ones with long tasks.
That is, we give some extra credits to short tasks to enhance
their resource consumption priority. Suppose on a physical
machine is running d subtasks (belonging to different tasks),
which are denoted as t1(x1), t2(x2), · · · , td(xd), where xi = 1,
2, · · · , or mi, then, w(ti(j)) will be determined by Formula
(9). We call it Adjusted Proportional-Share Model (APSM).

w(ti(j)) =


η · r∗i(j) li ≤ α

r∗i(j) α < li ≤ β
1
η · r∗i(j) li > β

(9)

The weight values in our design (Formula (9)) are deter-
mined by four parts, the extension coefficient (η), theoret-
ically optimal resource fraction (r∗i(j)), the threshold value
α to determine short tasks, and the threshold value β to
determine long tasks. Obviously, the value of η is supposed

2the weight-setting command is “xm sched-credit -d VM -w weight”.



to be always greater than 1. In reality, tuning η’s value could
adjust the extension degree for short/long tasks. Changing
the values of α and β could tune the number of the short/long
tasks. That is, by adjusting these values dynamically, we
could optimize the overall system performance to adapt
to different contention states. Specific values suggested in
practice will be discussed with our experimental results.

B. Best-suited Task Scheduling Policy

In a competitive situation where over-many tasks are
submitted to the system, it is necessary to queue some
tasks that cannot find the qualified resources temporarily.
The queue will be checked as soon as some new resources
are released by the finished tasks. As multiple hosts are
available for the task (e.g., there are still available CPU rates
non-allocated on the host), the most powerful one with the
largest availability will be selected as the execution host. A
key question is how to select the waiting tasks based on their
demands, such that the overall execution performance and
the fairness can both be optimized.

Based on our two-fold objective that aims to minimize
the RER and maximize the fairness meanwhile, we propose
that the best-fit queuing policy is Lightest-Workload-First
(LWF) policy, which assigns the highest scheduling priority
to the shortest job that has the least workload amount to
process. In addition, we also evaluate many other queuing
policies for comparison, including First-Come-First-Serve
(FCFS), Shortest-Optimal-Length-First (SOLF), Slowest-
Progress-First (SPF), and Shortest-Subtask-First (SSF). We
describe all the task-selection policies below.

• First-Come-First-Serve (FCFS). FCFS schedules the
subtasks based on their arrival order. The first arrival
one in the queue will be scheduled as long as there are
available resources to use. This is the most basic policy,
which is the easiest to implement. However, it does not
take into account the variation of task features, such as
task structure, task workload, thus the performance and
fairness will be significantly restricted.

• Lightest-Workload-First (LWF). LWF schedules the
subtasks based on the predicted workload of their
corresponding tasks (a.k.a., jobs). Task’s workload is
defined as the execution length estimated assuming to
be run on a standard process rate (such as single-
core CPU rate). In the waiting queue, the subtask
whose corresponding task has lighter workload will
be scheduled with a higher priority. In our Cloud
system that aims to minimize the RER and maximize
the fairness meanwhile, LWF obviously possesses a
prominent advantage. Note that various tasks’ TOLs
are different due to their different budget constraints
and workloads, while tasks’ execution overheads tend
to be constant in the system. In addition, the tasks
with lighter workloads tend to be with smaller TOLs,
based on the definition of T (ti). Hence, according to

the definition of RER, the tasks with lighter workloads
(i.e., shorter jobs) are supposed to be more sensitive
to their execution overheads, which means that they
should be associated with higher priorities.

• Shortest-Optimal-Length-First (SOLF). SOLF is de-
signed based on such an intuition: in order to minimize
RER of a task, we can only minimize the task’s real ex-
ecution length because its theoretically optimal length
(TOL) is a fixed constant based on its intrinsic structure
and budget. Since tasks’ TOLs are different due to their
heterogeneous structures, workloads, and budgets, the
execution overheads will impact their RERs to different
extents. Suppose there were two tasks whose TOLs
are 30 seconds and 300 seconds respectively and their
execution overheads are both 10 seconds. Even though
the sums of their subtask execution lengths were right
the optimal values (30 seconds and 300 seconds), their
RERs would be largely different: 30+10

30 vs. 300+10
300 . In

other words, the tasks with shorter TOLs are supposed
to be scheduled with higher priorities, in order to
minimize the discrepancy among tasks’ RERs.

• Slowest-Progress-First (SPF). SPF is designed based
on the task’s real execution progress compared to its
overall workload or TOL. The tasks with the slowest
progress will have the highest scheduling priorities.
The execution progress can be defined based on either
the workload processed or the wall-clock time passed.
They are called Workload Progress (WP) and Time
Process (TP) respectively, and they are defined in
Formula (10) and Formula (11) respectively. In the
two Formulas, d refers to the number of completed
subtasks, li=

∑mi

j=1 li(j), and TOL(ti)=
∑mi

j=1
li(j)
r∗
i(j)

. SPF
means that the smaller value of ti’s WP (ti) or TP (ti),
the higher ti’s priority would be. For example, if ti is a
newly submitted task, its workload processed must be 0
(or d=0), then WP (ti) would be equal to 0, indicating
ti is with the slowest process.

WP (ti) =
∑d

j=1 li(d)
li

(10)

TP (ti) =
wall-clock time since t′is submission

TOL(ti)
(11)

Based on the two different definitions, the Slowest-
Progress-First (SPF) can be split into two types, namely
Slowest-Workload-Progress-First (SWPF) and Slowest-
Time-Progress-First (STPF) respectively. We evaluated
both of them in our experiment.

• Shortest-Subtask-First (SSF). SSF selects the shortest
subtask waiting in the queue. The shortest subtask is
defined as the subtask (in the waiting queue) which
has the minimal workload amount estimated based on
single-core computation. As a subtask is completed,
there must be some new resources released for other
tasks, which means that a new waiting subtask will
then be scheduled if the queue is non-empty. Obviously,



SSF will result in the shortest waiting time to all the
subtasks/tasks on average. In fact, since we select the
“best” resource in the task scheduling, the eventual
scheduling effect of SSF will make the short subtasks
be executed as soon as possible. Hence, this policy
is exactly the same as min-min policy [5], which has
been effective in Grid workflow scheduling. However,
our experiments validate that SSF is not the best-suited
scheduling policy in our Cloud system.

C. Minimization of Processing Overheads

In our system, in addition to the waiting time and ex-
ecution time of subtasks, there are three more possibly
significant overheads which will also be counted in the
whole response time, the time cost in performing VM re-
source isolation at runtime, the time cost in data transmission
between sub-tasks, and the time of restoring VM’s default
setting after task execution.

In this section, we intensively study how to minimize the
negative impact of all these overheads to the task’s whole
response time at runtime. Our idea is illustrated in Figure 2.
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Figure 2 shows the wall-clock time of a subtask in our
system, through an example subtask A. At the beginning
(Step 1), it will be put in the scheduling queue until there
are qualified available resource matching its demand. Then,
the scheduler will notify the XEN hypervisor on the selected
physical host to perform VM resource isolation (Step 2).
Since we perform the VM resource isolation for different
VMs by XEN hypervisor [8], we mainly characterize the
time cost of dynamically performing XEN’s credit-tuning
command. We find that the XEN command that tunes a
VM’s CPU rate at runtime often costs constantly (in about
0.3 seconds), regardless of the VM’s properties (such as the
memory size and the working state of the VM). This cost
cannot be overlooked especially for the short tasks whose
TOLs (i.e., theoretically optimal wall-clock time) are short
(say several seconds). Consequently, our design adopts two
principles to minimize its impact, minimizing the number
of VM CPU credit tuning operations in the course of task

execution, and also performing the commands in stand-alone
threads whose time cost could be excluded from the task’s
wall-clock time. For example, we always tune VM’s capacity
and weight values via an integrated command1 instead of
two separate commands as mentioned previously.

In addition, as soon as a physical host is selected for
a subtask, the scheduler will immediately perform the data
transmission (Step 3) if needed, e.g., when the subtask is not
the initial one in the whole task. Specially, if the physical
hosts of the previous subtask and the current subtask (in the
same task) are different, the output of the previous one needs
to be transmitted from its execution host to the new host as
the current subtask’s input. Such a data transmission will
be carried out in a new thread, by notifying the previous
execution host to push the data into the host assigned to
the current subtask. Such a design makes multiple steps
(including the VM resource isolation, data transmission, and
possible other tracing/logging operations) run concurrently,
mitigating the negative impact of the execution overheads to
the whole response time as much as possible.

As soon as the input data arrives at the execution VM on
the selected physical host, the corresponding service will be
triggered to finish the subtask’s workload (Step 4) through
the isolated virtual resource. Whenever the execution is
done, a daemon on the VM will send a notification to
its hypervisor to restore its default setting (including the
capacity and weight). The default values of the capacity
and weight are both set equal to one-core CPU rate. In
our system, for the super-short subtasks (say the one whose
TOL is less than or around 2 seconds), we run them directly
on VMs without any credit-tuning operation. Otherwise, the
credit-tuning effect may work on another subtask instead of
the current subtask, due to the inevitable delay (about 0.3
seconds) of the credit-tuning command and the super-short
length of the subtask. That is, such a strategy that directly
runs super-short subtasks could effectively control the over-
head for them and also reduce the possible contention of
executing other resource isolation commands on the same
machines. All in all, the minimized wall-clock time of each
subtask is supposed to be equal or close to the sum of the
times cost in Step 1, Step 3 and Step 4.

V. PERFORMANCE EVALUATION

A. Experimental Setting

We implement a cloud composite service prototype that
can help solving complex matrix-based problems, each
which if allowed to consist of a series of embedded matrix
computations. For example, a user may submit a request
like Solve((Am×n·An×m)k,Bm×m). Such a task could be
split into three steps (or subtasks): (1) matrix-matrix mul-
tiply: Cm×m=Am×n·An×m; (2) matrix-power: Dm×m =

1the command is “xm sched-credit -d VM -c r∗
i(j)

-w weight”



Table I
WORKLOADS (SINGLE-CORE EXECUTION LENGTH) OF 10 MATRIX OPERATIONS (SECONDS)

Matrix Scale M-M-Multi. QR-Decom. Matrix-Power M-V-Multi. Frob.-Norm Rank Solve Solve-Tran. V-V-Multi. Two-Norm
500 0.7 2.6 m=10 2.1 0.001 0.010 1.6 0.175 0.94 0.014 1.7
1000 11 12.7 m=20 55 0.003 0.011 8.9 1.25 7.25 0.021 9.55
1500 38 35.7 m=20 193.3 0.005 0.03 29.9 4.43 24.6 0.047 29.4
2000 99.3 78.8 m=10 396 0.006 0.043 67.8 10.2 57.2 0.097 68.2
2500 201 99.5 m=20 1015 0.017 0.111 132.6 18.7 109 0.141 136.6

Ck
m×m; (3) Least squares solution of D·X=B based on QR-

Decomposition: Solve(Dm×m, Bm×m).
In our experiment, we are assigned with 8 physical nodes

to use from the most powerful cluster in HongKong (namely
Gideon-II [11]), and each node owns 2 quad-core Xeon
CPU E5540 (i.e. 8 processors per node) and 16GB memory
size. There are 56 VM-images (centos 5.2) maintained by
Network File System (NFS), so 56 VMs (7 VMs per node)
will be generated at the bootstrap. XEN 4.0 [8] serves as the
hypervisor on each node and dynamically allocates various
CPU rates to the VMs at run-time using the credit scheduler.

Through a graphical user interface, users can submit their
matrix computation requests. In our experiment, we make
use of ParallelColt [12] to perform the math computations,
each consisting of a set of matrix operations. ParallelColt
[12] is such a library that can effectively calculate complex
matrix operations, such as matrix-matrix multiply and matrix
decomposition, in parallel (with multiple threads) based on
Symmetric Multiple Processor (SMP) model.

In each test, we randomly generate a number of user
requests, each of which is composed of 5∼15 sub-tasks.
Each sub-task is randomly selected from 10 basic matrix op-
erations (i.e., 10 services in in Table I). The generated matrix
problem must be valid w.r.t. matrix’s shape. We also char-
acterize the single-core execution length (or workload) for
each service in the table. Among the 10 matrix-computation
services, three services are coded via multiple threads, in-
cluding matrix-matrix multiply, QR-decomposition, matrix-
power, hence their computation can get an approximate-
linear speedup when allocated multiple processors. The other
7 matrix operation services are implemented using single
thread, thus they cannot get speedup when being allocated
with more than one processor. Hence, we set the capacity
of any subtask performing a single-threaded service to be
single-core rate, unless its theoretically optimal resource to
allocate is less than one core.

We will evaluate different queuing policies and resource
allocation schemes under different competitive situations
with different numbers (4-24) of tasks simultaneously.

B. Experimental Results

We first characterize the various contention degrees with
different number of tasks submitted. The contention degree
is evaluated via two metrics, Allocate-Request Ratio (ab-
breviated as ARR) and Queue Length (abbreviated as QL).
System’s ARR at a time point is defined as the ratio of the

total allocated resource amount to the total amount requested
by subtasks at that moment. QL at a time point is defined
as the total number of subtasks in the waiting list at that
moment. There are 4 test-cases each of which uses different
number of tasks (4, 8, 16, and 24) submitted. The 4 test-cases
correspond to different contention degrees. Figure 3 shows
the summed resource amount allocated and the summed
amount requested over time under different competitive sit-
uations, with exactly the same experimental settings except
for different scheduling policies. The numbers enclosed in
parentheses indicate the number of tasks submitted.
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Figure 3. Allocation vs. Request With Different Contention Degrees

We find that with the same number of submitted tasks,
ARR exhibits similarly with different scheduling policies.
The resource amount allocated can always meet the resource
amount requested (i.e., ARR keeps 1 and two curves overlap
in the figure) when there are a small number (4 or 8) of
tasks submitted, regardless of the scheduling policies. This



confirms our resource allocation scheme can guarantee the
service level in the non-competitive situation. As the system
runs with over-many tasks (such as 16 and 24) submitted,
there would appear a prominent gap between the resource
allocation curve and the resource request curve. This clearly
indicates a competitive situation. For instance, when 24
tasks are submitted simultaneously, ARR stays around 1/2
during the first 50 seconds. It is also worth noting that the
longest task execution length under FCFS is remarkably
longer than that under LWF (about 280 seconds vs. about
240 seconds). This implies scheduling policy is essential to
the performance of the Cloud system.

Figure 4 presents that the queue length (QL) increases
with the number of tasks submitted. It is worth noticing
that QL under different scheduling policies exhibits quite
different. In the duration with high competition (the first
50 seconds in the test), SSTF and LWF both lead to short
average waiting time (about 5-6 seconds and 6-7 seconds
respectively). By contrast, under SOLF, SWPF, or STPF,
the QL is much longer (about 10-12 seconds), implying a
higher cost on waiting to be scheduled.
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Figure 4. Queue Lengths With Different Contention Degrees

In addition, we explore the best-suited scheduling policy,
and validate the effectiveness of the adjusted resource allo-
cation scheme with various coefficients. We set {α, β} to the
9 combinations of {5 sec., 10 sec., 20 sec.}×{100 sec., 200

sec., 300 sec.}), and η is set to
√
2. Experiments show that

the best-suited scheduling policy is LWF and our designed
resource allocation method (denoted as Adjusted-PSM or
APSM) which treats task priorities based on task workloads
can effectively improve the task execution performance. In
the competitive situation, APSM outperforms the simple
proportional-share model (PSM) prominently.

Table II shows the response extension ratio (RER) of
our system running in short supply (when there are 24
tasks submitted). It is observed that LWF+APSM is the
best choice, which significantly outperforms other strategies
by at least 7.230

5.239−1=38% w.r.t. the max. value of RER,
and by at least 0.714

0.638−1=12% w.r.t. the fairness index of
RER. In addition, as there are 16 tasks submitted, RER’s
maximum values under LWF+APSM, SSTF+APSM, and
FCFS+APSM are 2.234, 4.248, and 3.528 respectively, and
the fairness indexes are 0.884, 0.738, and 0.770 respectively.
This further confirms the remarkable advantage of our
strategy (LWF+APSM) working in a competitive state.

Table II
COMPARISON OF RER IN A COMPETITIVE SITUATION

strategy min. avg. max. fairness
FCFS+PSM 0.732 3.665 21.097 0.345
FCFS+APSM 0.644 3.779 21.755 0.358
LWF+PSM 0.712 1.809 5.974 0.703
LWF+APSM 0.666 1.790 5.239 0.714
SOLF+PSM 0.720 3.331 17.004 0.482
SOLF+APSM 0.730 2.780 10.803 0.575
SSTF+PSM 0.746 2.108 8.706 0.573
SSTF+APSM 0.769 2.119 7.230 0.638
SWPF+PSM 0.708 6.106 57.928 0.209
SWPF+APSM 0.649 6.233 59.627 0.206
STPF+PSM 0.707 2.830 14.867 0.476
STPF+APSM 0.713 3.147 15.853 0.474

We analyze the reasons why experimental results differ
a lot under different scheduling policies below. SWPF and
STPF perform badly among all policies. In particular, SWPF
works so poorly that its RER is even greater than 50. Let us
review the Formula (10) and Formula (11). In SPF, smaller
value of WP (ti) or TP (ti) will lead to higher priority,
indicating that the task runs with the slowest progress.
However, based on the two formulas, longer task (with
larger li and T (ti)) also tends to make WP (ti) and TP (ti)
smaller. That is, such a policy actually tends to assign higher
priority to longer task. Such a side-effect works oppositely
against to the shortest job first intuition, e.g., LWF and
STPF, thus many tasks would suffer higher waiting cost on
task scheduling. In contrast, LWF and SSTF significantly
outperform others, probably due to the fact that they both
suffer significantly lower waiting cost in task scheduling
(as confirmed in Figure 4). In comparison to SSTF, LWF
possesses a particular advantage by taking into account the
task’s overall workload, which tends to get smaller RER.
It is also observed that LWF+APSM works better than
SOLF+APSM by 38% at the worst case. This is mainly
due to the fact that workload is a immutable metric while



task length is relatively mutable. In other words, a task’s
real execution length is hard to control in that it may be
influenced by many unpredictable factors in practice. Hence,
the accuracy of the estimated theoretically optimal length
(TOL) may be of large errors, misleading task scheduling.

In addition, from Table II, we find that our designed
APSM is indeed able to improve the performance in most of
cases. For the example of the maximum RER, LWF+APSM
and SOLF+APSM outperform LWF+PSM and SOLF+PSM
by 5.974

5.239−1=14% and 17.004
10.803−1=57.4% respectively.

Finally, we evaluate the effectiveness of our design in
the non-competitive situation (when there are only 4 tasks
submitted), as shown in Table III. In such a situation, all
tasks can always be allocated with theoretically optimal
resources due to the non-competitive state in the system.
Thus, the performance under different queueing policies did
not differ a lot. Specifically, the mean value of the task
execution length is only slightly higher than its theoreti-
cally optimal value by 21.4%−37.6%. The maximum RERs
and the fairness indexes of all strategies are always lower
than 3 and greater than 0.8 respectively. In comparison to
the competitive situation, PSM usually outperforms APSM
slightly in the non-competitive situation. That is, the APSM
will get the resource allocation among tasks be a little over-
adjusted against the optimal solution. Such a lesson inspires
us to optimize the performance for the both situations by an
adaptive solution, which will be our future work.

Table III
COMPARISON OF RER IN A NON-COMPETITIVE SITUATION

strategy min. avg. max. fairness
FCFS+PSM 0.966 1.300 2.052 0.891
FCFS+APSM 0.878 1.243 2.041 0.878
LWF+PSM 0.933 1.308 2.092 0.876
LWF+APSM 0.863 1.320 2.331 0.840
SOLF+PSM 0.901 1.376 2.723 0.811
SOLF+APSM 0.871 1.324 2.205 0.863
SSTF+PSM 0.911 1.270 2.000 0.893
SSTF+APSM 0.891 1.327 2.318 0.839
SWPF+PSM 0.882 1.125 1.581 0.929
SWPF+APSM 0.860 1.214 2.183 0.845
STPF+PSM 0.941 1.262 2.044 0.881
STPF+APSM 0.883 1.369 2.440 0.829

VI. RELATED WORK

Although job scheduling problem [13] in Grid computing
[14] has been extensively studied for years, most of them
(such as [15], [16]) are not suited for our cloud composite
service processing environment. Grid jobs are often with
long execution length, while Cloud tasks are often short
based on [17]. Hence, scheduling/execution overheads (such
as waiting time and data transmission cost) may impact
Cloud task’s response time more than Grid job’s, implying
they must be carefully minimized in the Cloud model.

Recently, many new scheduling methods are proposed for
different Cloud systems. M. Zaharia et al. [18] designed
a task scheduling method to improve the performance of

Hadoop [19] for a heterogeneous environment (such as
a pool of VMs each customized with different compute
abilities). Unlike the FCFS policy and speculative execution
model originally used in Hadoop, they designed a so-called
Longest Approximate Time to End (LATE) policy, that as-
signs higher priorities to the jobs with longer remaining exe-
cution lengths. Their intuition is maximizing the opportunity
for a speculative copy to overtake the original and reduce
job’s response time. M. Isard et al. [20] proposed a fair
scheduling policy (namely Quincy) for a high performance
compute system with virtual machines, in order to maximize
the scheduling fairness and minimize the data transmission
cost meanwhile. Compared to these works, our Cloud system
works with a strict payment model, under which the optimal
resource allocation for each task can be computed based
on convex optimization theory. M. Mao et al. [21] propose
a solution by combining dynamic scheduling and earliest
deadline first (EDF) strategy, to minimize user payment
and meet application deadlines meanwhile. Whereas, they
overlook the competitive situation by assuming the resource
pool is always adequate and users have unlimited budgets.

In addition to scheduling model, many Cloud management
researchers focus on the optimization of resource assign-
ment. Unlike Grid systems whose compute nodes are exclu-
sively consumed by jobs, the resource allocation in Cloud
systems are able to be refined by leveraging VM resource
isolation technology. M. Stillwell et al. [25] exploited how
to optimize the resource allocation for service hosting on
a heterogeneous distributed platform. Their research is for-
malized as a Mixed Integer Linear Program (MILP) problem
and treated as a rational LP problem instead, also with
fundamental theoretical analysis based on estimate errors. In
comparison to their work, we intensively exploit the best-
suited scheduling policy and resource allocation scheme for
the competitive situation. We also take into account user
payment requirement, and evaluate our solution on a real-
VM-deployment environment which needs to tackle more
practical technical issues like minimization of various exe-
cution overheads. X. Meng et al. [22] analyzed VM-pairs’
compatibility in terms of the forecasted workload and esti-
mated VM sizes. SnowFlock [23] is another interesting tech-
nology that allows any VM to be quickly cloned (similar to
UNIX process fork) such that the resource allocation would
be automatically refined at runtime. S. Kuribayashi [24] also
proposed a resource allocation method for Cloud computing
environments especially based on divisible resources. The
key advantage of our design in comparison is to optimize
each task’s QoS and the overall fairness at a satisfactory
level meanwhile, especially for a competitive situation.

VII. CONCLUSION AND FUTURE WORK

In this paper, we designed and implemented a loosely-
coupled Cloud system with web services deployed on mul-
tiple VMs, aiming to improve and stabilize the QoS of



each user request at runtime. Our contribution is three-fold:
(1) we intensively studied the best-suited task scheduling
policy under such a composite service processing model;
(2) we explored an optimal resource allocation scheme and
an adjusted strategy that can suit the competitive situation;
(3) the processing overhead is minimized in our design. Ex-
periments confirm that the best solution for the competitive
situation is applying the Lightest-Workload-First (LWF) in
task scheduling plus a Proportional-Shared resource alloca-
tion with the credit being set to the adjusted task workload.
It outperforms other solutions in the competitive situation,
by 38% w.r.t. the worst-case response time and by 12% w.r.t.
the fairness of the treatment. In a non-competitive situation,
different queuing policies perform similarly, and the task
execution length is only slightly higher than its theoretically
optimal value by 21.4%−37.6%, and the fairness can be kept
over 0.8. In the future, we plan to explore the most accurate
coefficients (e.g., η) for our adjusted resource allocation, in
both theory and practice. We also plan to further exploit an
adaptive solution that can dynamically optimize the perfor-
mance in both competitive and non-competitive situations.
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